L NASSLLI 2018
Machine Learning Department

e School of Computer Science
MACHINE LEARN'NG Carnegie Mellon University

%

DEPARTM

Machine Learning

Matt Gormley
June 23 - 24,2018

Prerequisites

. Be able to find Porter Hall 100

. Later, be able to find GHC 6115 -- using a
specific entrance door (near Cyert Hall) to
enter between the hours of 12pm and 7pm.

. Maybe speak a little bit of Python

WHAT IS MACHINE LEARNING?

Artificial Intelligence

The basic goal of Al is to develop intelligent
machines.

This consists of many sub-goals:

Artificial

* Perception Intelligence
* Reasoning '

. . . Machine
* Control [Motion [Manipulation Learning
* Planning
* Communication
* Creativity

* Learning

What is Machine Learning?

e
s
7 A

-—’-
| robabiy
7 t N\
Ccls RIS uneragers

Speech Recognition

1. Learning to recognize spoken words
THEN NOW

“...the SPHINX system (e.g.
Lee 1989) learns speaker-
specific strategies for
recognizing the primitive
sounds (phonemes) and
words from the observed
speech signal...neural
network methods...hidden
Markov models...”

Google Now Siri Cortana

(Mitchell, 1997)

Source: https://www.stonetemple.com/great-knowledge-box-
showdown/#VoiceStudyResults

Robotics

2. Learning to drive an autonomous vehicle

THEN

“...the ALVINN system
(Pomerleau 1989) has used
its learned strategies to drive
unassisted at 70 miles per
hour for 90 miles on public
highways among other
cars...”

(Mitchell, 1997)

waymo.com

Robotics

2. Learning to drive an autonomous vehicle
THEN NOW

“...the ALVINN system
(Pomerleau 1989) has used
its learned strategies to drive
unassisted at 70 miles per
hour for 90 miles on public
highways among other
cars...”

< chell. 1 https://www.geek.com/wp-
(Mitchell, 1997) content/uploads/2016/03/uber.jpg

11

Games [Reasoning

3. Learning to beat the masters at board games
THEN NOW

“...the world’s top computer
program for backgammon,
TD-GAMMON (Tesauro,
1992, 1995), learned its

strategy by playing over one > L C

11 . ALPHAGO L 24 &
million practice games .00:10:29 90 | @ (L)E(S%E%D%O
against itself...” eOe I o & a S s

® ﬁ ®
Yot
AlphaGo

(Mitchell, 1997)

12

Computer Vision

4. Learning to recognize images

THEN

NOW

“...The recognizer 1s a
convolution network that can
be spatially replicated. From
the network output, a hidden
Markov model produces
word scores. The entire
system 1s globally trained to
minimize word-level
errors...."

Revolution of Depth

152 layers
B
22 Layers 19 laven I I

3.57 8 Lyers 8 layers

ILSVRC'IS ILSVRC'14 ILSVRC'I4 NSVRC'13 ILSWRC'12 NSVRC11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Research

(LeCun et al. 1995)

Images from https://blog.openai.com/generative-models/

13

Learning Theory

e 5.In what cases and how well can we learn?

Lt —J
Sample Complexity Results ﬁae Tpes § Emnz
Definition 0.1. The sample complexity of a learning algorithm is the Jl A - |
number of examples required to achieve arbitrarily small error (with @ Trve Eror (“’(—"' ex clrﬁ,c\. ﬁs[f.> (ﬁ LA . Gean |~ zo.-Li». Emr>

respect to the optimal hypothesis) with high probability (i.e. close

to1). R(k) = Px

Four Cases we care about...

Realizable Agnostic

Finite |H. amples are sufficient so that with prob- | beled examples are sufﬁclent so
inite || ability (1 — &) all h € # with R(h) > €| that with probability (1 — 4) for

R(h)| < e.

N = O(} [VC(H)log(L) +log(1)]) la- | N = O(% [VC(H) +log(2)]) la-
Infinite |H| beled examples are sufficient so that | beled examples are sufficient so

with probability (1 — d) all A € H with | that with probability (1 — §) for
R(h) > ehave R(h) > 0. all h € H we have that |R(h) —
R(h)| <e

| PAC Lo,
O o b RE) Jows D R(“Y"
ki Ves!

PAC sbds £ Rl
14 xwhl

Cpmwl—

_Dz;: E(;annm 1
R(k, [RO-RW|£€) = |-

?A(_ ﬁy.mu 7«@\&5 7()0'({.,5& ’4, u’l»«“cL s

wximndely ‘correct ' R mO
R A kqla (\)m\'x‘ai);l} R(R(U%O>£1

x)(‘)o ol M(X)) T WL7.< Oulewosm

@TN« 5‘mr (Glcq ewpineal I‘RLB

N > 1 [log(/H]) +log(})] labeled ex-| N > 5l [log(/H]) +log(2)] la- R(k\ = \

N > ! [log((H) +log(})] lab (c*(x) # h) S={x" .., x™]
ha;/;e 1’?((11)_> 0. . all h € H we have that |R(h) — = _ i j_(c*(x(‘)) + L](x(t))) Laom cov-fu L I
-,:)— ,é 1 (ym # W(x?)

How many examples do we need
to learn?

How do we quantify our ability to
generalize to unseen data?
Which algorithms are better
suited to specific learning

settings? ”

What is Machine Learning?

To solve all the
problems above
and more

Foundations

— Probability

— MLE, MAP

— Optimization
Classifiers

— KNN

— Naive Bayes

— Logistic Regression

— Perceptron

— SVM
Regression

— Linear Regression

Important Concepts

— Kernels

— Regularization and Overfitting

— Experimental Design
Unsupervised Learning

— K-means/ Lloyd’s method

— PCA

— EM/GMMs

Topics

Neural Networks
— Feedforward Neural Nets
— Basic architectures
— Backpropagation
— CNNs
Graphical Models
— Bayesian Networks
— HMMs
— Learning and Inference

Learning Theory

— Statistical Estimation (covered right
before midterm)

— PACLearning
Other Learning Paradigms
— Matrix Factorization

— Reinforcement Learning
— Information Theory

16

ML Big Picture

Learning Paradigms: Problem Formulation:

feature learning

. ' . PP -

What data is available and What is the structure of our output prediction: v

when? What form of prediction? boolean Binary Classification 5 G

° supervised |earning categorical Multiclass Classification 28

" unsupervisedlearning ordinal Ordinal Classification) = =

0 semi-supervised learning 3] S n

* reinforcement learning real Regression v O Y

° active learning ordering Ranking < L0

. imitation learning . . o g c 8 e

. domain adaptation multiple discrete Structured Prediction s Qg ch

« online learning multiple continuous (e.g. dynamical systems) o S 3 =

. . . . X X . S - J
SN EH Mo both discrete & (e.g. mixed graphical models) & 2 a’. 5

* recommender systems [T S T By

. I X Z>Wn

manifold learning

cont.
. dimensionality reductior;| Facets of Building ML
. ensemble learning

Big Ideas in ML:

g distant supervision
O hyperparameter optimization

Theoretical Foundations:
What principles guide learning?
O probabilistic

O information theoretic

L evolutionary search

O ML as optimization

Systems:

How to build systems that are

robust, efficient, adaptive,

effective?

1. Data prep

2. Model selection

3. Training (optimization/
search)

4. Hyperparameter tuning on
validation data

5. (Blind) Assessment on test
data

Which are the ideas driving
development of the field?

* inductive bias

* generdlization / overfitting

* bias-variance decomposition
e generative vs. discriminative
* deep nets, graphical models
* PAClearning

e distant rewards

Machine Learning & Ethics

What ethical responsibilities dowe [(')SI’(I)TCeOE/Oe[l)‘Ing’ etf;% \t/)vaebly
have as machine learning experts? ey A @TrE o

If our search results for news are
optimized for ad revenue, might
they reflect gender [racial [socio-
economic biases?

http://arstechnica.com/

\

Should restrictions be placed on
intelligent agents that are capable of
interacting with the world?

How do autonomous vehicles make

decisions when all of the outcomes - —

are likely to be negative? AL T A ! 18
http://vizdoom.cs.put.edu.pl/

DEFINING LEARNING PROBLEMS

Well-Posed Learning Problems

Three components <T,P,E>:
1. Task, T
2. Performance measure, P
3. Experience, E

Definition of learning:

A computer program learns if its performance
at tasks in T, as measured by P, improves with
experience E.

Definition from (Mitchell, 1997)

Example Learning Problems

3. Learning to beat the masters at chess
1. Task, T:

2. Performance measure, P:

3. Experience, E:

Example Learning Problems

4. Learning to respond to voice commands (Siri)
1. Task, T:

2. Performance measure, P:

3. Experience, E:

Capturing the Knowledge of Experts

Give me directions to Starbucks

If: “give me directions to X”
Then: directions (here, nearest (X))

How do I get to Starbucks?

If: “how do i1 get to X”
Then: directions (here, nearest (X))

Where is the nearest Starbucks?

If: “where is the nearest X”
Then: directions (here, nearest (X))

Capturing the Knowledge of Experts

I need directions to Starbucks

If: “I need directions to X”
Then: directions (here, nearest (X))

Starbucks directions

If: “X directions”
Then: directions (here, nearest (X))

Is there a Starbucks nearby?

If: “Is there an X nearby”
Then: directions (here, nearest (X))

Capturing the Knowledge of Experts

* Experts:

— Very good at answering questions about specific
cases

— Not very good at telling HOW they do it

* 1990s: So why not just have them tell you what
they do on SPECIFIC CASES and then let
MACHINE LEARNING tell you how to come to
the same decisions that they did

Capturing the Knowledge of Experts

Solution #2: Annotate Data and Learn

1.

Collect raw sentences {x,, ..., X}

2. Experts annotate their meaning {y,, ..., ¥,,}

iy

: How do I get to Starbucks?

Y1

.directions (here,
nearest (Starbucks))

X5: Send a text to John that I’1l be late

y3. txtmsg (John, I’"11 be late)

- Show me the closest Starbucks

Np)

. map (nearest (Starbucks))

X4: Oet an alarm for seven 1n the

marnino

yY4: setalarm(7:00AM)

Example Learning Problems

4. Learning to respond to voice commands (Siri)
1. Task, T:
predicting action from speech
2. Performance measure, P:
percent of correct actions taken in user pilot
study
3. Experience, E:
examples of (speech, action) pairs

Problem Formulation

Often, the same task can be formulated in more than one way:

Ex: Loan applications

— creditworthiness/score (regression)

— probability of default (density estimation)
— loan decision (classification)

Problem Formulation:
What is the structure of our output prediction?

boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression

ordering Ranking

multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)

both discrete & (e.g. mixed graphical models)
cont.

Well-posed Learning Problems

In-Class Exercise
1. Selectatask, T

2. ldentify performance
measure, P

3. ldentify experience, E

4. Reportideas backto
rest of class

Examples from Roni Rosenfeld

FUNCTION APPROXIMATION

Function Approximation

Quiz: Implement a simple function which returns sin(x).

A few constraints are imposed:
1. You can’t call any other trigonometric functions

2. You can call an existing implementation of sin(x) a few times
(e.g.100) to test your solution

3. Youonly need to evaluate it for x in [0, 2*pi]

ML as Function Approximation

Chalkboard

— ML as Function Approximation
* Problem setting
* Input space
* Qutput space
* Unknown target function
* Hypothesis space
* Training examples

CLASSIFICATION

Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by

Anderson (1936)

Species Sepal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

0
0 4.9
0 5.3
1 4.9
1 5.7
1 6.3
1 6.7

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_ set

3.6
3.7
2.4
2.8
3-3
3.0

1.4
1.5
3-3
4.1
4.7
5.0

0.1
0.2
1.0

1.3
1.6

1.7

35

Fisher Iris Dataset

.....

Classification

Chalkboard:

— Binary classification
— 2D examples
— Decision rules [hypotheses

K-NEAREST NEIGHBORS

k-Nearest Neighbors
Chalkboard:

— KNN for binary classification
— Distance functions

— Efficiency of KNN

— Inductive bias of KNN

— KNN Properties

KNN ON FISHER IRIS DATA

Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by

Anderson (1936)

Species Sepal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

0
0 4.9
0 5.3
1 4.9
1 5.7
1 6.3
1 6.7

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_ set

3.6
3.7
2.4
2.8
3-3
3.0

1.4
1.5
3-3
4.1
4.7
5.0

0.1
0.2
1.0

1.3
1.6

1.7

41

Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by

Anderson (1936)

Species Sepal Sepal
Length Width

4.3
4.9
5-3
4.9
5.7
6.3
6.7

o O O

_ e = -

3.0
3.6
3.7
2.4
2.8
3-3
3.0

Deleted two of the
four features, so that
input space is 2D

¢

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_ set

42

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

KNN on Fisher Iris Data

43

KNN on Fisher Iris Data

Special Case: Nearest Neighbor

3-Class classification (k = 1, weights = 'uniform’)

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15-

1.0 - | i I I I

44

KNN on Fisher Iris Data

Special Case: Majority Vote

3-Class classification (k = 150, weights = 'uniform"')

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15-

1.0— | | | | |

45

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

KNN on Fisher Iris Data

46

KNN on Fisher Iris Data

Special Case: Nearest Neighbor

3-Class classification (k = 1, weights = 'uniform’)

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15-

1.0 - | i I I I

47

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15-

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 2, weights = 'uniform’)

48

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15-

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 3, weights = 'uniform’)

49

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15-

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 4, weights = 'uniform’)

50

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15-

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 5, weights = 'uniform’)

51

KNN on Fisher Iris Data

3-Class classification (k = 10, weights = 'uniform’)

52

KNN on Fisher Iris Data

3-Class classification (k = 20, weights = 'uniform’)

53

KNN on Fisher Iris Data

3-Class classification (k = 30, weights = 'uniform’)

54

KNN on Fisher Iris Data

3-Class classification (k = 40, weights = 'uniform’)

55

KNN on Fisher Iris Data

3-Class classification (k = 50, weights = 'uniform’)

56

KNN on Fisher Iris Data

3-Class classification (k = 60, weights = 'uniform’)

57

KNN on Fisher Iris Data

3-Class classification (k = 70, weights = 'uniform’)

58

KNN on Fisher Iris Data

3-Class classification (k = 80, weights = 'uniform’)

59

KNN on Fisher Iris Data

3-Class classification (k = 90, weights = 'uniform’)

60

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15-

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 100, weights = 'uniform')

61

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15-

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 110, weights = 'uniform"')

62

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15-

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 120, weights = 'uniform"')

63

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15-

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 130, weights = 'uniform"')

64

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15-

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 140, weights = 'uniform')

65

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15-

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 140, weights = 'uniform')

66

KNN on Fisher Iris Data

Special Case: Majority Vote

3-Class classification (k = 150, weights = 'uniform"')

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15-

1.0— | | | | |

67

KNN ON GAUSSIAN DATA

KNN on Gaussian Data

69

KNN on Gaussian Data

- Classification with KNN (k = 1, weights = ‘uniform')

70

KNN on Gaussian Data

- Classification with KNN (k = 2, weights = ‘uniform')

71

KNN on Gaussian Data

- Classification with KNN (k = 3, weights = ‘uniform')

72

KNN on Gaussian Data

- Classification with KNN (k = 4, weights = ‘uniform')

73

KNN on Gaussian Data

- Classification with KNN (k = 5, weights = ‘uniform')

74

KNN on Gaussian Data

- Classification with KNN (k = 9, weights = ‘uniform')

75

KNN on Gaussian Data

‘uniform')

Is=

= 16, weight

(k

Classification with KNN

76

KNN on Gaussian Data

‘uniform')

Is=

= 25, weight

(k

Classification with KNN

77

KNN on Gaussian Data

‘uniform')

Is=

= 36, weight

(k

Classification with KNN

78

KNN on Gaussian Data

‘uniform')

Is=

49, weight

(k

Classification with KNN

79

KNN on Gaussian Data

‘uniform')

Is=

64, weight

(k

Classification with KNN

80

KNN on Gaussian Data

‘uniform')

Is=

81, weight

(k

Classification with KNN

81

KNN on Gaussian Data

‘uniform’)

ts

= 100, weigh

(k

Classification with KNN

82

KNN on Gaussian Data

‘uniform’)

ts

, weigh

=121

(k

Classification with KNN

83

KNN on Gaussian Data

‘uniform’)

ts

, weigh

= 144

(k

Classification with KNN

84

KNN on Gaussian Data

‘uniform’)

ts

= 169, weigh

(k

Classification with KNN

85

KNN on Gaussian Data

‘uniform’)

ts

= 196, weigh

(k

Classification with KNN

86

KNN on Gaussian Data

‘uniform’)

ts

= 225, weigh

(k

Classification with KNN

87

KNN on Gaussian Data

‘uniform’)

ts

= 256, weigh

(k

Classification with KNN

88

KNN on Gaussian Data

‘uniform’)

ts

= 289, weigh

(k

Classification with KNN

89

KNN on Gaussian Data

= 'uniform’)

ts

(k = 400, weigh

Classification with KNN

90

KNN on Gaussian Data

‘uniform’)

ts

= 529, weigh

(k

Classification with KNN

ok

KNN on Gaussian Data

‘uniform’)

ts

= 576, weigh

(k

Classification with KNN

92

KNN on Gaussian Data

Classification with KNN (k = 600, weights = ‘uniform’)

93

K-NEAREST NEIGHBORS

Questions

* How could k-Nearest Neighbors (KNN) be
applied to regression?

* Can we do better than majority vote? (e.g.
distance-weighted KNN)

* Where does the Cover & Hart (1967) Bayes
error rate bound come from?

KNN Learning Objectives

You should be able to...

* Describe a dataset as points in a high dimensional space
[CIML]

* Implement k-Nearest Neighbors with O(N) prediction

 Describe the inductive bias of a k-NN classifier and relate
it to feature scale [a la. CIML]

* Sketch the decision boundary for a learning algorithm
(compare k-NN and DT)

 State Cover & Hart (1967)'s large sample analysis of a
nearest neighbor classifier

* Invent "new' k-NN learning algorithms capable of dealing
with even k

THE PERCEPTRON ALGORITHM

Perceptron: History

Imagine you are trying to build a new machine learning
technique... your name is Frank Rosenblatt... and the

yearis 1957

A-UNIT INKIBITING INPUTS
SINSORY WPUTS FROM R -UNITS
(+ AND =) TRACE RESPONSE
INTEGRATOR uNIT
.
INP '
INTEGRATOR
P
] RATOR|
NTR

M MUTUALLY EXCL
INMIBITOR G 0 OTHE 5
MV MY ORY FEED DACKS YO A-SEY
1
'
0 ERATING SIGNAL TO RESPONSE DISPLAY UNIT
FIGURE 5

DESIGN OF TYPICAL UNITS

Perceptron: History

Imagine you are trying to build a new machine learning
technique... your name is Frank Rosenblatt... and the
yearis 1957

The New Yorker, December 6, 1958 P. 44

Talk story about the perceptron, a new electronic brain which hasn't been built,
but which has been successfully simulated on the I.B.M. 704. Talk with Dr.
Frank Rosenblatt, of the Cornell Aeronautical Laboratory, who is one of the
two men who developed the prodigy; the other man is Dr. Marshall C. Yovits,
of the Office of Naval Research, in Washington. Dr. Rosenblatt defined the
perceptron as the first non-biological object which will achieve an organization
o its external environment in a meaningful way. It interacts with its
environment, forming concepts that have not been made ready for it by a
human agent. If a triangle is held up, the perceptron's eye picks up the image &
conveys it along a random succession of lines to the response units, where the
image is registered. It can tell the difference betw. a cat and a dog, although it
wouldn't be able to tell whether the dog was to theleft or right of the cat. Right
now it is of no practical use, Dr. Rosenblatt conceded, but he said that one day

it might be useful to send one into outer space to take in impressions for us.

Linear Models for Classification

Key idea: Try to learn

this hyperplane directly
Looking ahead: - y Directly modeling the
e We’ll see anumber of =~ =
commonly used Linear f—= % - hyp.el.'plane W?UId HSE d
Classifiers l -~ jdecision function:
* These include: =
— Perceptron 3 h(X) — sign(OTx)

— Logistic Regression

— Naive Bayes (under
certain conditions) ' for:

— Support Vector
Machines Yy - {—1, —I—].}

Geometry

In-Class Exercise Answer Here:

Draw a picture of the v
region corresponding %)
to:
w1x1 + wexe +b >0
where w; = 2,wy = 3,b =16 T1

Draw the vector
W = [Wv Wz]

Visualizing Dot-Products

Chalkboard:

— vectorin 2D

—linein 2D

— adding a bias term

— definition of orthogonality
— vector projection

— hyperplane definition

— half-space definitions

Linear Models for Classification

Key idea: Try to learn

this hyperplane directly
Looking ahead: - y Directly modeling the
e We’ll see anumber of =~ =
commonly used Linear f—= % - hyp.el.'plane W?UId HSE d
Classifiers l -~ jdecision function:
* These include: =
— Perceptron 3 h(X) — sign(OTx)

— Logistic Regression

— Naive Bayes (under
certain conditions) ' for:

— Support Vector
Machines Yy - {—1, —I—].}

Online vs. Batch Learning

Batch Learning

Learn from all the examples at
once

Online Learning

Gradually learn as each example
is received

Online Learning

Examples

1. Stock market prediction (what will the value
of Alphabet Inc. be tomorrow?)

2. Email classification (distribution of both spam
and regular mail changes over time, but the
target function stays fixed - [ast year's spam
still looks like spam)

3. Recommendation systems. Examples:
recommending movies; predicting whether a
user will be interested in a new news article

4. Ad placement in a new market

Slide adapted from Nina Balcan

Online Learning

Fori=1,2,3,...:

* Receive an unlabeled instance x(

* Predict y’ = hy(x()

* Receive true label y()

» Suffer loss if a mistake was made, y’ # y()
* Update parameters 0

Goal:
e Minimize the number of mistakes

Perceptron

Chalkboard:
— (Online) Perceptron Algorithm

Perceptron Algorithm: Example

Example: (-1,2) - X

(1,0) + \\‘\‘j;‘
1L+ X |
(—1,0) —
(—-1,-2)— X
(1,-1) +

Perceptron Algorithm: (without the bias term)
= Set t=1, start with all-zeroes weight vector w;.
= Given example x, predict positive iff w, - x > 0.
= Onamistake, update as follows: ws =w; +(1,1) = (2,-1)
e Mistake on positive, update wy,; « w; + x wy =wz — (=1,-2) = (3,1)
e Mistake on negative, update wy,; <« w; — x

wy = (0,0)
wy, =wy — (=1,2) = (1,-2)

Slide adapted from Nina Balcan

Perceptron

Chalkboard:
— Why do we need a bias term?
— (Batch) Perceptron Algorithm
— Inductive Bias of Perceptron
— Limitations of Linear Models

Background: Hyperplanes

Hyperplane (Definition 1):
H={x:w'x=0b}
Hyperplane (Definition 2):
H={x:0"'x=0
and xp = 1}
0= [b,wi,...,wyl"

Half-spaces:

Ht ={x:0"x>0andzy = 1}
H™ ={x:0"x<0andzy = 1}

(Online) Perceptron Algorithm

Data: Inputs are continuous vectors of length M. Outputs
are discrete. (x, yM), (x@), y@, ...
wherex ¢ R® andy € {+1, -1}

Prediction: Output determined by hyperplane.
§ = ho(x) = sign(6" x) sign(a) = {1’ ifa>0

—1, otherwise
Assume 0 = [b, w1, ..., wy]? andzg =1
Learning: Iterative procedure:
* initialize parameters to vector of all zeroes
* while not converged
* receive next example (x(), y(®)
 predicty’ = h(x®)
* if positive mistake: add x() to parameters
* if negative mistake: subtract x(from parameters

(Online) Perceptron Algorithm

Data: Inputs are continuous vectors of length M. Outputs
are discrete. (x, yM), (x@), y@, ...
wherex ¢ R® andy € {+1, -1}

Prediction: Output determine"l'mp'lemen'tation e e
J = he(x) = Sign(ng) beha\{ipr as our “add on
Assume 6 = [b, w - positive mistake and
L M subtract on negative
Learning: mistake’’ version, because
Algorithm 1 Perceptron Learning Alg y(i) takes care of the sign

procedure PERCEPTRON(D = {(xl_

1 _ __

2: 6+ 0 > Initialize parameters
3: forie {1,2,...} do > For each example
4 i < sign(8” x') > Predict
5

6

7

if 7 # y'") then > If mistake
0 — 6 + yx® > Update parameters

return @

(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch’ setting in contrast to the “online”
setting that we’ve discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)

1: procedure PERCEPTRON(D = {(x1), y), ... (xV) 4V
2 60 > Initialize parameters
3 while not converged do

4 fori e {1,2,..., N} do > For each example
5: § « sign(67 x() > Predict
6

7

8

if § # y(*) then > If mistake
0 «— 6+ yIx) > Update parameters

return 6

(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch’ setting in contrast to the “online”

setting that we’ve discussed so far.

Discussion:
The Batch Perceptron Algorithm can be derived in two ways.
1. By extending the online Perceptron algorithm to the batch
setting (as mentioned above)
2. By applying Stochastic Gradient Descent (SGD) to minimize a

so-called Hinge Loss on a linear separator

Extensions of Perceptron

Voted Perceptron
— generalizes better than (standard) perceptron

— memory intensive (keeps around every weight vector seen during
training, so each one can vote)

Averaged Perceptron
— empirically similar performance to voted perceptron

— can be implemented in a memory efficient way
(running averages are efficient)

Kernel Perceptron
— Choose a kernel K(x’, x)
— Apply the kernel trick to Perceptron
— Resulting algorithm is still very simple
Structured Perceptron

— Basicidea can also be applied when y ranges over an exponentially
large set

— Mistake bound does not depend on the size of that set

ANALYSIS OF PERCEPTRON

Analysis: Perceptron

Perceptron Mistake Bound

Guarantee: If data has margin v and all points inside a ball of
radius R, then Perceptron makes < (R/v)? mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

Slide adapted from Nina Balcan

OPTIMIZATION FOR ML

Topographical Maps

ﬁ..ur & 2%

quqgraphical Maps

W

A | \ | \

," ! | \ \

Limt Latayetee|| | |
ik Qlyﬁ” \ .'

A A

i/
(484 2

| Hiyelte A7,
(Larpoarpund &

Nl "2l '!(‘. g %
N TR
{al /,- !, J

Bl (/S

LA 5/

E —Pé_ M".gf llr'q

1.0

0.8}

0.6 -

0.4

0.2

Gradients

Lo
02

%
200
\ Yo, O
B '\’ /‘
.0 0.2 0.4 0.6 0.8

1.0

122

1.0

0.8

0.6

0.4

0.2

Gradients

These are the gradients that
Gradient Ascent would follow.

AN

~

YN O
L Q- o -

-— - - - A
[- <« - - a

-— | — - == N N N

— o \— - SO S M A w0 w
| Y e N A Y NN Y«

A\ & iR NOW N NN

P A NN N N

LK AN % NN ey
\//)//' '/ N NN \\/9 LSRN :/—

¥ QO/ J }/ / l' ‘¥ \ AN I N RN N \QQ

A A A I PR AR S N NN AT
\</ /\.\'/ / VLV N NN y(\ N
.0 0.2 0.4 0.6 0.8

123

(Negative) Gradients

N

/ A 4
.\\»»** 4 /\Az
eV EREERE RS SN °
f~2 /1t f ::///x//@//

WORE. ::////\\A

VA A *+»,_»///_//4\.0

1.0 =

0.8

0

These are the negative gradients that

124

Gradient Descent would follow.

1.0

0.8

0.6

0.4

0.2

\
h
/

|
\}\

)
\

R

Shown are the paths that Gradient Descent
would follow if it were making infinitesimally
small steps.

125

Gradient Descent

Chalkboard
— Example: 2D gradients
— Algorithm
— Details: starting point, stopping criterion, line
search

Gradient Descent

Algorithm 1 Gradient Descent

procedure GD(D, 9(0))

1:

2 6 — 09

3: while not converged do
4 00— \VoJ(0)

5 return 0

In order to apply GD to Linear
Regression all we need is the
gradient of the objective
function (i.e. vector of partial
derivatives).

VoJ(0) =

Gradient Descent

Algorithm 1 Gradient Descent

1: procedure GD(D, 9(0))

2 0 — 60

3: while not converged do
4

5

0 < 60— \VeJ(6)

return 6

There are many possible ways to detect convergence.
For example, we could check whether the L2 norm of
the gradient is below some small tolerance.

Ve J(0)]]2 < €

Alternatively we could check that the reduction in the
objective function from one iteration to the next is small.

Pros and cons of gradient descent

* Simple and often quite effective on ML tasks

* Often very scalable

* Only applies to smooth functions (differentiable)

* Might find a local minimum, rather than a global one

N0,.0,) T

0,
0

129
Slide courtesy of William Cohen

Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

1. procedure SGD(D, 6'?)

2. 0« 60
3: while not converged do e t‘x\
4: for i € shuffle({1,2,...,N}) do N
5: 0+ 60— \VeJ(0)

6 return 6

We need a per-example objective:

Let J(0) = 3.1, J)(6)

Expectations of Gradients

——

/Rec,« “ - 521' g J«Kwé, V. X

ELFIT = =¥ =) Hx)

OWLE & Ha M V3.(6) ¢

Let T OniSorm(zi,,,,m>
= Q=0 =5 Fcedl-m

BTRE- = 7759

N e
- zg‘vsc(eS

c
& 132

Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

1. procedure SGD(D, 6'?)

2. 0« 60
3: while not converged do e t‘x\
4: for i € shuffle({1,2,...,N}) do N
5: 0+ 60— \VeJ(0)

6 return 6

We need a per-example objective:

Let J(0) = 3.1, J)(6)

Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

1. procedure SGD(D, 6\?)

2 0+ 0
3: while not converged do ‘ f‘x\
4: for i € shuffle({1,2,...,N}) do
5: for k € {1,2,..., K} do

6 O < O — A35-J(0)

7 return 0

We need a per-example objective:

Let J(0) = 3.1, J)(6)

Convergence Curves

Log-log plot of training MSE versus epochs Def: an epoch is a
10", — ~

© : , — = = single pass through

- e — Gradient Descent | the training data

o | \ —— SGD |

- ' |

_g 5' . — Closed-1|‘orm | 1. For GD, only one

« 10 \ L (normal eg.s) H update per epoch

S \ ‘ 2. For SGD, N updates

§ . \ per epoch

= : N = (# train examples)

o 10°) \ ~

= A\ \ : * SGD reduces MSE

> | \‘ \ much more rapidly

‘2 o \\ : than GD

© 3' \ & | * ForGD ./ SGD, training

= 10 = % e MSE is initially large
10 10 10 due to uninformed

Epochs initialization

Figure adapted from Eric P. Xing 135

Optimization Objectives

You should be able to...
* Apply gradient descent to optimize a function

* Apply stochastic gradient descent (SGD) to
optimize a function

* Apply knowledge of zero derivatives to identify
a closed-form solution (if one exists) to an
optimization problem

* Distinguish between convex, concave, and
nonconvex functions

 Obtain the gradient (and Hessian) of a (twice)
differentiable function

PROBABILISTIC LEARNING

Probabilistic Learning

Function Approximation

Previously, we assumed that our
output was generated using a
deterministic target function:

x ~ p*(-)
y O = o*(x®)

Our goal was to learn a
hypothesis h(x) that best
approximates ¢*(x)

Probabilistic Learning

Today, we assume that our
output is sampled from a
conditional probability
distribution:

x) ~ p* ()
y ~ p (- x?)

Our goal is to learn a probability
distribution p(y|x) that best
approximates p*(y|x)

Robotic Farming

l
’

Deterministic

Probabilistic

Classification
(binary output)

s this a picture of
a wheat kernel?

s this plant
drought resistant?

Regression
(continuous

How many wheat
kernels are in this

What will the yield
of this plant be?

Maximum Likelihood Estimation

The KS@% V‘" S Mexien Ll fled estrdten (MLE)

C‘u»x ?ar«w-krs ~|—Lu~‘l \MAlQ -I—L\.Q A/N‘"R “/bwb"' /lo.)7 '{

Aoephs: Db penbd il S dabibdin (%18
j aud Comag —g;,,_,, “ Qw."; 34&,‘” P‘QM_/G_'QJ

SN= i
QK sd’ L fa,s‘\ll ?\ﬁ-‘-\/:\e"’

—

oG ” :

- ’o RS wa-ao”'m\‘c
Do = anwx d(DIO) sws D
= aMfguax Io D\B
etjc:@ P
= AreX X(@) | :G.sil («
“v:;iz“i‘i‘/v e (6 o o0 ;\ﬂ 7((; ‘o ()3
o? 2 Y 2 DF =2 | ‘h))" 'R"z)
"fg-ﬂut..al’ ; Fe qi,g
T et o fde SO

Wee D ® Cb»‘a‘l""" 140

MOTIVATION:
LOGISTIC REGRESSION

Example: Image Classification

144

IMSGENET

Nt 'ogoed v Logn | Sgne

Bird 2126 92.85% o

Warm-biooded egg-laying vertebrates charactenzed by feathers and forebmbs modhed as wings P Cene :;«::': :‘)’vdw

MENe arvmal, Manne Creature, 302 anmal, sea creature (1)
scavenger (1) Treemap Viaalization nages of the Syrset Downloads
bped {(0)
predator, preciytory awmal (1)
larva (49)
oSt (0)
feeder (0)
st (0)
' chordste (3087)
tuncate, wochordats, urochord (6)
Caphiochordass (1)
* wertelrate, cramsiate (3077)
mammal, mammalian (1169)
* bwd (B71)
Sckoybird, dckey-Sed, dokybird, dicky-bird (0)
cocx (1)
b (0)
rester (O)
might bwa (1)
tird of passage (0)
protodvn (0)
MM Y, BrChedplaryx, Acchieopterys FINOGrash
Sinornis (0)
Dero-mesornis (0)
archaecms (0)
raeAe, ratie Bird, Nightiess bird (10)
cannite, Carnate brd, fying bed (0)
DASSRIING, PASSENTOm Dd (279)
nonpasserne bird (0)
ird of prey, raptor, raptenal bed (80)
SMracecus bird, galinacean (114)

IMSGENET

e v e Linre

Abont Downiond

German iris, Iris kochii

ins of northem italy Baving deep blue-purpie flowers: semilar 10 but smalier than Irs germanca

halophyte (0)

succulent (39) Yroecmap Youalzation s AN

ovar (0)
oukivated plane (0)
weed (54)
Feergreen, avergreen plant (0)
decduous plamt (0)
viewt (272)
creeper (0)
woOdy plant, lgneous plant (1868)
geophyte (0)
Gesart plane, serophyte, xerophytc plant, xerophie, veropiik
mesoptiyte, mescpinytic plart (Q)
SUAUC plant, mater plnt, hydedpinyte, BySrophytic plast (11
tubierous plamt (O)
Dufbous plant {1 79)
- indacecus plamt (27)
s, Tag, Neur-de-is, sword Ny (19)
- bearded ing (4)
Florenting g, o, s germanca forentieg, s
Garman k', ios germanca (0)
German s, s koche (0)
Dakmatian s, Inis paléda {0)
Dedrdiess s (4)
bubous s (0)
Owart? ing, Inis cnstata (D)
strkang s, gladdon, gladdon s, stinking gladenym,
Porsian s, o perscs (0)
yollow i, yelow flag, yelow sater Mag, iris pseuc
Owirt s, verndl inis, iris vorna (0)
bhue £, s versicolor (0)

ot ogeed n Logn | Sene

469 49.6% J
P Tures Pogsdanty Mordnet
Percerlie s

Oownlosds

IMSGENET

Court, courtyard 165 92.61%
An aea wholly or partly surmrounded by wals o buddings; "the house was Duilt arcund an inner court’ [T o :::.‘..;,;.», t\:.)vt
orlerix L
WV Nurters & raciees (T numbe f oty 0t 2o Treemap Yaualization FY f 1he Synwe Downloads

IevageNet 2011 Fab Release (32326)
plast, fiord, plant e (4485)
geciogca formaton, fommation (175)
natural otyect (1112)
sport, mhietics (176)
artifact, artefact (10504)

nssrumentaity, istrumentation { 5494)
L osaructure, construction (1405)
ardock, hangar, regalr shed (0)
atar (1)
cade, colormade (1)
chilt)
rea (344)
s (O)
aaonum (1)
bagaage cam (0)
box (1)
breakfast area. breakfast nook (0)
bufipen (0)
chancel, sanctuawy, bema (Q)
choir (0)
Comer, nock (2)
court, courtyard (6)
Mnem (D)
badey (0)
cioter (0)
food couwrt (0)

0
s VEs S5 Wl ¥ 100

Example: Image Classification

Example: Image Classification

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input * Five convolutional layers 1000-way
image (w/max-pooling)
(pixels) * Three fully connected layers softmax

7.

The rest is just This “softmax’’ i
some fancy - : o e BN /L \dense
| feature extraction |\ || layer is Lo.glsflc BVANE
24 (discussed later in =) Regression: \
@ the course) 3| =
224 S"t}’i/d;. Max 178 ' Max pooling 2048 2048
Uof 4 pooling pooling

3 48

LOGISTIC REGRESSION

Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

D = {x9, yN wherex e RM andy € {0,1}

We are back to
classification.

Despite the name
logistic regression.

Linear Models for Classiﬁcaticm

Key idea: Try to learn

this hyperplane directly
Looking ahead: — y Directly modeling the
 We'll see anumber of =~ =
commonly used Linear =5 = hyp.el.'plane W?UId HSE d
Classifiers l -~ jdecision function:
 These include: =
— Perceptron 3 h(X) — sign(OTx)

— Logistic Regression

— Naive Bayes (under
certain conditions) . for:

— Support Vector
Machines Yy - {—1, —I—].}

Background: Hyperplanes%

Hyperplane (Definition 1):
H={x:w'x=0b}
Hyperplane (Definition 2):
H={x:0"'x=0
and xp = 1}
0= [b,wi,...,wyl"

Half-spaces:

Ht ={x:0"x>0andzy = 1}
H™ ={x:0"x<0andzy = 1}

Using gradient ascent for linear

classifiers

Key idea behind today’s lecture:
1. Define a linear classifier (logistic regression)
2. Define an objective function (likelihood)

3. Optimize it with gradient descent to learn
parameters

4. Predict the class with highest probability under
the model

Using gradient ascent for linear
classifiers

Using gradient ascent for linear
classifiers

Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

D = {x9, yN wherex e RM andy € {0,1}

Model: Logistic function applied to dot product of
parameters with input vector. 1

pe(y = 1|x) =

1 + exp(—6"x)
Learning: finds the parameters that minimize some

objective function. g* — argmin J(g)
6

Prediction: Output is the most probable class.

y = argmax pg (y|x)
y€{0,1}

Logistic Regression

Whiteboard

— Bernoulli interpretation
— Logistic Regression Model
— Decision boundary

Logistic Regression

4 - -
°
b ® o ° ° °
°, e o
o ° °
2— ... ° [] Y ° (] -
° ° o ®
°
v v °°) ®e ,° °
v vv ® o ‘ ®
v [J) Y ® o o
v ve Ve
v v;v v v ° ...)
Yev ¥ v ywy ° Ve o
O_ va ‘V Vvv vV v b) -
v v Yyv v v Yy » @ °
v v V y v Vv v v)
w¥ % >v ° -
"v"vv \ 7 vv" v"'v"v’ v
g WYY M
v Y v \ YWy vVy.eY
V,vv'w’ 'v"' vYY v v YY v
v v 3" Y% vy
vy ‘v" M % v v
v VyVY vw'v V'Y
YWy v v
-2 - v Y - Yv vy v -
vy YWY WYy v
A v
'v \ 22/ Vy v
- v
. v
v v v
v
v v
v
—4 - v _
I I I I I
-4 -2 0 2 4

159

Logistic Regression

Logistic Regression Distribution

160

Logistic Regression

Classification with Logistic Regression

161

LEARNING LOGISTIC REGRESSION

Maximum Conditional
Likelihood Estimation

Learning: finds the parameters that minimize some
objective function.

0" = argmin J(0)
0
We minimize the negative log conditional likelihood:

N
J(6) = —log | [pe(y"x"")
Why? =1
We can’t maximize likelihood (as in Naive Bayes)

because we don’t have a joint model p(x,y)

It worked well for Linear Regression (least squares is
MCLE)

Maximum Conditional
Likelihood Estimation

Learning: Four approaches to solving 6" = argmin J(0)
6

Approach 1: Gradient Descent
(take larger — more certain - steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

Approach 4: Closed Form???
(set derivatives equal to zero and solve for parameters)

Maximum Conditional
Likelihood Estimation

Learning: Four approaches to solving 6" = argmin J(0)
0

Approach 1: Gradient Descent
(take larger — more certain - steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

m???
(set derivatives equal to zero and's

Gradient Descent

Algorithm 1 Gradient Descent

procedure GD(D, 9(0))

1:

2 6 — 09

3: while not converged do
4 00— \VoJ(0)

5 return 0

In order to apply GD to Logistic
Regression all we need is the
gradient of the objective
function (i.e. vector of partial
derivatives).

Stochastic Gradient Descent (SW

Algorithm 1 Stochastic Gradient Descent (SGD)

1 procedure SGD(D, 8'”)

x 0+ Y AN
3: while not converged do) ‘m,
4: for i € shuffle({1,2,...,N}) do .
5:

6

0 0 — AVaJ(i)(O)
return @

We can also apply SGD to solve the MCLE
problem for Logistic Regression.

We need a per-example objective:
Let J(0) = 30,0, JD(6)
where J(9(0) = — log pe (y*|x?).

GRADIENT FOR LOGISTIC
REGRESSION

Learning for Logistic Regression

Whiteboard

— Partial derivative for Logistic Regression
— Gradient for Logistic Regression

Details: Picking learning rate

* Use grid-search in log-space over small
values on a tuning set:

— e.g., 0.01, 0.001, ...

* Sometimes, decrease after each pass:
— e.g factor of 1/(1 + dt), t=epoch
— sometimes 1/t2

* Fancier techniques | won’t talk about:

— Adaptive gradient: scale gradient differently for
each dimension (Adagrad, ADAM,)

Slide courtesy of William Cohen

SGD for Logistic Regression

Algorithm 1 SGD for Logistic Regression AR
i procedure SGD(D, 8'”) NN 5& N\
2 0 — 0 Y ’“»¢
3: while not converged do : z
4: fori € shuffle({1,2,...,N})do ‘ N
5: 0 «— 0 — Ay — p(i)x(®
6 where p®) := 1/(1 4 exp(—07 x))
7 return 6

We can also apply SGD to solve the MCLE
problem for Logistic Regression.

We need a per-example objective:
Let J(0) = 30,0, JD(6)
where J(9(0) = — log pe (y*|x?).

177

Summary

1. Discriminative classifiers directly model the
conditional, p(y|x)

2. Logistic regression is a simple linear
classifier, that retains a probabilistic
semantics

3. Parameters in LR are learned by iterative
optimization (e.g. SGD)

Logistic Regression Objectives

You should be able to...

Apply the principle of maximum likelihood estimation (MLE) to
learn the parameters of a probabilistic model

Given a discriminative probabilistic model, derive the conditional
log-likelihood, its gradient, and the corresponding Bayes
Classifier

Explain the practical reasons why we work with the log of the
likelihood

Implement logistic regression for binary or multiclass
classification

Prove that the decision boundary of binary logistic regression is
linear

For linear regression, show that the parameters which minimize

squared error are equivalent to those that maximize conditional
likelihood

MULTINOMIAL LOGISTIC
REGRESSION

Multinomial Logistic Regression

Chalkboard

— Background: Multinomial distribution
— Definition: Multi-class classification

— Geometric intuitions

— Multinomial logistic regression model
— Generative story

— Reduction to binary logistic regression
— Partial derivatives and gradients

— Applying Gradient Descent and SGD

— Implementation w/ sparse features

Debug that Program!

In-Class Exercise: Think-Pair-Share

Debug the following program which is (incorrectly)
attempting to run SGD for multinomial logistic regression

Buggy Program:

while not converged:
for i in shuffle([1,..,N]):
for k in [1,..,K]:
theta[k] = theta[k] - lambda * grad(x[i], yI[i],
theta, k)

Assume: grad(x[1], y[i1], theta, k) returnsthe gradient of the negative
log-likelihood of the training example (x[i],y[i]) with respect to vector theta [k].
lambda is the learning rate. N = # of examples. K = # of output classes. M = # of
features. thetais a Kby M matrix.

Debug that Program!

In-Class Exercise: Think-Pair-Share

Debug the following program which is (incorrectly)
attempting to run SGD for multinomial logistic regression

Buggy Program:

while not converged:
for i in shuffle([1,..,N]):
for k in [1,..,K]:
for m in [1,.., M]:

theta[k,m] = theta[k,m] + lambda * grad(x[i],
y[i], theta, k,m)

Assume: grad(x[1], y[i], theta, k, m) returnsthe partial derivative of
the negative log-likelihood of the training example (x[i],y[i]) with respect to
theta[k,m]. lambda is the learning rate. N = # of examples. K = # of output
classes. M = # of features. thetais a K by M matrix.

FEATURE ENGINEERING

Handcrafted Features

p(y|x)
exp(O,°f

Feature Engineering

Where do features come from?

hand-crafted
features

Sun et al., 2011

O

3

O

Zhou et al,,
2005

O

First word before M1
Second word before M1
Bag-of-words in M1

Head word of M1

Other word in between
First word after M2
Second word after M2
Bag-of-words in M2

Head word of M2

Bigrams in between

Words on dependency path
Country name list
Personal relative triggers
Personal title list

WordNet Tags

Heads of chunks in between
Path of phrase labels
Combination of entity types

Feature Learning

186

Feature Engineering

Where do features come from?

hand-crafted
features

O

Sun et al., 2011

O

3

O

Zhou et al,,
2005

Look-up table Classifier
input embeddin o
(context words) g —>| missing word
unsupervised
learning

similar words, cat: | 0.1 | .23 .45
similar embeddings

dog: 0.13 | .26 -.52

CBOW model in Mikolov et al. (2013)

word /
embeddings

O O Mikolov et al.,

2013

Feature Learning

Feature Engineering

Where do features come from?

A pooling T——3 /';l\
] s) o) — i [—
| eriomiirelae il INN
OO s s] s
The [movie] showed [wars] The [movie] showed [wars]
Convolutional Neural Networks Recursive Auto Encoder
(Collobert and Weston 2008) (Socher 2011)
CNN RAE
A4
Zhou et al,, tri
2005 word string
. embeddings
@) embeddings ~ ___ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008

Feature Learning

Feature Engineering

Where do features come from?

S|;|
Wypvp 2
e

/
VNN /

NP:;|

DrNN/

ﬂﬂﬂﬂ

The [movie] showed [wars]

2005

O

word

embeddings
O Mikolov et al.,
2013

tree
SN '®) embeddings
Socher et al.,
2013
A Hermann & Blunsom,
II 2013
/4
U
II °
/ string

/~ embeddings
Socher, 2011

O Collobert & Weston,

2008

Feature Learning

Feature Engineering

Where do features come from?

A eef};?@
Sep, Y03, m
word embedding ’77¢s~,7 .e{llr 660' .
e, Ss, . Q;/;
hand-crafted features \\/SJ'O "VI{,S &
features o ----- >0 fcy;
> Turian et al. O ,C/'
O~ 2010 %o
Hermann et al.
Sun et al., 2011 Koo et al. 2014
i embeddings
i Socher et al.,
8 i 2013
! ~ rermann & Blunsom,
i / 2013
O :
Zhou et al., 1, J string
U
2005 I /
worc! /~ embeddings
O embeddlngs _____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008 >

Feature Learning

190

Feature Engineering

Where do features come from?

word embeddin
& best of both
hand-crafted features lds?
features o ----- > O e WOrias:
> Turian et al. O => O
O~ 2010
Hermann et al. A
Sun et al., 2011 Koo etal. 1
2014 i
O 2008 1
A : tree
i embeddings
! Socher et al.,
8 ! 2013
i 4 Hermann & Blunsom,
i / 2013
o /
i /
Zhouetal.,, | J .
2005 H ! string
word / .
. /~ embeddings
O embeddings ~___ > Socher, 2011
QO wmikolovetal, O coliobert & Weston,
2013 2008

Feature Learning

101

Feature Engineering for NLP

Suppose you build a logistic regression model
to predict a part-of-speech (POS) tag for each
word in a sentence.

What features should you use?

[deter.} [noun 1 [noun } verb

The movie | watched depicted hope

Feature Engineering for NLP

Per-word Features:

x(1) x(2) x(3) x(4) x(5) x(6)
is-capital(w;) 1 1
endswith(w;,"“e"”) 1 1 1
endswith(w;,”d"”) 1 1
endswith (w;, “ed”) 1 1
w; == *"aardvark”
w; == “hope” 1

[deter.} [noun } [noun 1 verb

The movie

| watched depicted hope

Feature Engineering for NLP

Context Features:

x(1) x(2) x(3) x(4) x(5) x(6)
w; == “watched” 1
w;.; == “watched” 1
w;_; == “watched” 1
Wi, == “watched” 1
w;_, == “watched” 1

[deter.} [noun } [noun 1 verb

The movie | watched depicted hope

Feature Engineering for NLP

Context Features:

x(1) x(2) x(3) x(4) x(5) x(6)
Wy == “I" 1
Wiy == 17 1
Wiy, == “I” 1
Wisy == “I7 1
Wy, == “I" 1

[deter.} [noun } [noun 1 verb

The movie | watched depicted hope

Table from Manning (2011)

Feature Engineering for NLP

Table 3. Tagging accuracies with different feature templates and other changes on the
WSJ 19-21 development set.

Model Feature Templates # Sent. Token Unk.

Feats Acc. Acc. Acc.
3GRAMMEMM See text 248,798 52.07% 96.92% 88.99%
NAACL 2003 See text and [1] 460,552 55.31% 97.15% 88.61%
Replication See text and [1] 460,551 55.62% 97.18% 88.92%
Replication’ +rareFeatureThresh = 5 482,364 55.67% 97.19% 88.96%
5w +(to, w_2), (to, w2) 730,178 56.23% 97.20% 89.03%

SWSHAPES +<t0,8_1>,<to,80>,<to,8+1> 731,661 56.52% 97.25% 89.81%
SWSHAPESDS + distributional similarity 737,955 56.79% 97.28% 90.46%

[deter.} [noun } [noun 1 verb

The movie | watched depicted hope

Feature Engineering for CV

Edge detection (Canny)

Corner Detection (Harris)

201
Figures from http://opencv.org

Feature Engineering for CV

Scale Invariant Feature Transform (SIFT)

sale | 2 > ==
o) | -
octave)

Scale
(first
octave)
Difference of
Gaussian Gaussian (DOG)
Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
Figure 3: Model images of planar objects are shown in the produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
oprow. Recognition results below show model outlines and to produce the difference-of-Gaussian images on the right, After each octave, the Gaussian image is
mage keys used for matching. down-sampled by a factor of 2, and the process repeated.

202
Figure from Lowe (1999) and Lowe (2004)

NON-LINEAR FEATURES

Nonlinear Features

aka. “nonlinear basis functions”’

So far, input was always x = [z1, ..., T]

Key Idea: let input be some function of x

e M
— original input: x € R where M’
x' € RM

— new input:

> M (usually)

— define X' = b(x) = [b1(x), b2(X), ..., bpr (X)]

where b; : RM — Ris any function

Examples: (M = 1)

polynomial
radial basis function
sigmoid

log

b.

bj(z) =2’ Vje{l,...,
o —(z — ,UJ)Z
(z) = exp (202
1
(z) = 1 + exp(—w;x)
(z) = log(x)

J

For a linear model:
still a linear function
of b(x) even though a
nonlinear function of
X

Examples:

- Perceptron

- Linear regression

- Logistic regression

Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function

1.5~
1.0 - -:..
'. ¢ o° [)
0.5 - ':"
y “
0.0 - T)
—0.5 - .
:' ° s, .0:0
_10 B *.. [] ..“.... .}: ...
true “unknown”’ R
target function is s
y = tanh(x) + noise —6 —4 -2 0 2 4

Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function | Linear Regression (poly=1)

1.0 -
0.5 -
0.0 -
-0.5 -

-1.0 -
true “unknown’
target function is
y = tanh(x) + noise

Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function | Linear Regression (poly=2)

1.0 -
0.5 -
0.0 -
-0.5 -

-1.0 -
true “unknown’
target function is
y = tanh(x) + noise

Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function | Linear Regression (poly=3)

true “unknown’
target function is | | ‘ ‘ ‘
y = tanh(x) + noise ~ 7 ° ’ !

Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function | Linear Regression (poly=4)

true “unknown’
target function is | | ‘ ‘ ‘
y = tanh(x) + noise ~ 7 ° ’ !

Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function | Linear Regression (poly=5)

1.0 -
0.5 -
0.0 -
-0.5 -

-1.0 -
true “unknown’
target function is
y = tanh(x) + noise

Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function | Linear Regression (poly=6)

1.0 -
0.5 -
0.0 -
-0.5 -

-1.0 -
true “unknown’
target function is
y = tanh(x) + noise

Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function | Linear Regression (poly=7)

true “unknown’ c .
target function is | | ‘ ‘ ‘
y = tanh(x) + noise ~ 7 ° ’ !

Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function | Linear Regression (poly=8)

1.0 -

0.5 -
y
0.0 -
-0.5 -
-1.0 -
true “unknown’ c .
target function is | | ‘ ‘ ‘
y = tanh(x) + noise ~ 7 ° ’ !

Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function | Linear Regression (poly=9)

1.0 -
0.5 -
0.0 -
-0.5 -

-1.0 -
true “unknown’
target function is | | ‘ ‘ ‘
y = tanh(x) + noise ~ 7 ° ’ !

Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function

2.5 -

2.0 - ° °

1.5 -

y

1.0 -

0.5 -
true “unknown”
target function is
linear with 0-0-
negative slope
and gaussian 05 |
noise Lo Lo

2.5

3.0

Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function - Linear Regression (poly=1)

2.0 -

1.5-

0.5 -

true “unknown’’
target function is
linear with
negative slope
and gaussian
noise

0.0 -

Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function - Linear Regression (poly=2)

2.0 -

1.5-

0.5 -

true “unknown’’
target function is
linear with
negative slope
and gaussian
noise

0.0 -

Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function

Linear Regression (poly=3)

true “unknown’
target function is
linear with
negative slope
and gaussian | | |
nOise 1.5 2.0 2.5

Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function

Linear Regression (poly=5)

true “unknown’’
target function is
linear with
negative slope
and gaussian
noise

Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function | Linear Regression (poly=8)

2.0 -

1.5 -

0.5 -

true “unknown’

target function is 0.0 -
linear with
negative slope
and gaussian | | |
nOise 1.5 2.0 2.5

-0.5 -

Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial

basis function Linear Regression (poly=9)

2.0 -
1.5 -
y 1.0
0.5 -
true “unknown’’
target function is 0.0 -
linear with
negative slope
and gaussian 0o

nOise 1.5 2.0 2.5

Over-fitting

—©— Training
—O— Test

05¢

Frms

Root-Mean-Square (RMS) Error: Erus = 2E(w*)/N

Slide courtesy of William Cohen

Polynomial Coefficients

M=0 M=1 M=3 M =9
fo 0.19 0.82 0.31 0.35
0, 127 7.99 232.37
0, -25.43 -5321.83
5 17.37 48568.31
04 -231639.30
5 640042.26
6 -1061800.52
0. 1042400.18
5 -557682.99
” 125201.43

Slide courtesy of William Cohen

Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial

basis function Linear Regression (poly=9)

2.0 -
1.5 -
y 1.0
0.5 -
true “unknown’’
target function is 0.0 -
linear with
negative slope
and gaussian 0o

nOise 1.5 2.0 2.5

Example: Linear Regression

Same as before, but now

Goal: Learny =w'f(x) + b with N = 100 points

where f(.) is a polynomial
basis function

Linear Regression (poly=9)

true “unknown’’
target function is
linear with
negative slope
and gaussian
noise

REGULARIZATION

Overfitting

Definition: The problem of overfitting is when
the model captures the noise in the training data
instead of the underlying structure

Overfitting can occur in all the models we’ve seen
so far:

— KNN (e.g. when k is small)

— Naive Bayes (e.g. without a prior)

— Linear Regression (e.g. with basis function)

— Logistic Regression (e.g. with many rare features)

Motivation: Regularization

Example: Stock Prices

Suppose we wish to predict
Google’s stock price at time t+1

What features should we use?

(puttmg all computational concerns .

aside)
— Stock prices of all other stocks at
timest, t-1,t-2,...,t-k

— Mentions of Google with positive /
negative sentiment words in all
newspapers and social media outlets

Do we believe that all of these
features are going to be useful?

S&P 500 (1950-2016)

& & & o FH P) o' o SN TH NI SN SFS
R R C G I . AR AR A C R g

Motivation: Regularization

* Occam’s Razor: prefer the simplest
hypothesis

* What does it mean for a hypothesis (or
model) to be simple?
1. small number of features (model selection)

2. small number of “important” features
(shrinkage)

Regularization

Chalkboard

— L2, L1, Lo Regularization
— Example: Linear Regression

Regularization

Don’t Regularize the Bias (Intercept) Parameter!

In our models so far, the bias [intercept parameter is
usually denoted by 6, -- that is, the parameter for which

we fixed x; = 1
Regularizers always avoid penalizing this bias / intercept
parameter

Why? Because otherwise the learning algorithms wouldn’t
be invariant to a shift in the y-values

Whitening Data

It’s common to whiten each feature by subtracting its
mean and dividing by its variance
For regularization, this helps all the features be penalized

in the same units
(e.g. convert both centimeters and kilometers to z-scores)

Regularization:

In\ = +18

0 1

Slide courtesy of William Cohen

Polynomial Coefficients

none exp(18) huge
we 0.35 0.35 0.13
w? 232.37 4.74 -0.05
w} -5321.83 -0.77 -0.06
w3 48568.31 -31.97 -0.05
wy -231639.30 -3.89 -0.03
wt | 640042.26 55.28 -0.02
wg | -1061800.52 41.32 -0.01
wz | 1042400.18 -45.95 -0.00
wg -557682.99 -91.53 0.00
wg | 125201.43 72.68 0.01

Slide courtesy of William Cohen

Over Regularization:

0 1

Slide courtesy of William Cohen

Regularization Exercise

In-class Exercise
1. Plot train error vs. # features (cartoon)
2. Plot test error vs. # features (cartoon)

A

error

features

Example: Logistic Regression

Training
Data
3 -
2 -
1 -
P
0 -
8
-1 -
-2 -
-3 ~

Example: Logistic Regression

Test 4 -)
Data

° °
3- ~ -
.0) v.° . °
®
v J . LI . . °
°
2 - v Y h..vo' v, °, ¢ ° ° ° -
°® v v: y V.V. ® . O °
vy .V ° ° M o:’;"~vﬁ.}. o ® ® o .. .
1- yV'lv‘v.v"v e Do ~
TR - PR S AT
v TR LA ARS L v _°
v vv v ¥y & ° o %% \/ g 3 ¢
\ 4
0 - M w Y V,viv Y oy v v', :‘v;V { &y Ye v® ° -
v vv)" vV @ v v ve
R 2,58 4 M IR/ R/ v ®
= v'v' vy v, 8 N v °,
1 - v W Vvv ;VV'V }v’ y v ¥ B
v v Y v VV‘V °)
v v vV Y Y M
vv v’ v:v o M V.
-2 - v -
v v'v
-3 - v _
—4 - | | | | | | | | -
-3 -2 -1 0 1 2 3 4

242

error

Example: Logistic Regression

0.45 -

0.40 -

0.35 -

0.30 -

0.25 -

0.20 -

0.15 -

— train
— test

010 |]]]]]]]] I~
107° 10”7 107 1073 10t 10! 103 10° 10’ 10°

1/lambda

243

Example: Logistic Regression

- Classijfication with Logistic Regression (lambda=1e-05)

244

Example: Logistic Regression

- Classification with Logistic Regression (lambda=0.0001)

245

Example: Logistic Regression

- Classification with Logistic Regression (lambda=0.001)

246

Example: Logistic Regression

Classification with Logistic Regression (lambda=0.01)

247

Example: Logistic Regression

Classification with Logistic Regression (lambda=0.1)

248

Example: Logistic Regression

Classification with Logistic Regression (lambda=1)

249

Example: Logistic Regression

Classification with Logistic Regression (lambda=10)

250

Example: Logistic Regression

Classification with Logistic Regression (lambda=100)

251

Example: Logistic Regression

Classification with Logistic Regression (lambda=1000)

252

Example: Logistic Regression

- Classification with Logistic Regression (lambda=10000)

253

Example: Logistic Regression

- Classification with Logistic Regression (lambda=100000)

254

Example: Logistic Regression

- Classification with Logistic Regression (lambda=1e+06)

255

Example: Logistic Regression

- Classification with Logistic Regression (lambda=1e+07)

256

error

Example: Logistic Regression

0.45 -

0.40 -

0.35 -

0.30 -

0.25 -

0.20 -

0.15 -

— train
— test

010 |]]]]]]]] I~
107° 10”7 107 1073 10t 10! 103 10° 10’ 10°

1/lambda

257

Regularization as MAP

* L1and L2 regularization can be interpreted
as maximum a-posteriori (MAP) estimation

of the parameters
* To be discussed later in the course...

1.

Takeaways

Nonlinear basis functions allow linear
models (e.g. Linear Regression, Logistic
Regression) to capture nonlinear aspects of
the original input

. Nonlinear features are require no changes

to the model (i.e. just preprocessing)

. Regularization helps to avoid overfitting
. Regularization and MAP estimation are

equivalent for appropriately chosen priors

Feature Engineering [Regularization

Objectives
You should be able to...
* Engineer appropriate features for a new task

* Use feature selection techniques to identify and
remove irrelevant features

* |dentify when a model is overfitting

* Add aregularizer to an existing objective in order to
combat overfitting

* Explain why we should not regularize the bias term

* Convert linearly inseparable dataset to a linearly
separable dataset in higher dimensions

* Describe feature engineering in common application
areas

ONLINE LEARNING LAB

Online Learning Lab

* Meet at the Gates-Hillman Center (GHC), room 6115
— Use the 5t floor entrance near Cyert Hall
— Take the elevator to the 6™ floor
— GHC 6115 is on your left as you exit the elevator
— Email if you have trouble

263

