
Factor-based Compositional Embedding Models

Mo Yu
Machine Intelligence & Translation Lab

Harbin Institute of Technology
Harbin, China

gflfof@gmail.com

Matthew R. Gormley, Mark Dredze
Human Language Technology Center of Excellence

Center for Language and Speech Processing
Johns Hopkins University

Baltimore, MD, 21218
{mgormley, mdredze}@cs.jhu.edu

Introduction Word embeddings, which are distributed word representations learned by neural
language models [1, 2, 3], have been shown to be powerful word representations. They have been
successfully applied to a range of NLP tasks, including syntax [2, 4, 5] and semantics [6, 7, 8].

Information about language structure is critical in many NLP tasks, where substructures of a sen-
tence and its annotations inform downstream NLP task. Yet word representations alone do not
capture such structure. For example, in relation extraction the sentence may be annotated with part-
of-speech tags, a dependency parse, and named entities, with the goal of predicting a relation label
for a pair of target entities. Semantic role labeling has a similar form. In tasks such as these, it is
important to capture information about both individual words and their interactions. The annota-
tions evidence these interactions, and we often define features over substructures of these annotated
sentences (e.g. relative positions of words, words that appear on a dependency path, words with
their entity types) to make successful predictions of the label (e.g. relation type).

Our goal is to learn representations for the substructures of an annotated sentence which inherit the
generalization strength of word representations but remain sufficiently expressive for the task. Typi-
cally, for each term in a large finite vocabulary, we learn a unique word embedding. Yet, since the set
of annotated sentences is infinite in size, it would be difficult to learn a unique representation of each
one. Therefore, research has turned to compositional embedding models: building a representation
(embedding) for an annotated sentence based on its component word embeddings.

A traditional approach for composition is to form a linear combination (e.g. sum) of single word
representations with compositional operators either pre-defined [9, 10] or learned from data [11].
However, this approach ignores the useful structural information associated with the input (e.g. the
order of words in a sentence and its syntactic tree). To address this problem, recent work has de-
signed model structures that mimic the structure of the input. For example, Convolutional Neural
Networks (CNNs) [2, 12] build the representation for a sentence based on its n-grams. Recursive
Neural Networks (RNNs) [6, 7] and the Semantic Matching Energy Function [13] build the repre-
sentations for an input tree (from either a syntactic parser or semantic role labeler), by composing the
embedding for each node based on the embeddings of its children. Previous work on compositional
phrase semantics [14, 15] can be seen as special cases of this type of models for phrases. Those
models work well on sentence-level representations. However, the nature of their designs also limits
them to fixed types of substructures from the annotated sentence, such as chains for CNNs and trees
for RNNs. Such models cannot capture arbitrary combinations linguistic annotations available for a
given task, such as word order, dependency tree, and named entities used for relation extraction.

In this paper we propose a powerful, efficient, and easy-to-implement compositional model. Our
model capitalizes on arbitrary types of linguistic annotations by better utilizing features associated
with substructures of those annotations, including global information (Table 1). We choose features
to promote different properties and to distinguish different functions of the input words. The model
achieves this goal with three steps. First, it decomposes the annotated sentence into substructures
(i.e. factors). Second, it extracts features for each substructure, and combines these features with
the embeddings of words in this substructure to form a substructure embedding. Third, these sub-
structure embeddings are combined via a simple sum-pooling layer to form a annotated sentence

1

Model
Structure

Features influencing
model structure

How Features Are Used

MVRNN [6] Tree Binary tree - Gives tree model structure
- Concatenated with phrase embedding

CNN [2, 12] Linear-chain Word-order, entity po-
sitions

- Concatenated with word embedding

Our models MLP
w/sparse
connections

Arbitrary (e.g. word-
order, dependency
parse, entity positions)

- Promotes different properties of input words
- Enforces sparsity of the hidden layer

Table 1: Comparison of Models

embedding. Finally, a softmax layer predicts the output label from this sentence-level embedding.
We name this model the Factor-based Compositional Embedding Model (FCM). We test FCM
on the relation classification task from SemEval 2010. By better handling the combined structures
of the chains of words and syntactic trees, and by better utilizing the global information about the
target entities, our FCM obtains state-of-the-art results on this task.

Log-linear Model Before turning to our full model, we first consider two special cases of it: one
log-linear and one log-quadratic. Our log-linear model has the usual form, but defines a particular
utilization of the features and embeddings. Instances have the form (x, y), where x is the input (e.g.
sentence, dependency parse, named entities, etc.) and y is the output label (e.g. relation) (see Fig
1a for an example, where y indicates the relation between two target mentions M1,M2 in annotated
sentence x). The features of the log-linear model are defined for each word wi in the sentence and
divide into two parts: a binary vector of word features gi and a dense word embedding ewi . We
denote the label-specific model parameters by the matrix Ty . For example in Fig 1a, the gold label
corresponds to a matrix Ty where y=Product-Producer(M2,M1). Our log-linear model is given by:

P (y|x;T) ∝ exp(
∑

i Ty � (gi ⊗ ewi
)) (1)

where ⊗ is the outer-product of the two vectors and � is the ‘matrix dot product’ or Frobenious
inner product of the two matrices. Note that, so long as the word embeddings ewi are constant, this
model has the standard log-linear form. As usual, the binary features gi may look at the ith word and
any other substructure of the annotated sentence x. The key idea is that because we take the outer
product of the word-specific binary features with the word embedding, the model parameters are
able to capture specific properties of the word (e.g. its position or named entity tag) while benefiting
from the generalization properties of the embeddings.

Log-quadratic Model In our log-quadratic model, the probability P (y|x;T, e) is identical to our
log-linear model in Eq. (1), except that we treat the word embeddings ewi

as parameters. As in the
deep learning literature, we initialize these embeddings from a neural language model [3] and then
fine-tune them for our task. The probability is now log-quadratic in the parameters {T, e}. Tensor
T = [T1 : ... : T|L|] transforms the input matrix to the labels [16, 17]; it has three dimensions,
corresponding to word embeddings ew, features associated with factor gi and the output label set L.

Generalized Model Form In this section we propose a new class of compositional models (FCM)
which builds an embedding of a sentence and all of its linguistic annotations given an arbitrary
decomposition of the annotated sentence into substructures or factors. In this way, we can reuse
standard features and decompositions for a given task and avoid redesigning them from scratch.

Our full model is a slight extension of our log-quadratic model: we replace the single word embed-
ding with a hidden layer which is itself a composition of word embeddings. The model decomposes
the annotated sentence x into factors (i.e. substructures) following x = {f}. For each factor f ,
there is a list of m associated features gf and a list of t associated words wf,1, wf,2, ..., wf,t ∈ f .1

The words in a factor are transformed into a hidden layer hf = σ(
∑t

j=1 ewf,j
·Wj), where ewi

is the word embedding for word wi and σ(·) is a (possibly nonlinear) differentiable function, and
Wj are parameters.2 With these factors and the corresponding hidden layers, we construct our full
model as below.

P (y|x;T,W, e) = exp(
∑

f Ty � (gf ⊗ hf))
/∑

y′∈L exp(
∑

f Ty′ � (gf ⊗ hf)) (2)

1For notational convenience, each factor has the same number of words.
2Each Wj is a de × dh matrix; de and dh are the dimensions of the embeddings and hidden layers.

2

…

y=Product-Producer(M2 , M1)

M1=company M2=chairs

w1=“The” wi=“fabricates”

P
…

fi f1

[The company]M1 fabricates [plastic chairs]M2

(a) Example of an input structure (P
represents a dependency tree).

Σ

Τ

✕
gfn

P(y|x)

gf1 hf1

ef1 efn

ex

���

hfn

���

��� ���

���
���

W

ef1,1 ef1,t ���

W

efn,1 efn,t ���

(b) Neural network representation for FCM.

Figure 1: Representation of the proposed model.

We obtain our log-quadratic and log-linear models as special cases by defining σ(x) = x and
Wj = I (identity matrix).

In order to better understand this model, we can consider the various compositional embeddings it
constructs along the way. Further, this allows us to visualize our model as a multi-layer perceptron
(MLP) (Fig. 1b). For each factor, we take the outer product between the feature vector and the
hidden layer of the transformed embeddings efi = gf ⊗ hf . We call efi the substructure em-
bedding for factor fi. Next, we obtain the annotated sentence embedding ex via a sum over the
substructure embeddings, ex =

∑
fi
efi . Note that while the substructure and annotated sentence

embeddings efi and ex are matrices, we consider their vectorized form in the visualization.

Learning Here we show how to train our full model.3 In order to train the parameters we optimize
the following log-likelihood objective with AdaGrad [18] and compute its gradients by backpropa-
gation:

L(T,W, e) = 1
|D|

∑
(y,x)∈D logP (y|x;T,W, e),

where D is the set of all training data. For each instance (y,x) we compute the gradient of the log-
likelihood ` = logP (y|x;T,W, e). We define the vector s = [

∑
i Ty � (gi ⊗ ewi

)]
1≤y≤L, which

yields ∂`/∂s = [(I[y = y′]− P (y′|x;T,W, e))1≤y′≤L]
T
, where I[x] is the indicator function

equal to 1 if x is true and 0 otherwise. Denote af =
∑t

j=1 ewf,j
·Wj . Then we have the following

stochastic gradients, where σ′(·) is the gradient for any activation function σ(·) and ◦ is the tensor
product:

∂`

∂T
=
∂`

∂s
⊗

n∑
i=1

gfi ⊗ hfi ,
∂`

∂Wj
=

n∑
i=1

∂`

∂hfi

∂hfi

∂Wj
=

n∑
i=1

(
T ◦ gfi ◦

∂`

∂s

)
·

t∑
j=1

σ′(afi,j)e
T
wj
.

We can fine-tune the word embeddings with FCM with the following equation:

∂`

∂ew
=

n∑
i=1

∂`

∂hfi

t∑
j=1

I[wj = w]
∂hfi

∂ew
=

n∑
i=1

(
T ◦ gfi ◦

∂`

∂s

)
·

t∑
j=1

I[wj = w]σ′(afi,j)Wj .

Experiments We conduct experiments on the SemEval-2010 Task 8 dataset4[19]. We adopt the
same setting as in [6]. This task is to determine the relation type (or no relation) between two entities
in a sentence. We train 200-d word embeddings on the NYT portion of Gigaword5.0 corpus [20],
with the default setting of the word2vec toolkit [3]. We annotate WordNet supertags and named
entity (NE) tags using [21], and dependency parses using the Stanford Parser. We use 10-fold cross
validation on the training data to select hyperparameters and do early-stopping. The learning rates
for FCM with/without fine-tuning are 5e-3 and 5e-2 respectively.

We factorize the annotated sentence following Fig 1a. For each word wi in the sentence, we set
hfi = ewi

, equivalent to our log-linear and log-quadratic models. Our features gfi are over the
word wi, the two target entity mentions M1,M2, and their dependency path, as given in Table 2.

3The derivatives of the log-linear and log-quadratic models are special cases of those for the full model.
4SemEval-2010 website http://docs.google.com/View?docid=dfvxd49s_36c28v9pmw

3

http://docs.google.com/View?docid=dfvxd49s_36c28v9pmw

Set Template
HeadEmb {I[i = h1], I[i = h2]} (wi is head of M1/M2) ×{φ, th1 , th2}
Context I[i = h1 ± 1] (left/right token of wh1), I[i = h2 ± 1] (left/right token of wh2)
In-between I[i > h1]&I[i < h2] (in between) ×{φ, th1 , th2}
On-path I[wi ∈ P] (on path) ×{φ, th1 , th2}

Table 2: Feature sets used in FCM.

Classifier Features F1
SVM [22] POS, prefixes, morphological, WordNet, dependency parse,

82.2(Best in SemEval2010) Levin classes, PropBank, FrameNet, NomLex-Plus,
Google n-gram, paraphrases, TextRunner

RNN word embedding, syntactic parse 74.8
RNN + linear word embedding, syntactic parse, POS, NER, WordNet 77.6
MVRNN word embedding, syntactic parse 79.1
MVRNN + linear word embedding, syntactic parse, POS, NER, WordNet 82.4
CNN [12] word embedding, WordNet 82.75

FCM (log-linear)
word embedding 77.6
word embedding, dependency parse 79.4
word embedding, dependency parse, WordNet 82.0
word embedding, dependency parse, NER 81.4

FCM (log-quadratic)
word embedding 80.6
word embedding, dependency parse 82.2
word embedding, dependency parse, WordNet 82.5
word embedding, dependency parse, NER 83.0

Table 3: Comparison of F1 for relation classification on SemEval-2010 Task 8.

Here h1, h2 are the indices of the two head words of M1,M2, × refers to the Cartesian product
between two sets, th1 and th2 are WordNet supertags (or named entity tags) of the head words of
two entities, and φ stands for empty feature. We discard the features related to th1 , th2 when there
are no entity type features (WordNet/NER) available. The ‘In-between’ features indicate whether a
word wi is in between two target entities, and the ‘On-path’ features indicate whether the word is on
the dependency path, on which there is a set of words P , between the two entities. We present the
results of the log-linear and log-quadratic forms of our model as the additional hidden layer did not
offer noticeable improvements.

Table 3 shows results for all methods. All FCMs, expect the log-linear one without any extra anno-
tation features (77.6), achieve better performance compared to the previous compositional models
(74.8/79.1 for RNN/MVRNN), showing that features indicating word positions (Table 2) can greatly
help the task if they are properly utilized. Second, entity type features greatly improve the perfor-
mance of the log-linear models. This is likely due to the fact that when embeddings are fixed, these
features can help to distinguish different functions of embeddings. Third, in the fine-tuning setting,
the embeddings themselves can be adapted to suit the target task, then introducing more entity type
features makes it easier to over-fit. As a result, entity type features do not significantly improve
fine-tuning performance. This also explains why using NE tags instead of WordNet tags help the
log-linear model, while hurting the log-quadratic one; there are many more WordNet tags than NE
tags. Finally, our best FCM obtains the best results (83.0) overall, setting a new high score for this
task. It outperforms both the combinations of an embedding model and a traditional log-linear model
in [6] (RNN/MVRNN + linear) and the result of CNN reported in [12]. Additionally, FCMruns much
faster than both RNN and CNN models, because of its linear complexity on the dimensionality of
embeddings.

Conclusion We have presented FCM, a new compositional model for deriving sentence-level and
substructure embeddings from word embeddings. Compared to existing compositional models, FCM
can easily handle arbitrary types of input and global information for composition, while being easy
to implement. We have demonstrated that FCM attains state-of-the-art performance on the relation
classification task. Our implementation is available for general use6.

5We failed to reproduce the positive result in that paper and the performance of our implementation of
CNN is 80.6. We checked with other researchers who also failed to re-implement this result. The problem is
likely due to insufficient details in the paper for re-producing the effects of “position features.”. Meanwhile the
authors of the paper are unable to release their code.

6https://github.com/Gorov/FCM_nips_workshop

4

https://github.com/Gorov/FCM_nips_workshop

References
[1] Yoshua Bengio, Holger Schwenk, Jean-Sébastien Senécal, Fréderic Morin, and Jean-Luc Gauvain. Neural

probabilistic language models. In Innovations in Machine Learning, pages 137–186. Springer, 2006.

[2] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
Natural language processing (almost) from scratch. JMLR, 12:2493–2537, 2011.

[3] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In Advances in Neural Information Processing Systems,
pages 3111–3119, 2013.

[4] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple and general method for
semi-supervised learning. In Association for Computational Linguistics, pages 384–394, 2010.

[5] Ronan Collobert. Deep learning for efficient discriminative parsing. In AISTATS, 2011.

[6] Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng. Semantic compositionality
through recursive matrix-vector spaces. In Proceedings of EMNLP-CoNLL2012, pages 1201–1211, 2012.

[7] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In
Empirical Methods in Natural Language Processing, pages 1631–1642, 2013.

[8] Karl Moritz Hermann, Dipanjan Das, Jason Weston, and Kuzman Ganchev. Semantic frame identification
with distributed word representations. In Proceedings of ACL, June 2014.

[9] Jeff Mitchell and Mirella Lapata. Vector-based models of semantic composition. In ACL, pages 236–244,
2008.

[10] Jeff Mitchell and Mirella Lapata. Composition in distributional models of semantics. Cognitive science,
34(8):1388–1429, 2010.

[11] Quoc V Le and Tomas Mikolov. Distributed representations of sentences and documents. arXiv preprint
arXiv:1405.4053, 2014.

[12] Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. Relation classification via convolu-
tional deep neural network. In Proceedings of COLING 2014, pages 2335–2344, August 2014.

[13] Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. A semantic matching energy function
for learning with multi-relational data. Machine Learning, pages 1–27, 2012.

[14] Edward Grefenstette, Georgiana Dinu, Yao-Zhong Zhang, Mehrnoosh Sadrzadeh, and Marco Baroni.
Multi-step regression learning for compositional distributional semantics. arXiv:1301.6939, 2013.

[15] Georgiana Dinu and Marco Baroni. How to make words with vectors: Phrase generation in distributional
semantics. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 624–633, Baltimore, Maryland, June 2014. Association for Computa-
tional Linguistics.

[16] Yuan Cao and Sanjeev Khudanpur. Online learning in tensor space. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 666–675,
Baltimore, Maryland, June 2014. Association for Computational Linguistics.

[17] Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and Tommi Jaakkola. Low-rank tensors for scoring
dependency structures. In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1381–1391, Baltimore, Maryland, June 2014. Association
for Computational Linguistics.

[18] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine Learning Research, 12:2121–2159, 2011.

[19] Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian Padó,
Marco Pennacchiotti, Lorenza Romano, and Stan Szpakowicz. Semeval-2010 task 8: Multi-way classifi-
cation of semantic relations between pairs of nominals. In Proceedings of SemEval-2 Workshop, 2010.

[20] Robert Parker, David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda. English gigaword fifth edition,
june. Linguistic Data Consortium, LDC2011T07, 2011.

[21] Massimiliano Ciaramita and Yasemin Altun. Broad-coverage sense disambiguation and information ex-
traction with a supersense sequence tagger. In EMNLP2006, pages 594–602, July 2006.

[22] Bryan Rink and Sanda Harabagiu. Utd: Classifying semantic relations by combining lexical and semantic
resources. In Proceedings of the 5th International Workshop on Semantic Evaluation, pages 256–259,
Uppsala, Sweden, July 2010. Association for Computational Linguistics.

5

