

Logic and Mechanized Reasoning

Structural Induction and Invariants

Marijn J.H. Heule

Carnegie
Mellon
University

Structural Induction

Invariants

Structural Induction

Invariants

Structural Induction: Beyond the natural numbers

Recall the inductive definition of the natural numbers

- ▶ 0 is a natural number.
- ▶ If x is a natural number, so is $\text{succ}(x)$.

Can we also define datastructures in a similar way?

Structural Induction: Lists

Let α be a data type.

Let $List(\alpha)$ be the set of all lists of type α :

- ▶ The element nil is an element of $List(\alpha)$.
- ▶ If a is an element of α and ℓ is an element of $List(\alpha)$, then the element $cons(a, \ell)$ is an element of $List(\alpha)$.

Notation:

- ▶ nil denotes the empty list, also denote by $[]$.
- ▶ $cons(a, \ell)$ denotes adding a to the beginning of list ℓ , also written as $a :: \ell$

Example

The list of natural numbers $[1, 2, 3]$ would be written as $cons(1, cons(2, cons(3, nil)))$ or $1 :: (2 :: (3 :: []))$

Structural Induction: Append

Definition of *append*:

$$\text{append}(\text{nil}, m) = m$$

$$\text{append}(\text{cons}(a, \ell), m) = \text{cons}(a, \text{append}(\ell, m))$$

Alternatively written as:

$$[] \text{ ++ } m = m$$

$$(a :: \ell) \text{ ++ } m = a :: (\ell \text{ ++ } m)$$

Structural Induction: *append* Lemma

Recall the definition of *append*:

$$\begin{aligned} [] \mathbin{+} m &= m \\ (a :: \ell) \mathbin{+} m &= a :: (\ell \mathbin{+} m) \end{aligned}$$

Lemma

For every List ℓ , we have $\ell \mathbin{+} [] = \ell$.

Proof.

Base case: $[] \mathbin{+} [] = []$

Inductive case: Suppose we have $\ell \mathbin{+} [] = \ell$

$$\begin{aligned} (a :: \ell) \mathbin{+} [] &= a :: (\ell \mathbin{+} []) \\ &= a :: \ell \end{aligned}$$

□

Structural Induction: Associativity of *append*

Recall the definition of *append*:

$$\begin{aligned} [] \mathbin{+} m &= m \\ (a :: \ell) \mathbin{+} m &= a :: (\ell \mathbin{+} m) \end{aligned}$$

Lemma

For every List ℓ, m, n : $\ell \mathbin{+} (m \mathbin{+} n) = (\ell \mathbin{+} m) \mathbin{+} n$

Proof.

Base case: $[] \mathbin{+} (m \mathbin{+} n) = m \mathbin{+} n = ([] \mathbin{+} m) \mathbin{+} n$

Inductive case:

Suppose we have $\ell \mathbin{+} (m \mathbin{+} n) = (\ell \mathbin{+} m) \mathbin{+} n$

$$\begin{aligned} (a :: \ell) \mathbin{+} (m \mathbin{+} n) &= a :: (\ell \mathbin{+} (m \mathbin{+} n)) \\ &= a :: ((\ell \mathbin{+} m) \mathbin{+} n) \\ &= (a :: (\ell \mathbin{+} m)) \mathbin{+} n \\ &= ((a :: \ell) \mathbin{+} m) \mathbin{+} n \end{aligned}$$

□

Structural Induction: The function *append1*

The function *append1* adds an element to the end of a list:

$$\begin{aligned} \text{append1}(\text{nil}, a) &= \text{cons}(a, \text{nil}) \\ \text{append1}(\text{cons}(b, \ell), a) &= \text{cons}(b, \text{append1}(\ell, a)) \end{aligned}$$

More compactly it can be written as:

$$\begin{aligned} \text{append1}([], a) &= [a] \\ \text{append1}(b :: \ell, a) &= b :: \text{append1}(\ell, a) \end{aligned}$$

Observe that $\text{append1}(\ell, a)$ equals $\ell ++ [a]$

Structural Induction: *reverse* of Lists

$$\text{reverse}([]) = []$$

$$\text{reverse}(a :: \ell) = \text{reverse}(\ell) ++ [a]$$

Lemma

For all List ℓ, m : $\text{reverse}(\ell ++ m) = \text{reverse}(m) ++ \text{reverse}(\ell)$

Proof.

Base case: $r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])$

Induction:

Suppose we have $\text{reverse}(\ell ++ m) = \text{reverse}(m) ++ \text{reverse}(\ell)$

$$\begin{aligned}\text{reverse}((a :: \ell) ++ m) &= \text{reverse}(a :: (\ell ++ m)) \\ &= \text{reverse}(\ell ++ m) ++ [a] \\ &= (\text{reverse}(m) ++ \text{reverse}(\ell)) ++ [a] \\ &= \text{reverse}(m) ++ (\text{reverse}(\ell) ++ [a]) \\ &= \text{reverse}(m) ++ \text{reverse}(a :: \ell)\end{aligned}$$

□

Structural Induction: *reverse of reverse*

$$\text{reverse}([]) = []$$

$$\text{reverse}(a :: \ell) = \text{reverse}(\ell) ++ [a]$$

Lemma

For every List ℓ holds that $\text{reverse}(\text{reverse}(\ell)) = \ell$

Proof.

Base case: $\text{reverse}(\text{reverse}([])) = \text{reverse}([]) = []$

Induction: Suppose we have $\text{reverse}(\text{reverse}(\ell)) = \ell$

$$\begin{aligned}\text{reverse}(\text{reverse}(a :: \ell)) &= \text{reverse}(\text{reverse}(\ell) ++ [a]) \\ &= \text{reverse}([a]) ++ \text{reverse}(\text{reverse}(\ell)) \\ &= [a] ++ \text{reverse}(\text{reverse}(\ell)) \\ &= [a] ++ \ell \\ &= a :: \ell\end{aligned}$$

□

Structural Induction: What is the complexity of *reverse*?

$$\text{reverse}([]) = []$$

$$\text{reverse}(a :: \ell) = \text{reverse}(\ell) ++ [a]$$

Example

$$\begin{aligned}\text{reverse}([1, 2, 3]) &= (\text{reverse}([2, 3])) ++ [1] \\ &= ((\text{reverse}([3])) ++ [2]) ++ [1] \\ &= (((\text{reverse}([])) ++ [3]) ++ [2]) ++ [1] \\ &= (([] ++ [3]) ++ [2]) ++ [1] \\ &= ([3] ++ [2]) ++ [1] \\ &= ((3 :: []) ++ [2]) ++ [1] \\ &= (3 :: ([] ++ [2])) ++ [1] \\ &= (3 :: [2]) ++ [1] \\ &= 3 :: ([2] ++ [1]) \\ &= 3 :: ((2 :: []) ++ [1]) \\ &= 3 :: (2 :: ([] ++ [1])) = 3 :: (2 :: [1]) = [3, 2, 1]\end{aligned}$$

Structural Induction: Efficient Execution

Consider an alternative function to reverse a list:

$$\begin{aligned} reverseAux([], m) &= m \\ reverseAux((a :: \ell), m) &= reverseAux(\ell, (a :: m)) \\ reverse'(\ell) &= reverseAux(\ell, []) \end{aligned}$$

Lemma

For every List ℓ, m : $reverseAux(\ell, m) = reverse(\ell) ++ m$

Proof.

Base case: $reverseAux([], m) = m = [] ++ m = reverse([]) ++ m$

Induction: Assume $reverseAux(\ell, m) = reverse(\ell) ++ m$

$$\begin{aligned} reverseAux((a :: \ell), m) &= reverseAux(\ell, (a :: m)) \\ &= reverse(\ell) ++ (a :: m) \\ &= reverse(\ell) ++ ([a] ++ m) \\ &= (reverse(\ell) ++ [a]) ++ m \\ &= reverse(a :: \ell) ++ m \end{aligned}$$

□

Structural Induction: Complexity Measurements

We can assign any complexity measure to a data type, and do induction on complexity, as long as the measure is well founded.

$$\text{length}([]) = 0$$

$$\text{length}(a :: \ell) = \text{length}(\ell) + 1$$

Structural Induction: Properties of Extended Binary Trees

- ▶ The element *empty* is a binary tree.
- ▶ If s and t are finite binary trees, so is the $\text{node}(s, t)$.

Compute the size of an extended binary tree as follows:

$$\begin{aligned}\text{size}(\text{empty}) &= 0 \\ \text{size}(\text{node}(s, t)) &= 1 + \text{size}(s) + \text{size}(t)\end{aligned}$$

Compute the depth of an extended binary tree as follows:

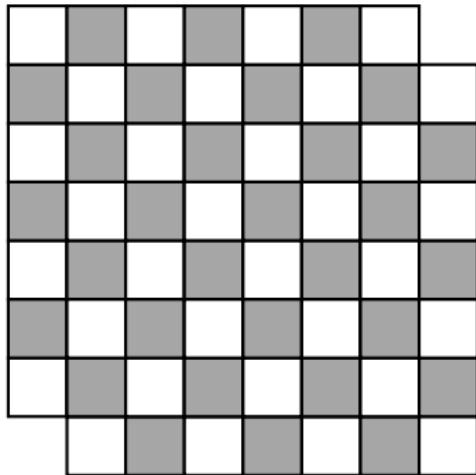
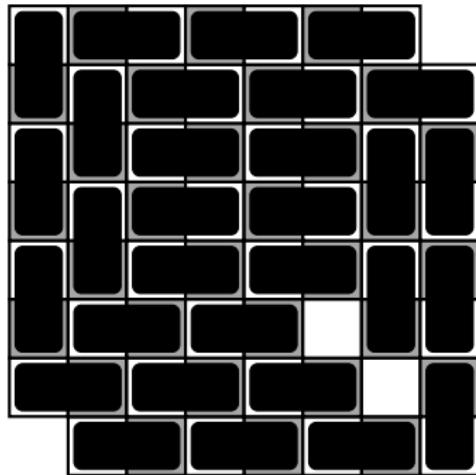
$$\begin{aligned}\text{depth}(\text{empty}) &= 0 \\ \text{depth}(\text{node}(s, t)) &= 1 + \max(\text{depth}(s), \text{depth}(t))\end{aligned}$$

Structural Induction

Invariants

Invariants: Mutilated Chessboard I

Can a chessboard be fully covered with dominos after removing two diagonally opposite corner squares?



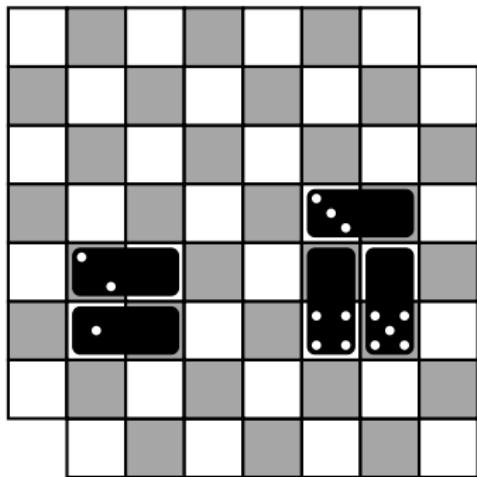
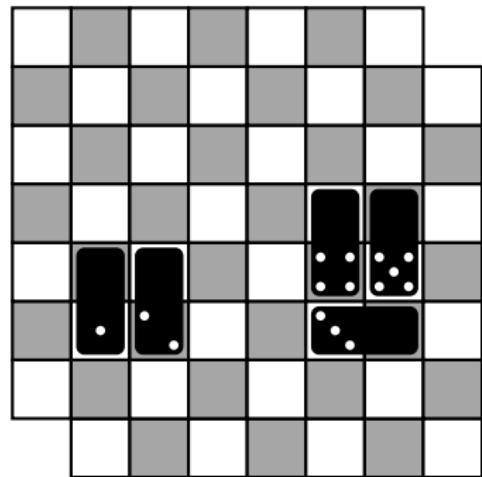
Easy to refute based on the following two observations:

- ▶ There are more white squares than black squares; and
- ▶ A domino covers exactly one white and one black square.

Invariants: Mutilated Chessboard II

The chessboard pattern invariant is hard to find

Mechanized reasoning can find alternative invariants



Invariants: MU Puzzle by Douglas Hofstadter

Consider string with letters M, I, and U.

1. Replace xI by xIU : append any string ending in I with U.
2. Replace Mx by Mxx : double the string after the initial M.
3. Replace $xIIIy$ by xUy : replace three consecutive Is by U.
4. Replace $xUUy$ by xy : delete any consecutive pair of Us.

The starting with the string MI. Can we get to MU?

What is the invariant?

Invariants: MU Puzzle Invariant

Invariant: The number of Is is $2^a \pmod{3}$ for $a \in \mathbb{N}$

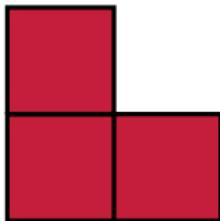
Base case: $a = 0$

Induction:

1. Replace xI by xIU : append any string ending in I with U.
 - ▶ This doesn't change the number of Is
2. Replace Mx by Mxx : double the string after the initial M.
 - ▶ This doubles the number of Is: increases a by 1
3. Replace $xIIIy$ by xUy : replace three consecutive Is by U.
 - ▶ It reduces the number of Is by 3: no change $\pmod{3}$
4. Replace $xUUy$ by xy : delete any consecutive pair of Us.
 - ▶ This doesn't change the number of Is

Invariants: Golomb's Tromino Theorem

A **tromino** is an L-shaped configuration of three squares.



Theorem (Golomb's Trominoes Theorem)

Any $2^n \times 2^n$ chessboard with one square removed can be tiled with trominoes.

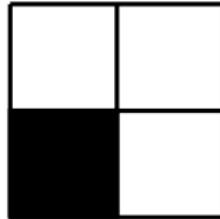
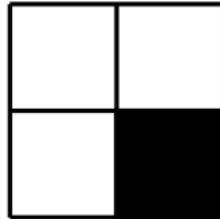
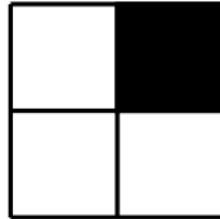
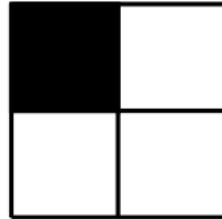
Invariants: Trominoes 2×2 grid

Theorem (Golomb's Trominoes Theorem)

Any $2^n \times 2^n$ chessboard with one square removed can be tiled with trominoes.

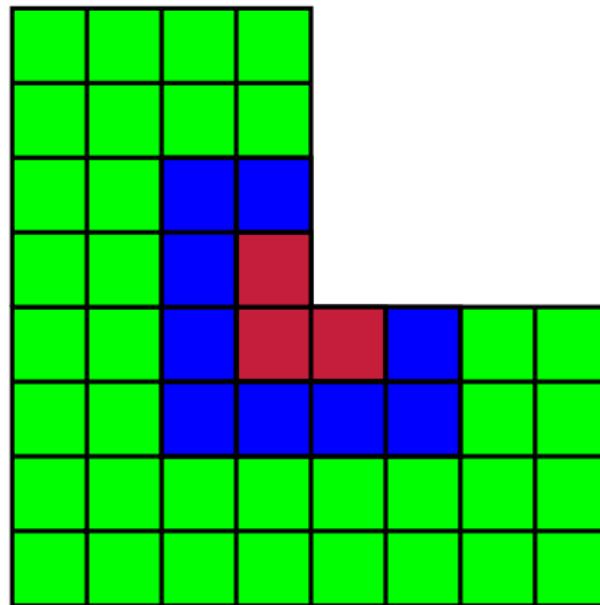
Let's first consider the $n = 1$ case.

All cases are isomorphic. A tromino covers the remaining grid.



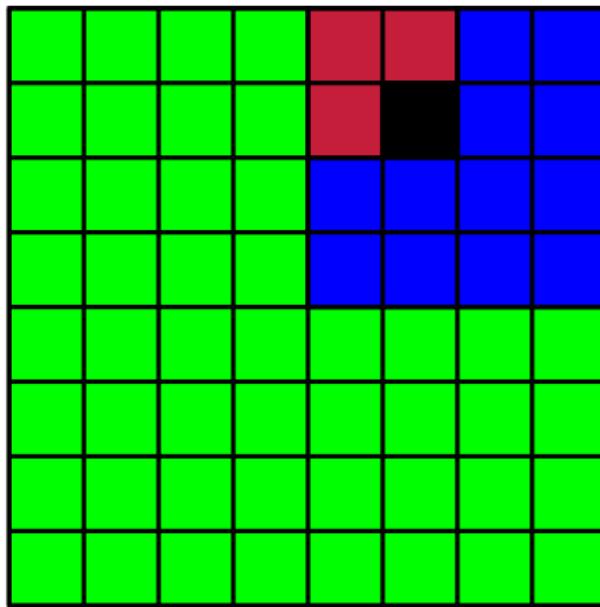
Invariants: Larger Trominoes

Use 4 trominoes of size n to make one of size $2n$



Invariants: Trominoes 8×8 grid

Cover the three quadrants that are not blocked by the square



Invariants: Loop Invariants

Invariants are not restricted to recursive definitions. Imperative code frequently has invariants and they can be crucial to prove correctness.

Example (Loop invariant)

```
int j = 9;  
for (int i=0; i<10; i++)  
    j--;
```

The code above has the loop invariant $i + j == 9$

Structural Induction

Invariants