
Machine Learning

1

NASSLLI 2018

Matt Gormley
June 23 - 24, 2018

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Prerequisites

1. Be able to find Porter Hall 100
2. Later, be able to find GHC 6115 -- using a

specific entrance door (near Cyert Hall) to
enter between the hours of 12pm and 7pm.

3. Maybe speak a little bit of Python

2

3

WHAT IS MACHINE LEARNING?

4

Artificial Intelligence

The basic goal of AI is to develop intelligent
machines.

This consists of many sub-goals:
• Perception
• Reasoning
• Control / Motion / Manipulation
• Planning
• Communication
• Creativity
• Learning

5

Artificial
Intelligence

Machine
Learning

What is Machine Learning?

7

What is ML?

8

Machine Learning

Optimization Statistics

Probability

Calculus Linear Algebra

Computer
Science

Domain of
Interest

Measure
Theory

Speech Recognition

1. Learning to recognize spoken words

9

“…the SPHINX system (e.g.
Lee 1989) learns speaker-
specific strategies for
recognizing the primitive
sounds (phonemes) and
words from the observed
speech signal…neural
network methods…hidden
Markov models…”

(Mitchell, 1997)

THEN

Source: https://www.stonetemple.com/great-knowledge-box-
showdown/#VoiceStudyResults

NOW

Robotics

2. Learning to drive an autonomous vehicle

10

“…the ALVINN system
(Pomerleau 1989) has used
its learned strategies to drive
unassisted at 70 miles per
hour for 90 miles on public
highways among other
cars…”

(Mitchell, 1997)

THEN

waymo.com

NOW

Robotics

2. Learning to drive an autonomous vehicle

11

“…the ALVINN system
(Pomerleau 1989) has used
its learned strategies to drive
unassisted at 70 miles per
hour for 90 miles on public
highways among other
cars…”

(Mitchell, 1997)

THEN

https://www.geek.com/wp-
content/uploads/2016/03/uber.jpg

NOW

Games / Reasoning

3. Learning to beat the masters at board games

12

“…the world’s top computer
program for backgammon,
TD-GAMMON (Tesauro,
1992, 1995), learned its
strategy by playing over one
million practice games
against itself…”

(Mitchell, 1997)

THEN NOW

LeRec: Hybrid for On-Line Handwriting Recognition 1295

3x3

INPUT AMAP
5820x18

I
... .

2x2 convolve

feature maps
feature maps 889x8 feature maps

2505x4
8018x16 output code o ~ ~ ~ ~ x " p d e

8482x1

Figure 2: Convolutional neural network character recognizer. This architecture
is robust to local translations and distortions, with subsampling, shared weights,
and local receptive fields.

number of subsampling layers and the sizes of the kernels are chosen,
the sizes of all the layers, including the input, are determined unambigu-
ously. The only architectural parameters that remain to be selected are
the number of feature maps in each layer, and the information as to what
feature map is connected to what other feature map. In our case, the sub-
sampling rates were chosen as small as possible (2 x 2), and the kernels
as small as possible in the first layer (3 x 3) to limit the total number of
connections. Kernel sizes in the upper layers are chosen to be as small as
possible while satisfying the size constraints mentioned above. The last
subsampling layer performs a vertical subsampling to make the network
more robust to errors of the word normalizer (which tends to create vari-
ations in vertical position). Several architectures were tried (but clearly
not exhaustively), varying the type of layers (convolution, subsampling),
the kernel sizes, and the number of feature maps.

Larger architectures did not necessarily perform better and required
considerably more time to be trained. A very small architecture with
half the input field also performed worse, because of insufficient input
resolution. Note that the input resolution is nonetheless much less than
for optical character resolution, because the angle and curvature provide
more information than a single grey level at each pixel.

Training proceeded in two phases. First, we kept the centers of the
RBFs fixed, and trained the network weights so as to maximize the log-
arithm of the output RBF corresponding to the correct class (maximum
log-likelihood). This is equivalent to minimizing the mean-squared er-
ror between the previous layer and the center of the correct-class RBF.

Computer Vision

4. Learning to recognize images

13

“…The recognizer is a
convolution network that can
be spatially replicated. From
the network output, a hidden
Markov model produces
word scores. The entire
system is globally trained to
minimize word-level
errors.…”

(LeCun et al., 1995)

THEN NOW

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201678

(slide from Kaiming He’s recent presentation)

Images from https://blog.openai.com/generative-models/

Learning Theory

• 5. In what cases and how well can we learn?

14

Sample%Complexity%Results

34

Realizable Agnostic

Four$Cases$we$care$about…

1. How many examples do we need
to learn?

2. How do we quantify our ability to
generalize to unseen data?

3. Which algorithms are better
suited to specific learning
settings?

What is Machine Learning?

15

To solve all the
problems above
and more

Topics
• Foundations

– Probability
– MLE, MAP
– Optimization

• Classifiers
– KNN
– Naïve Bayes
– Logistic Regression
– Perceptron
– SVM

• Regression
– Linear Regression

• Important Concepts
– Kernels
– Regularization and Overfitting
– Experimental Design

• Unsupervised Learning
– K-means / Lloyd’s method
– PCA
– EM / GMMs

• Neural Networks
– Feedforward Neural Nets
– Basic architectures
– Backpropagation
– CNNs

• Graphical Models
– Bayesian Networks
– HMMs
– Learning and Inference

• Learning Theory
– Statistical Estimation (covered right

before midterm)
– PAC Learning

• Other Learning Paradigms
– Matrix Factorization
– Reinforcement Learning
– Information Theory

16

ML Big Picture

17

Learning Paradigms:
What data is available and
when? What form of prediction?
• supervised learning
• unsupervised learning
• semi-supervised learning
• reinforcement learning
• active learning
• imitation learning
• domain adaptation
• online learning
• density estimation
• recommender systems
• feature learning
• manifold learning
• dimensionality reduction
• ensemble learning
• distant supervision
• hyperparameter optimization

Problem Formulation:
What is the structure of our output prediction?
boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression
ordering Ranking
multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete &
cont.

(e.g. mixed graphical models)

Theoretical Foundations:

What principles guide learning?
q probabilistic
q information theoretic
q evolutionary search
q ML as optimization

Facets of Building ML
Systems:
How to build systems that are
robust, efficient, adaptive,
effective?
1. Data prep
2. Model selection
3. Training (optimization /

search)
4. Hyperparameter tuning on

validation data
5. (Blind) Assessment on test

data

Big Ideas in ML:

Which are the ideas driving
development of the field?
• inductive bias
• generalization / overfitting
• bias-variance decomposition
• generative vs. discriminative
• deep nets, graphical models
• PAC learning
• distant rewards

A
p

p
li

ca
ti

o
n

 A
re

as
Ke

y
ch

al
le

ng
es

?
N

LP
, S

pe
ec

h,
 C

om
pu

te
r

Vi
si

on
, R

ob
ot

ic
s,

 M
ed

ic
in

e,

Se
ar

ch

Machine Learning & Ethics

What ethical responsibilities do we
have as machine learning experts?

18

If our search results for news are
optimized for ad revenue, might
they reflect gender / racial / socio-
economic biases?

Should restrictions be placed on
intelligent agents that are capable of
interacting with the world?

How do autonomous vehicles make
decisions when all of the outcomes
are likely to be negative?

http://vizdoom.cs.put.edu.pl/

http://bing.com/

http://arstechnica.com/

Some topics that we
won’t cover are probably
deserve an entire course

DEFINING LEARNING PROBLEMS

19

Well-Posed Learning Problems

Three components <T,P,E>:
1. Task, T
2. Performance measure, P
3. Experience, E

Definition of learning:
A computer program learns if its performance
at tasks in T, as measured by P, improves with
experience E.

20
Definition from (Mitchell, 1997)

Example Learning Problems

3. Learning to beat the masters at chess
1. Task, T:

2. Performance measure, P:

3. Experience, E:

21

Example Learning Problems

4. Learning to respond to voice commands (Siri)
1. Task, T:

2. Performance measure, P:

3. Experience, E:

22

Capturing the Knowledge of Experts

23

Solution #1: Expert Systems
• Over 20 years ago, we

had rule based systems
• Ask the expert to

1. Obtain a PhD in
Linguistics

2. Introspect about the
structure of their native
language

3. Write down the rules
they devise

Give me directions to Starbucks

If: “give me directions to X”
Then: directions(here, nearest(X))

How do I get to Starbucks?

If: “how do i get to X”
Then: directions(here, nearest(X))

Where is the nearest Starbucks?

If: “where is the nearest X”
Then: directions(here, nearest(X))

1990 20001980 2010

Capturing the Knowledge of Experts

24

Solution #1: Expert Systems
• Over 20 years ago, we

had rule based systems
• Ask the expert to

1. Obtain a PhD in
Linguistics

2. Introspect about the
structure of their native
language

3. Write down the rules
they devise

Give me directions to Starbucks

If: “give me directions to X”
Then: directions(here, nearest(X))

How do I get to Starbucks?

If: “how do i get to X”
Then: directions(here, nearest(X))

Where is the nearest Starbucks?

If: “where is the nearest X”
Then: directions(here, nearest(X))

I need directions to Starbucks

If: “I need directions to X”
Then: directions(here, nearest(X))

Is there a Starbucks nearby?
If: “Is there an X nearby”
Then: directions(here, nearest(X))

Starbucks directions

If: “X directions”
Then: directions(here, nearest(X))

1990 20001980 2010

Capturing the Knowledge of Experts

25

Solution #2: Annotate Data and Learn

• Experts:
– Very good at answering questions about specific

cases
– Not very good at telling HOW they do it

• 1990s: So why not just have them tell you what
they do on SPECIFIC CASES and then let
MACHINE LEARNING tell you how to come to
the same decisions that they did

1990 20001980 2010

Capturing the Knowledge of Experts

26

Solution #2: Annotate Data and Learn

1. Collect raw sentences {x1, …, xn}
2. Experts annotate their meaning {y1, …, yn}

x2: Show me the closest Starbucks

y2: map(nearest(Starbucks))

x3: Send a text to John that I’ll be late

y3: txtmsg(John, I’ll be late)

x1: How do I get to Starbucks?
y1: directions(here,

nearest(Starbucks))

x4: Set an alarm for seven in the
morning
y4: setalarm(7:00AM)

1990 20001980 2010

Example Learning Problems

4. Learning to respond to voice commands (Siri)
1. Task, T:

predicting action from speech
2. Performance measure, P:

percent of correct actions taken in user pilot
study

3. Experience, E:
examples of (speech, action) pairs

27

Problem Formulation
• Often, the same task can be formulated in more than one way:
• Ex: Loan applications

– creditworthiness/score (regression)
– probability of default (density estimation)
– loan decision (classification)

28

Problem Formulation:
What is the structure of our output prediction?
boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression
ordering Ranking
multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete &
cont.

(e.g. mixed graphical models)

Well-posed Learning Problems

In-Class Exercise

1. Select a task, T
2. Identify performance

measure, P
3. Identify experience, E
4. Report ideas back to

rest of class

29

Example Tasks
• Identify objects in an image
• Translate from one human language

to another
• Recognize speech
• Assess risk (e.g. in loan application)
• Make decisions (e.g. in loan

application)
• Assess potential (e.g. in admission

decisions)
• Categorize a complex situation (e.g.

medical diagnosis)
• Predict outcome (e.g. medical

prognosis, stock prices, inflation,
temperature)

• Predict events (default on loans,
quitting school, war)

• Plan ahead under perfect knowledge
(chess)

• Plan ahead under partial knowledge
(Poker, Bridge)

Examples from Roni Rosenfeld

FUNCTION APPROXIMATION

30

Function Approximation

31

Quiz: Implement a simple function which returns sin(x).

A few constraints are imposed:
1. You can’t call any other trigonometric functions
2. You can call an existing implementation of sin(x) a few times

(e.g. 100) to test your solution
3. You only need to evaluate it for x in [0, 2*pi]

ML as Function Approximation

Chalkboard
– ML as Function Approximation

• Problem setting
• Input space
• Output space
• Unknown target function
• Hypothesis space
• Training examples

32

CLASSIFICATION

33

Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by
Anderson (1936)

35
Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal
Length

Sepal
Width

Petal
Length

Petal
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7

Fisher Iris Dataset

Classification

Chalkboard:
– Binary classification
– 2D examples
– Decision rules / hypotheses

37

K-NEAREST NEIGHBORS

38

k-Nearest Neighbors

Chalkboard:
– KNN for binary classification
– Distance functions
– Efficiency of KNN
– Inductive bias of KNN
– KNN Properties

39

KNN ON FISHER IRIS DATA

40

Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by
Anderson (1936)

41
Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal
Length

Sepal
Width

Petal
Length

Petal
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7

Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by
Anderson (1936)

42
Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal
Length

Sepal
Width

0 4.3 3.0

0 4.9 3.6

0 5.3 3.7

1 4.9 2.4

1 5.7 2.8

1 6.3 3.3

1 6.7 3.0

Deleted two of the
four features, so that

input space is 2D

KNN on Fisher Iris Data

43

KNN on Fisher Iris Data

44

Special Case: Nearest Neighbor

KNN on Fisher Iris Data

45

Special Case: Majority Vote

KNN on Fisher Iris Data

46

KNN on Fisher Iris Data

47

Special Case: Nearest Neighbor

KNN on Fisher Iris Data

48

KNN on Fisher Iris Data

49

KNN on Fisher Iris Data

50

KNN on Fisher Iris Data

51

KNN on Fisher Iris Data

52

KNN on Fisher Iris Data

53

KNN on Fisher Iris Data

54

KNN on Fisher Iris Data

55

KNN on Fisher Iris Data

56

KNN on Fisher Iris Data

57

KNN on Fisher Iris Data

58

KNN on Fisher Iris Data

59

KNN on Fisher Iris Data

60

KNN on Fisher Iris Data

61

KNN on Fisher Iris Data

62

KNN on Fisher Iris Data

63

KNN on Fisher Iris Data

64

KNN on Fisher Iris Data

65

KNN on Fisher Iris Data

66

KNN on Fisher Iris Data

67

Special Case: Majority Vote

KNN ON GAUSSIAN DATA

68

KNN on Gaussian Data

69

KNN on Gaussian Data

70

KNN on Gaussian Data

71

KNN on Gaussian Data

72

KNN on Gaussian Data

73

KNN on Gaussian Data

74

KNN on Gaussian Data

75

KNN on Gaussian Data

76

KNN on Gaussian Data

77

KNN on Gaussian Data

78

KNN on Gaussian Data

79

KNN on Gaussian Data

80

KNN on Gaussian Data

81

KNN on Gaussian Data

82

KNN on Gaussian Data

83

KNN on Gaussian Data

84

KNN on Gaussian Data

85

KNN on Gaussian Data

86

KNN on Gaussian Data

87

KNN on Gaussian Data

88

KNN on Gaussian Data

89

KNN on Gaussian Data

90

KNN on Gaussian Data

91

KNN on Gaussian Data

92

KNN on Gaussian Data

93

K-NEAREST NEIGHBORS

94

Questions

• How could k-Nearest Neighbors (KNN) be
applied to regression?

• Can we do better than majority vote? (e.g.
distance-weighted KNN)

• Where does the Cover & Hart (1967) Bayes
error rate bound come from?

95

KNN Learning Objectives
You should be able to…
• Describe a dataset as points in a high dimensional space

[CIML]
• Implement k-Nearest Neighbors with O(N) prediction
• Describe the inductive bias of a k-NN classifier and relate

it to feature scale [a la. CIML]
• Sketch the decision boundary for a learning algorithm

(compare k-NN and DT)
• State Cover & Hart (1967)'s large sample analysis of a

nearest neighbor classifier
• Invent "new" k-NN learning algorithms capable of dealing

with even k
• Explain computational and geometric examples of the

curse of dimensionality

96

THE PERCEPTRON ALGORITHM

97

Perceptron: History
Imagine you are trying to build a new machine learning
technique… your name is Frank Rosenblatt…and the
year is 1957

98

Perceptron: History
Imagine you are trying to build a new machine learning
technique… your name is Frank Rosenblatt…and the
year is 1957

99

Key idea: Try to learn
this hyperplane directly

Linear Models for Classification

Directly modeling the
hyperplane would use a
decision function:

for:

h() = sign(�T)

y � {�1, +1}

Looking ahead:
• We’ll see a number of

commonly used Linear
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under

certain conditions)
– Support Vector

Machines

Geometry

In-Class Exercise

Draw a picture of the
region corresponding
to:

Draw the vector
w = [w1, w2]

101

Answer Here:

Visualizing Dot-Products

Chalkboard:
– vector in 2D
– line in 2D
– adding a bias term
– definition of orthogonality
– vector projection
– hyperplane definition
– half-space definitions

102

Key idea: Try to learn
this hyperplane directly

Linear Models for Classification

Directly modeling the
hyperplane would use a
decision function:

for:

h() = sign(�T)

y � {�1, +1}

Looking ahead:
• We’ll see a number of

commonly used Linear
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under

certain conditions)
– Support Vector

Machines

Online vs. Batch Learning

Batch Learning
Learn from all the examples at
once

Online Learning
Gradually learn as each example
is received

104

Online Learning

Examples

1. Stock market prediction (what will the value
of Alphabet Inc. be tomorrow?)

2. Email classification (distribution of both spam
and regular mail changes over time, but the
target function stays fixed - last year's spam
still looks like spam)

3. Recommendation systems. Examples:
recommending movies; predicting whether a
user will be interested in a new news article

4. Ad placement in a new market
105

Slide adapted from Nina Balcan

Online Learning

For i = 1, 2, 3, …:

• Receive an unlabeled instance x(i)

• Predict y’ = hθ(x(i))
• Receive true label y(i)

• Suffer loss if a mistake was made, y’ ≠ y(i)

• Update parameters θ

Goal:

• Minimize the number of mistakes

106

Perceptron

Chalkboard:
– (Online) Perceptron Algorithm

107

Perceptron Algorithm: Example
Example: −1,2 −

-
+
+

%& = (0,0)
%+ = %& − −1,2 = (1,−2)
%, = %+ + 1,1 = (2,−1)
%. = %, − −1,−2 = (3,1)

+
-
-

Perceptron Algorithm: (without the bias term)

§ Set t=1, start with all-zeroes weight vector %&.
§ Given example 0, predict positive iff%1 ⋅ 0 ≥ 0.
§ On a mistake, update as follows:

• Mistake on positive, update %15& ← %1 + 0
• Mistake on negative, update %15& ← %1 − 0

1,0 +
1,1 +

−1,0 −
−1,−2 −
1,−1 +

X
a
X

a
X

a

Slide adapted from Nina Balcan

Perceptron

Chalkboard:
– Why do we need a bias term?
– (Batch) Perceptron Algorithm
– Inductive Bias of Perceptron
– Limitations of Linear Models

110

Background: Hyperplanes

H = {x : wT x = b}
Hyperplane (Definition 1):

w

Hyperplane (Definition 2):

Half-spaces:

Notation Trick: fold the
bias b and the weights w
into a single vector θ by

prepending a constant to
x and increasing

dimensionality by one!

(Online) Perceptron Algorithm

112

Learning: Iterative procedure:
• initialize parameters to vector of all zeroes
• while not converged

• receive next example (x(i), y(i))
• predict y’ = h(x(i))
• if positive mistake: add x(i) to parameters
• if negative mistake: subtract x(i) from parameters

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

Prediction: Output determined by hyperplane.

ŷ = h�(x) = sign(�T x) sign(a) =

�
1, if a � 0

�1, otherwise

(Online) Perceptron Algorithm

113

Learning:

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

Prediction: Output determined by hyperplane.

ŷ = h�(x) = sign(�T x) sign(a) =

�
1, if a � 0

�1, otherwise

Implementation Trick: same
behavior as our “add on

positive mistake and
subtract on negative

mistake” version, because
y(i) takes care of the sign

(Batch) Perceptron Algorithm

114

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch” setting in contrast to the “online”
setting that we’ve discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)

1: procedure PĊėĈĊĕęėĔē(D = {((1), y(1)), . . . , ((N), y(N))})
2: � � 0 � Initialize parameters
3: while not converged do
4: for i � {1, 2, . . . , N} do � For each example
5: ŷ � sign(�T (i)) � Predict
6: if ŷ �= y(i) then � If mistake
7: � � � + y(i) (i) � Update parameters
8: return �

(Batch) Perceptron Algorithm

115

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch” setting in contrast to the “online”
setting that we’ve discussed so far.

Discussion:
The Batch Perceptron Algorithm can be derived in two ways.

1. By extending the online Perceptron algorithm to the batch
setting (as mentioned above)

2. By applying Stochastic Gradient Descent (SGD) to minimize a
so-called Hinge Loss on a linear separator

Extensions of Perceptron
• Voted Perceptron

– generalizes better than (standard) perceptron
– memory intensive (keeps around every weight vector seen during

training, so each one can vote)
• Averaged Perceptron

– empirically similar performance to voted perceptron
– can be implemented in a memory efficient way

(running averages are efficient)
• Kernel Perceptron

– Choose a kernel K(x’, x)
– Apply the kernel trick to Perceptron
– Resulting algorithm is still very simple

• Structured Perceptron
– Basic idea can also be applied when y ranges over an exponentially

large set
– Mistake bound does not depend on the size of that set

116

ANALYSIS OF PERCEPTRON

117

Analysis: Perceptron

118
Slide adapted from Nina Balcan

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

Perceptron Mistake Bound

Guarantee: If data has margin � and all points inside a ball of
radius R, then Perceptron makes � (R/�)2 mistakes.

++

+
+

+
+

+

-

-
-

-

-

g
g

--
-
-

+

R

��

OPTIMIZATION FOR ML

119

120

Topographical Maps

121

Topographical Maps

Gradients

122

Gradients

123
These are the gradients that

Gradient Ascent would follow.

(Negative) Gradients

124
These are the negative gradients that

Gradient Descent would follow.

(Negative) Gradient Paths

125

Shown are the paths that Gradient Descent
would follow if it were making infinitesimally

small steps.

Gradient Descent

Chalkboard
– Example: 2D gradients
– Algorithm
– Details: starting point, stopping criterion, line

search

126

Gradient Descent

127

Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

In order to apply GD to Linear
Regression all we need is the
gradient of the objective
function (i.e. vector of partial
derivatives).

��J(�) =

�

����

d
d�1

J(�)
d

d�2
J(�)
...

d
d�N

J(�)

�

����

—

M

Gradient Descent

128

Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

There are many possible ways to detect convergence.
For example, we could check whether the L2 norm of
the gradient is below some small tolerance.

||��J(�)||2 � �
Alternatively we could check that the reduction in the
objective function from one iteration to the next is small.

—

Pros and cons of gradient descent

• Simple and often quite effective on ML tasks
• Often very scalable
• Only applies to smooth functions (differentiable)
• Might find a local minimum, rather than a global one

129
Slide courtesy of William Cohen

Stochastic Gradient Descent (SGD)

130

Algorithm 2 Stochastic Gradient Descent (SGD)

1: procedure SGD(D, �(0))
2: � � �(0)

3: while not converged do
4: for i � shu�e({1, 2, . . . , N}) do
5: � � � + ���J (i)(�)

6: return �

We need a per-example objective:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

—

131

Expectations of Gradients

132

Stochastic Gradient Descent (SGD)

133

Algorithm 2 Stochastic Gradient Descent (SGD)

1: procedure SGD(D, �(0))
2: � � �(0)

3: while not converged do
4: for i � shu�e({1, 2, . . . , N}) do
5: � � � + ���J (i)(�)

6: return �

We need a per-example objective:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

—

Stochastic Gradient Descent (SGD)

We need a per-example objective:

134

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

Algorithm 2 Stochastic Gradient Descent (SGD)

1: procedure SGD(D, �(0))
2: � � �(0)

3: while not converged do
4: for i � shu�e({1, 2, . . . , N}) do
5: for k � {1, 2, . . . , K} do
6: �k � �k + � d

d�k
J (i)(�)

7: return �

—

Convergence Curves

• SGD reduces MSE
much more rapidly
than GD

• For GD / SGD, training
MSE is initially large
due to uninformed
initialization

135

Gradient Descent
SGD
Closed-form
(normal eq.s)

Figure adapted from Eric P. Xing

• Def: an epoch is a
single pass through
the training data

1. For GD, only one
update per epoch

2. For SGD, N updates
per epoch
N = (# train examples)

Optimization Objectives

You should be able to…
• Apply gradient descent to optimize a function
• Apply stochastic gradient descent (SGD) to

optimize a function
• Apply knowledge of zero derivatives to identify

a closed-form solution (if one exists) to an
optimization problem

• Distinguish between convex, concave, and
nonconvex functions

• Obtain the gradient (and Hessian) of a (twice)
differentiable function

136

PROBABILISTIC LEARNING

137

Probabilistic Learning

Function Approximation

Previously, we assumed that our
output was generated using a
deterministic target function:

Our goal was to learn a
hypothesis h(x) that best
approximates c*(x)

Probabilistic Learning

Today, we assume that our
output is sampled from a
conditional probability
distribution:

Our goal is to learn a probability
distribution p(y|x) that best
approximates p*(y|x)

138

Robotic Farming

139

Deterministic Probabilistic

Classification
(binary output)

Is this a picture of
a wheat kernel?

Is this plant
drought resistant?

Regression
(continuous
output)

How many wheat
kernels are in this
picture?

What will the yield
of this plant be?

Maximum Likelihood Estimation

140

MOTIVATION:
LOGISTIC REGRESSION

141

Example: Image Classification
• ImageNet LSVRC-2010 contest:

– Dataset: 1.2 million labeled images, 1000 classes
– Task: Given a new image, label it with the correct class
– Multiclass classification problem

• Examples from http://image-net.org/

144

145

146

147

Example: Image Classification

148

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input
image

(pixels)

• Five convolutional layers
(w/max-pooling)

• Three fully connected layers

1000-way
softmax

Example: Image Classification

149

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input
image

(pixels)

• Five convolutional layers
(w/max-pooling)

• Three fully connected layers

1000-way
softmax

This “softmax”
layer is Logistic

Regression!

The rest is just
some fancy

feature extraction
(discussed later in

the course)

LOGISTIC REGRESSION

150

Logistic Regression

151

We are back to
classification.

Despite the name
logistic regression.

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

Key idea: Try to learn
this hyperplane directly

Linear Models for Classification

Directly modeling the
hyperplane would use a
decision function:

for:

h() = sign(�T)

y � {�1, +1}

Looking ahead:
• We’ll see a number of

commonly used Linear
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under

certain conditions)
– Support Vector

Machines

Background: Hyperplanes

H = {x : wT x = b}
Hyperplane (Definition 1):

w

Hyperplane (Definition 2):

Half-spaces:

Notation Trick: fold the
bias b and the weights w
into a single vector θ by

prepending a constant to
x and increasing

dimensionality by one!

Using gradient ascent for linear
classifiers

Key idea behind today’s lecture:
1. Define a linear classifier (logistic regression)
2. Define an objective function (likelihood)
3. Optimize it with gradient descent to learn

parameters
4. Predict the class with highest probability under

the model

154

Using gradient ascent for linear
classifiers

155

Use a differentiable
function instead:

logistic(u) ≡ 1
1+ e−u

p�(y = 1|) =
1

1 + (��T)

This decision function isn’t
differentiable:

sign(x)

h() = sign(�T)

Using gradient ascent for linear
classifiers

156

Use a differentiable
function instead:

logistic(u) ≡ 1
1+ e−u

p�(y = 1|) =
1

1 + (��T)

This decision function isn’t
differentiable:

sign(x)

h() = sign(�T)

Logistic Regression

157

Learning: finds the parameters that minimize some
objective function. �� = argmin

�
J(�)

Prediction: Output is the most probable class.
ŷ =

y�{0,1}
p�(y|)

Model: Logistic function applied to dot product of
parameters with input vector.

p�(y = 1|) =
1

1 + (��T)

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

Logistic Regression

Whiteboard
– Bernoulli interpretation
– Logistic Regression Model
– Decision boundary

158

Logistic Regression

159

Logistic Regression

160

Logistic Regression

161

LEARNING LOGISTIC REGRESSION

162

Maximum Conditional
Likelihood Estimation

163

Learning: finds the parameters that minimize some
objective function.

We minimize the negative log conditional likelihood:

Why?
1. We can’t maximize likelihood (as in Naïve Bayes)

because we don’t have a joint model p(x,y)
2. It worked well for Linear Regression (least squares is

MCLE)

�� = argmin
�

J(�)

J(�) = �
N�

i=1

p�(y(i)| (i))

Maximum Conditional
Likelihood Estimation

164

Learning: Four approaches to solving

Approach 1: Gradient Descent
(take larger – more certain – steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

Approach 4: Closed Form???
(set derivatives equal to zero and solve for parameters)

�� = argmin
�

J(�)

Maximum Conditional
Likelihood Estimation

165

Learning: Four approaches to solving

Approach 1: Gradient Descent
(take larger – more certain – steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

Approach 4: Closed Form???
(set derivatives equal to zero and solve for parameters)

�� = argmin
�

J(�)

Logistic Regression does not
have a closed form solution
for MLE parameters.

Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

—

Gradient Descent

166

In order to apply GD to Logistic
Regression all we need is the
gradient of the objective
function (i.e. vector of partial
derivatives).

��J(�) =

�

����

d
d�1

J(�)
d

d�2
J(�)
...

d
d�N

J(�)

�

����

Stochastic Gradient Descent (SGD)

167

We need a per-example objective:

We can also apply SGD to solve the MCLE
problem for Logistic Regression.

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = � p�(yi| i).

—

GRADIENT FOR LOGISTIC
REGRESSION

169

Learning for Logistic Regression

Whiteboard
– Partial derivative for Logistic Regression
– Gradient for Logistic Regression

170

Details: Picking learning rate

• Use grid-search in log-space over small
values on a tuning set:
– e.g., 0.01, 0.001, …

• Sometimes, decrease after each pass:
– e.g factor of 1/(1 + dt), t=epoch
– sometimes 1/t2

• Fancier techniques I won’t talk about:
– Adaptive gradient: scale gradient differently for

each dimension (Adagrad, ADAM, ….)

175
Slide courtesy of William Cohen

SGD for Logistic Regression

177

We need a per-example objective:

We can also apply SGD to solve the MCLE
problem for Logistic Regression.

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = � p�(yi| i).

Summary

1. Discriminative classifiers directly model the
conditional, p(y|x)

2. Logistic regression is a simple linear
classifier, that retains a probabilistic
semantics

3. Parameters in LR are learned by iterative
optimization (e.g. SGD)

178

Logistic Regression Objectives
You should be able to…
• Apply the principle of maximum likelihood estimation (MLE) to

learn the parameters of a probabilistic model
• Given a discriminative probabilistic model, derive the conditional

log-likelihood, its gradient, and the corresponding Bayes
Classifier

• Explain the practical reasons why we work with the log of the
likelihood

• Implement logistic regression for binary or multiclass
classification

• Prove that the decision boundary of binary logistic regression is
linear

• For linear regression, show that the parameters which minimize
squared error are equivalent to those that maximize conditional
likelihood

179

MULTINOMIAL LOGISTIC
REGRESSION

180

Multinomial Logistic Regression

Chalkboard
– Background: Multinomial distribution
– Definition: Multi-class classification
– Geometric intuitions
– Multinomial logistic regression model
– Generative story
– Reduction to binary logistic regression
– Partial derivatives and gradients
– Applying Gradient Descent and SGD
– Implementation w/ sparse features

181

Debug that Program!
In-Class Exercise: Think-Pair-Share
Debug the following program which is (incorrectly)
attempting to run SGD for multinomial logistic regression

182

Buggy Program:
while not converged:
for i in shuffle([1,…,N]):
for k in [1,…,K]:

theta[k] = theta[k] - lambda * grad(x[i], y[i],
theta, k)

Assume: grad(x[i], y[i], theta, k) returns the gradient of the negative
log-likelihood of the training example (x[i],y[i]) with respect to vector theta[k].
lambda is the learning rate. N = # of examples. K = # of output classes. M = # of
features. theta is a K by M matrix.

Debug that Program!
In-Class Exercise: Think-Pair-Share
Debug the following program which is (incorrectly)
attempting to run SGD for multinomial logistic regression

183

Buggy Program:
while not converged:
for i in shuffle([1,…,N]):
for k in [1,…,K]:

for m in [1,…, M]:
theta[k,m] = theta[k,m] + lambda * grad(x[i],

y[i], theta, k,m)

Assume: grad(x[i], y[i], theta, k, m) returns the partial derivative of
the negative log-likelihood of the training example (x[i],y[i]) with respect to
theta[k,m]. lambda is the learning rate. N = # of examples. K = # of output
classes. M = # of features. theta is a K by M matrix.

FEATURE ENGINEERING

184

Handcrafted Features

185

NNP : VBN NNP VBD

PERLOC

Egypt - born Proyas directed

S

NP VP

ADJP VPNP

egypt - born proyas direct

p(y|x) �
exp(Θy�f())

born-in

Where do features come from?

186

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005

First word before M1
Second word before M1
Bag-of-words in M1
Head word of M1
Other word in between
First word after M2
Second word after M2
Bag-of-words in M2
Head word of M2
Bigrams in between
Words on dependency path
Country name list
Personal relative triggers
Personal title list
WordNet Tags
Heads of chunks in between
Path of phrase labels
Combination of entity types

Where do features come from?

187

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005 word

embeddings
Mikolov et al.,

2013

CBOW model in Mikolov et al. (2013)

input
(context words)

embeddin
g

missing word

Look-up table Classifier

0.13 .26 … -.52

0.11 .23 … -.45

dog:

cat:similar words,
similar embeddings

unsupervised
learning

Where do features come from?

188

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005 word

embeddings
Mikolov et al.,

2013

string
embeddings

Collobert & Weston,
2008

Socher, 2011

Convolutional Neural Networks
(Collobert and Weston 2008)

The [movie] showed [wars]

pooling

CNN

Recursive Auto Encoder
(Socher 2011)

The [movie] showed [wars]

RAE

Where do features come from?

189

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005 word

embeddings
Mikolov et al.,

2013

tree
embeddings

Socher et al.,
2013

Hermann & Blunsom,
2013

string
embeddings

Collobert & Weston,
2008

Socher, 2011

The [movie] showed [wars]

WNP,VP

WDT,NN WV,NN

S

NP VP

Where do features come from?

190

word
embeddings

tree
embeddings

hand-crafted
features

string
embeddings

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

Sun et al., 2011

Zhou et al.,
2005

Mikolov et al.,
2013

Collobert & Weston,
2008

Socher, 2011

Socher et al.,
2013

Hermann & Blunsom,
2013

Hermann et al.
2014

word embedding
features

Turian et al.
2010

Koo et al.
2008

Where do features come from?

191

word
embeddings

tree
embeddings

word embedding
featureshand-crafted

features

best	of	both	
worlds?

string
embeddings

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

Sun et al., 2011

Zhou et al.,
2005

Mikolov et al.,
2013

Collobert & Weston,
2008

Socher, 2011

Socher et al.,
2013

Turian et al.
2010

Koo et al.
2008

Hermann et al.
2014

Hermann & Blunsom,
2013

Feature Engineering for NLP

Suppose you build a logistic regression model
to predict a part-of-speech (POS) tag for each
word in a sentence.

What features should you use?

192
The movie I watched depicted hope
deter. noun noun nounverb verb

Per-word Features:

Feature Engineering for NLP

193
The movie I watched depicted hope
deter. noun noun nounverb verb

is-capital(wi)

endswith(wi,“e”)

endswith(wi,“d”)

endswith(wi,“ed”)

wi == “aardvark”

wi == “hope”

…

1
1
0
0
0
0
…

0
1
0
0
0
0
…

1
0
0
0
0
0
…

0
0
1
1
0
0
…

0
0
1
1
0
0
…

0
1
0
0
0
1
…

x(1) x(2) x(3) x(4) x(5) x(6)

Context Features:

Feature Engineering for NLP

194
The movie I watched depicted hope
deter. noun noun nounverb verb

…

wi == “watched”

wi+1 == “watched”

wi-1 == “watched”

wi+2 == “watched”

wi-2 == “watched”

…

…
0
0
0
0
0
…

…
0
0
0
1
0
…

…
0
1
0
0
0
…

…
1
0
0
0
0
…

…
0
0
1
0
0
…

…
0
0
0
0
1
…

x(1) x(2) x(3) x(4) x(5) x(6)

Context Features:

Feature Engineering for NLP

195
The movie I watched depicted hope
deter. noun noun nounverb verb

…

wi == “I”

wi+1 == “I”

wi-1 == “I”

wi+2 == “I”

wi-2 == “I”

…

…
0
0
0
1
0
…

…
0
1
0
0
0
…

…
1
0
0
0
0
…

…
0
0
1
0
0
…

…
0
0
0
0
1
…

…
0
0
0
0
0
…

x(1) x(2) x(3) x(4) x(5) x(6)

Feature Engineering for NLP

196
The movie I watched depicted hope
deter. noun noun nounverb verb

and learning methods give small incremental gains in POS tagging performance,
bringing it close to parity with the best published POS tagging numbers in 2010.
These numbers are on the now fairly standard splits of the Wall Street Journal
portion of the Penn Treebank for POS tagging, following [6].3 The details of the
corpus appear in Table 2 and comparative results appear in Table 3.

Table 2. WSJ corpus for POS tagging experiments.

Set Sections Sentences Tokens Unknown
Training 0-18 38,219 912,344 0
Development 19-21 5,527 131,768 4,467
Test 22-24 5,462 129,654 3,649

Table 3. Tagging accuracies with different feature templates and other changes on the
WSJ 19-21 development set.

Model Feature Templates # Sent. Token Unk.
Feats Acc. Acc. Acc.

3gramMemm See text 248,798 52.07% 96.92% 88.99%
naacl 2003 See text and [1] 460,552 55.31% 97.15% 88.61%
Replication See text and [1] 460,551 55.62% 97.18% 88.92%
Replication′ +rareFeatureThresh = 5 482,364 55.67% 97.19% 88.96%
5w +⟨t0, w−2⟩, ⟨t0, w2⟩ 730,178 56.23% 97.20% 89.03%
5wShapes +⟨t0, s−1⟩, ⟨t0, s0⟩, ⟨t0, s+1⟩ 731,661 56.52% 97.25% 89.81%
5wShapesDS + distributional similarity 737,955 56.79% 97.28% 90.46%

3gramMemm shows the performance of a straightforward, fast, discrimina-
tive sequence model tagger. It uses the templates ⟨t0, w−1⟩, ⟨t0, w0⟩, ⟨t0, w+1⟩,
⟨t0, t−1⟩, ⟨t0, t−2, t−1⟩ and the unknown word features from [1]. The higher
performance naacl 2003 tagger numbers come from use of a bidirectional
cyclic dependency network tagger, which adds the feature templates ⟨t0, t+1⟩,
⟨t0, t+1, t+2⟩, ⟨t0, t−1, t+1⟩, ⟨t0, t−1, w0⟩, ⟨t0, t+1, w0⟩, ⟨t0, w−1, w0⟩, ⟨t0, w0, w+1⟩
The next line shows results from an attempt to replicate those numbers in 2010.
The results are similar but a fraction better.4 The line after that shows that
the numbers are pushed up a little by lowering the support threshold for in-
cluding rare word features to 5. Thereafter, performance is improved a little by
adding features. 5w adds the words two to the left and right as features, and
5wShapes also adds word shape features that we have described for named en-

3 In this paper, when I refer to “the Penn Treebank”, I am actually referring to just
the WSJ portion of the treebank, and am using the LDC99T42 Treebank release 3
version.

4 I think the improvements are due to a few bug fixes by Michel Galley. Thanks!

Table from Manning (2011)

Feature Engineering for CV
Edge detection (Canny)

201
Figures from http://opencv.org

Corner Detection (Harris)

Feature Engineering for CV

Scale Invariant Feature Transform (SIFT)

202
Figure from Lowe (1999) and Lowe (2004)

NON-LINEAR FEATURES

204

Nonlinear Features
• aka. “nonlinear basis functions”
• So far, input was always
• Key Idea: let input be some function of x

– original input:
– new input:
– define

• Examples: (M = 1)

206

For a linear model:
still a linear function
of b(x) even though a
nonlinear function of
x
Examples:
- Perceptron
- Linear regression
- Logistic regression

Example: Linear Regression

210x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
y = tanh(x) + noise

Example: Linear Regression

211x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
y = tanh(x) + noise

Example: Linear Regression

212x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
y = tanh(x) + noise

Example: Linear Regression

213x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
y = tanh(x) + noise

Example: Linear Regression

214x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
y = tanh(x) + noise

Example: Linear Regression

215x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
y = tanh(x) + noise

Example: Linear Regression

216x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
y = tanh(x) + noise

Example: Linear Regression

217x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
y = tanh(x) + noise

Example: Linear Regression

218x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
y = tanh(x) + noise

Example: Linear Regression

219x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
y = tanh(x) + noise

Example: Linear Regression

220x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Example: Linear Regression

221x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Example: Linear Regression

222x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Example: Linear Regression

223x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Example: Linear Regression

224x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Example: Linear Regression

225x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Example: Linear Regression

226x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Over-fitting

Root-Mean-Square (RMS) Error:

Slide courtesy of William Cohen

Polynomial Coefficients

Slide courtesy of William Cohen

Example: Linear Regression

229x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Example: Linear Regression

230x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

Same as before, but now
with N = 100 points

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

REGULARIZATION

231

Overfitting

Definition: The problem of overfitting is when
the model captures the noise in the training data
instead of the underlying structure

Overfitting can occur in all the models we’ve seen
so far:

– KNN (e.g. when k is small)
– Naïve Bayes (e.g. without a prior)
– Linear Regression (e.g. with basis function)
– Logistic Regression (e.g. with many rare features)

232

Motivation: Regularization
Example: Stock Prices
• Suppose we wish to predict

Google’s stock price at time t+1
• What features should we use?

(putting all computational concerns
aside)
– Stock prices of all other stocks at

times t, t-1, t-2, …, t - k
– Mentions of Google with positive /

negative sentiment words in all
newspapers and social media outlets

• Do we believe that all of these
features are going to be useful?

233

Motivation: Regularization

• Occam’s Razor: prefer the simplest
hypothesis

• What does it mean for a hypothesis (or
model) to be simple?
1. small number of features (model selection)
2. small number of “important” features

(shrinkage)

234

Regularization

Chalkboard
– L2, L1, L0 Regularization
– Example: Linear Regression

235

Regularization

236

Don’t Regularize the Bias (Intercept) Parameter!
• In our models so far, the bias / intercept parameter is

usually denoted by 78 -- that is, the parameter for which
we fixed 08 = 1

• Regularizers always avoid penalizing this bias / intercept
parameter

• Why? Because otherwise the learning algorithms wouldn’t
be invariant to a shift in the y-values

Whitening Data
• It’s common to whiten each feature by subtracting its

mean and dividing by its variance
• For regularization, this helps all the features be penalized

in the same units
(e.g. convert both centimeters and kilometers to z-scores)

Regularization:
+

Slide courtesy of William Cohen

Polynomial Coefficients

none exp(18) huge

Slide courtesy of William Cohen

Over Regularization:

Slide courtesy of William Cohen

Regularization Exercise

In-class Exercise
1. Plot train error vs. # features (cartoon)
2. Plot test error vs. # features (cartoon)

240

er
ro

r

features

Example: Logistic Regression

241

Training
Data

Example: Logistic Regression

242

Test
Data

Example: Logistic Regression

243

1/lambda

er
ro

r

Example: Logistic Regression

244

Example: Logistic Regression

245

Example: Logistic Regression

246

Example: Logistic Regression

247

Example: Logistic Regression

248

Example: Logistic Regression

249

Example: Logistic Regression

250

Example: Logistic Regression

251

Example: Logistic Regression

252

Example: Logistic Regression

253

Example: Logistic Regression

254

Example: Logistic Regression

255

Example: Logistic Regression

256

Example: Logistic Regression

257

1/lambda

er
ro

r

Regularization as MAP

• L1 and L2 regularization can be interpreted
as maximum a-posteriori (MAP) estimation
of the parameters

• To be discussed later in the course…

258

Takeaways

1. Nonlinear basis functions allow linear
models (e.g. Linear Regression, Logistic
Regression) to capture nonlinear aspects of
the original input

2. Nonlinear features are require no changes
to the model (i.e. just preprocessing)

3. Regularization helps to avoid overfitting

4. Regularization and MAP estimation are
equivalent for appropriately chosen priors

260

Feature Engineering / Regularization
Objectives

You should be able to…
• Engineer appropriate features for a new task
• Use feature selection techniques to identify and

remove irrelevant features
• Identify when a model is overfitting
• Add a regularizer to an existing objective in order to

combat overfitting
• Explain why we should not regularize the bias term
• Convert linearly inseparable dataset to a linearly

separable dataset in higher dimensions
• Describe feature engineering in common application

areas

261

ONLINE LEARNING LAB

262

Online Learning Lab
• Meet at the Gates-Hillman Center (GHC), room 6115

– Use the 5th floor entrance near Cyert Hall
– Take the elevator to the 6th floor
– GHC 6115 is on your left as you exit the elevator
– Email if you have trouble

263

You are
here

GHC

