
Learning Beam Search Policies via Imitation
Learning

Renato Negrinho1, Matthew R. Gormley1, Geoffrey J. Gordon1,2

1Machine Learning Department, Carnegie Mellon University; 2Microsoft Research
{negrinho,mgormley,ggordon}@cs.cmu.edu

Abstract

Beam search is widely used for approximate decoding in structured prediction
problems. Models often use a beam at test time but ignore its existence at train
time, and therefore do not explicitly learn how to use the beam. We develop an
unifying meta-algorithm for learning beam search policies using imitation learning.
In our setting, the beam is part of the model, and not just an artifact of approximate
decoding. Our meta-algorithm captures existing learning algorithms and suggests
new ones. It also lets us show novel no-regret guarantees for learning beam search
policies.

1 Introduction

Beam search is the dominant method for approximate decoding in structured prediction tasks such
as machine translation [1], speech recognition [2], image captioning [3], and syntactic parsing [4].
Most models that use beam search at test time ignore the beam at train time and instead are learned
via methods like likelihood maximization. They therefore suffer from two issues that we jointly
address in this work: (1) learning ignores the existence of the beam and (2) learning uses only oracle
trajectories. These issues lead to mismatches between the train and test settings that negatively
affect performance. Our work addresses these two issues simultaneously by using imitation learning
to develop novel beam-aware algorithms with no-regret guarantees. Our analysis is inspired by
DAgger [5].

Beam-aware learning algorithms use beam search at both train and test time. These contrast with
common two-stage learning algorithms that, first, at train time, learn a probabilistic model via
maximum likelihood, and then, at test time, use beam search for approximate decoding. The insight
behind beam-aware algorithms is that, if the model uses beam search at test time, then the model
should be learned using beam search at train time. Resulting beam-aware methods run beam search
at train time (i.e., roll-in) to collect losses that are then used to update the model parameters. The first
proposed beam-aware algorithms are perceptron-based, updating the parameters either when the best
hypothesis does not score first in the beam [6], or when it falls out of the beam [7].

While there is substantial prior work on beam-aware algorithms, none of the existing algorithms
expose the learned model to its own consecutive mistakes at train time. When rolling in with the
learned model, if a transition leads to a beam without the correct hypothesis, existing algorithms
either stop [6, 8, 9] or reset to a beam with the correct hypothesis [7, 10, 11].1 Additionally, existing
beam-aware algorithms either do not have theoretical guarantees or only have perceptron-style
guarantees [10]. We are the first to prove no-regret guarantees for an algorithm to learn beam search
policies.

1[12] take a different approach by training with a differentiable approximation of beam search, but decode
with the standard (non-differentiable) search algorithm at test time.
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Imitation learning algorithms, such as DAgger [5], leverage the ability to query an oracle at train time
to learn a model that is competitive (in the no-regret sense) to the best model in hindsight. Existing
imitation learning algorithms such as SEARN [13], DAgger [5]2, AggreVaTe [15], and LOLS [16],
execute the learned model at train time to collect data that is then labeled by the oracle and used for
retraining. Nonetheless, these methods do not take the beam into account at train time, and therefore
do not learn to use the beam effectively at test time.

We propose a new approach to learn beam search policies using imitation learning that addresses
these two issues. We formulate the problem as learning a policy to traverse the combinatorial search
space of beams. The learned policy is induced via a scoring function: the neighbors of the elements
of a beam are scored and the top k are used to form the successor beam. We learn a scoring function
to match the ranking induced by the oracle costs of the neighbors. We introduce training losses
that capture this insight, among which are variants of the weighted all pairs loss [17] and existing
beam-aware losses. As the losses we propose are differentiable with respect to the scores, our scoring
function can be learned using modern online optimization algorithms, e.g. Adam [18].

In some problems (e.g., sequence labeling and syntactic parsing) we have the ability to compute
oracle completions and oracle completion costs for non-optimal partial outputs. Within our imitation
learning framework, we can use this ability to compute oracle completion costs for the neighbors
of the elements of a beam at train time to induce an oracle that allows us to continue collecting
supervision after the best hypothesis falls out of the beam. Using this oracle information, we are able
to propose a DAgger-like beam-aware algorithm with no-regret guarantees.

We describe our novel learning algorithm as an instantiation of a meta-algorithm for learning beam
search policies. This meta-algorithm sheds light into key design decisions that lead to more performant
algorithms, e.g., the introduction of better training losses. Our meta-algorithm captures much of
the existing literature on beam-aware methods (e.g., [7, 8]), allowing a clearer understanding of and
comparison to existing approaches, for example, by emphasizing that they arise from specific choices
of training loss function and data collection strategy, and by proving novel regret guarantees for them.

Our contributions are: an algorithm for learning beam search policies (Section 4.2) with accompanying
regret guarantees (Section 5), a meta-algorithm that captures much of the existing literature (Section 4),
and new theoretical results for the early update [6] and LaSO [7] algorithms (Section 5.3).

2 Preliminaries

Structured Prediction as Learning to Search We consider structured prediction in the learning
to search framework [13, 5]. Input-output training pairs D = {(x1, y1), . . . , (xm, ym)} are drawn
according to a data generating distribution D jointly over an input space X and an output space Y .
For each input x ∈ X , there is an underlying search space Gx = (Vx, Ex) encoded as a directed
graph with nodes Vx and edges Ex. Each output y ∈ Yx is encoded as a terminal node in Gx, where
Yx ⊆ Y is the set of valid structured outputs for x.

In this paper, we deal with stochastic policies π : Vx → ∆(Vx), where ∆(Vx) is the set of probability
distributions over nodes in Vx. (For convenience and brevity of presentation, we make our policies
deterministic later in the paper through the introduction of a tie-breaking total order over the elements
of Vx, but our arguments and theoretical results hold more generally.) The goal is to learn a stochastic
policy π(·, x, θ) : Vx → ∆(Vx) parametrized by θ ∈ Θ ⊆ Rp that traverses the induced search
spaces, generating outputs with small expected cost; i.e., ideally, we would want to minimize

c(θ) = E(x,y)∼DEŷ∼π(·,x,θ)cx,y(ŷ), (1)

where cx,y : Yx → R is the cost function comparing the ground-truth labeling y to the predicted
labeling ŷ. We are not able to optimize directly the loss in Equation (1), but we are able to find
a mixture of policies θ1, . . . , θm, where θt ∈ Θ for all t ∈ [m], that is competitive with the best
policy in Θ in the distribution of trajectories induced by the mixture of θ1, . . . , θm. We use notation
ŷ ∼ π(·, x, θ) to mean that ŷ is generated by sampling a trajectory v1, . . . , vh on Gx by executing
policy π(·, x, θ), and returning the labeling ŷ ∈ Y associated with terminal node vh ∈ T . The search
spaces, cost functions and policies depend on x ∈ X or (x, y) ∈ X × Y—in the sequel, we omit
indexing by example for conciseness.

2 Scheduled sampling [14] is an instantiation of DAgger.
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Search Space, Cost, and Policies Each example (x, y) ∈ X × Y induces a search space G =
(V,E) and a cost function c : Y → R. For all v ∈ V , we introduce its set of neighbors Nv = {v′ ∈
V | (v, v′) ∈ E}. We identify a single initial node v(0) ∈ V . We define the set of terminal nodes
T = {v ∈ V | Nv = ∅}. We assume without loss of generality that all nodes are reachable from
v(0) and that all nodes have paths to terminal nodes. For clarity of exposition, we assume that G is a
tree-structured directed graph where all terminals nodes are at distance h from the root v(0).3

Each terminal node v ∈ T corresponds to a complete output y ∈ Y , which can be compared to the
ground-truth y∗ ∈ Y via a cost function c : T → R of interest (e.g., Hamming loss in sequence
labeling or negative BLEU score [19] in machine translation). We define the optimal completion cost
function c∗ : V → R, which computes the cost of the best terminal node reachable from v ∈ V as
c∗(v) = minv′∈Tv

c(v′), where Tv is the set of terminal nodes reachable from v.

The definition of c∗ : V → R naturally gives rise to an oracle policy π∗(·, c∗) : V → ∆(V ). At
v ∈ V , π∗(v, c∗) can be any fixed distribution (e.g., uniform or one-hot) over arg minv′∈Nv

c∗(v′).
For any state v ∈ V , executing π∗(·, c∗) until arriving at a terminal node achieves the lowest possible
cost for completions of v.

At v ∈ V , a greedy policy π : V → ∆(V ) induced by a scoring function s : V → R computes a
fixed distribution π(v, θ) over arg maxv′∈Nv

s(v′, θ). When multiple elements are tied with the same
highest score, we can choose an arbitrary distribution over them. If there is a single highest scoring
element, the policy is deterministic. In this paper, we assume the existence of a total order over the
elements of V that is used for breaking ties induced by a scoring function. The tie-breaking total
ordering allows us to talk about a particular unique ordering, even when ties occur. The oracle policy
π∗(·, c∗) : V → ∆(V ) can be thought as being induced by the scoring function −c∗ : V → R.

3 Beam search

Algorithm 1 Beam Search
1: function BEAMSEARCH(G, k, θ)
2: b← {v(0)} ≡ b(0)

3: while BEST(b, 1, s(·, θ)) /∈ T do
4: b← POLICY(G, b, k, s(·, θ))
5: return BEST(b, 1, s(·, θ))

6: function POLICY(G, b, k, f )
7: Let Ab = ∪v∈bNv
8: return BEST(Ab, k, f)

9: function BEST(A, k, f )
10: Let A = {v1, . . . , vn} be ordered
11: such that f(v1) ≥ · · · ≥ f(vn)
12: Let k′ = min(k, n)
13: return v1, . . . , vk′

Beam Search Space Given a search space G, we
construct its beam search space Gk = (Vk, Ek), where
k ∈ N is the maximum beam capacity. Vk is the
set of possible beams that can be formed along the
search process, and Ek is the set of possible beam
transitions. Nodes b ∈ Vk correspond to nonempty
sets of nodes of V with size upper bounded by k, i.e.,
b = {v1, . . . , v|b|} with 1 ≤ |b| ≤ k and vi ∈ V for
all i ∈ [|b|]. The initial beam state b(0) ∈ Vk is the
singleton set with the initial state v(0) ∈ V . Terminal
nodes in Tk are singleton sets with a single terminal
node v ∈ T . For b ∈ Vk, we define Ab = ∪v∈bNv , i.e.,
the union of the neighborhoods of the elements in b.

Algorithm 1 describes the beam search variant used
in our paper. In this paper, all elements in the beam
are simultaneously expanded when transitioning. It is
possible to define different beam search space variants,
e.g., by considering different expansion strategies or by handling terminals differently (in the case
where terminals can be at different depths). The arguments developed in this paper can be extended
to those variants in a straightforward manner.

Beam Costs We define the cost of a beam to be the cost of its lowest cost element, i.e., we have
c∗ : Vk → R and, for b ∈ Vk, c∗(b) = minv∈b c

∗(v). We define the beam transition cost function
c : Ek → R to be c(b, b′) = c∗(b′)− c∗(b), for (b, b′) ∈ Ek, i.e., the difference in cost between the
lowest cost element in b′ and the lowest cost element in b.

A cost increase occurs on a transition (b, b′) ∈ Ek if c∗(b′) > c∗(b), or equivalently, c(b, b′) > 0,
i.e., b′ dropped all the lowest cost neighbors of the elements of b. For all b ∈ Vk, we define
N∗b = {b′ ∈ Nb | c(b, b′) = 0}, i.e., the set of beams neighboring b that do not lead to cost increases.

3 We describe in Appendix A how to convert a directed graph search space to a tree-structured one with all
terminals at the same depth.

3



We will significantly overload notation, but usage will be clear from context and argument types, e.g.,
when referring to c∗ : V → R and c∗ : Vk → R.

Algorithm 2 Meta-algorithm
1: function LEARN(D, θ1, k)
2: for each t ∈ [|D|] do
3: Induce G using xt
4: Induce s(·, θt) : V → R using G and θt
5: Induce c∗ : V → R using (xt, yt)
6: b1:j ← BEAMTRAJECTORY(G, c∗, s(·, θt), k)
7: Incur losses `(·, b1), . . . , `(·, bj−1)

8: Compute θt+1 using
∑j−1
i=1 `(·, bi), e.g., by

SGD or Adam
9: return best θt on validation

10: function BEAMTRAJECTORY(G, c∗, f, k)
11: b1 ← {v(0)} ≡ b(0)

12: j = 1
13: while BEST(bj , 1, f) /∈ T do
14: if strategy is oracle then
15: bj+1 ← POLICY(G, bj , k,−c∗)
16: else
17: bj+1 ← POLICY(G, bj , k, f)
18: if c∗(bj+1) > c∗(bj) then
19: if strategy is stop then
20: break
21: if strategy is reset then
22: bj+1 ← POLICY(G, bj , 1,−c∗)
23: j ← j + 1

24: return b1:j

Beam Policies Let π : Vk → ∆(Vk)
be a policy induced by a scoring function
f : V → R. To sample b′ ∼ π(b) for a
beam b ∈ Vk, formAb, and compute scores
f(v) for all v ∈ Ab; let v1, . . . , vn be the
elements of Ab ordered such that f(v1) ≥
. . . ≥ f(vn); if v1 ∈ T , b′ = {v1}; if
v1 6∈ T , let b′ pick the k top-most elements
from Ab \ T . At b ∈ Vk, if there are many
orderings that sort the scores of the ele-
ments of Ab, we can choose a single one
deterministically or sample one stochasti-
cally; if there is a single such ordering, the
policy π : Vk → ∆(Vk) is deterministic at
b.

For each x ∈ X , at train time, we have
access to the optimal path cost function
c∗ : V → R, which induces the ora-
cle policy π∗(·, c∗) : Vk → ∆(Vk). At
a beam b, a successor beam b′ ∈ Nb is
optimal if c∗(b′) = c∗(b), i.e., at least
one neighbor with the smallest possible
cost was included in b′. The oracle pol-
icy π∗(·, c∗) : Vk → ∆(Vk) can be seen as
using scoring function −c∗ : Vk → R to
transition in the beam search space Gk.

4 Meta-Algorithm

Our goal is to learn a policy π(·, θ) : Vk → ∆(Vk) induced by a scoring function s(·, θ) : V → R
that achieves small expected cumulative transition cost along the induced trajectories. Algorithm 2
presents our meta-algorithm in detail. Instantiating our meta-algorithm requires choosing both a
surrogate training loss function (Section 4.1) and a data collection strategy (Section 4.2). Table 1
shows how existing algorithms can be obtained as instances of our meta-algorithm with specific
choices of loss function, data collection strategy, and beam size.

4.1 Surrogate Losses

Insight In the beam search space, a prediction ŷ ∈ Yx for x ∈ X is generated by running π(·, θ)
on Gk. This yields a beam trajectory b1:h, where b1 = b(0) and bh ∈ Tk. We have

c(θ) = E(x,y)∼DEŷ∼π(·,θ)c(ŷ) = E(x,y)∼DEb1:h∼π(·,θ)c
∗(bh). (2)

The term c∗(bh) can be written in a telescoping manner as

c∗(bh) = c∗(b1) +

h−1∑
i=1

c(bi, bi+1). (3)

As c∗(b1) depends on an example (x, y) ∈ X × Y , but not on the parameters θ ∈ Θ, the set of
minimizers of c : Θ→ R is the same as the set of minimizers of

c′(θ) = E(x,y)∼DEb1:h∼π(·,θ)

(
h−1∑
i=1

c(bi, bi+1)

)
. (4)

It is not easy to minimize the cost function in Equation (4) as, for example, c(b, ·) : Vk → R is
combinatorial. To address this issue, we observe the following by using linearity of expectation and
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the law of iterated expectations to decouple the term in the sum over the trajectory:

Eb1:h∼π(·,θ)

(
h−1∑
i=1

c(bi, bi+1)

)
= Eb1:h∼π(·,θ)

(
h−1∑
i=1

Eb′∼π(bi,θ)c(bi, b
′)

)
, (5)

We now replace Eb′∼π(b,·)c(b, b
′) : Θ → R by a surrogate loss function `(·, b) : Θ → R that is

differentiable with respect to the parameters θ ∈ Θ, and where `(θ, b) is a surrogate loss for the
expected cost increase incurred by following policy π(·, θ) at beam b for one step.

Elements in Ab should be scored in a way that allows the best elements to be kept in the beam.
Different surrogate losses arise from which elements we concern ourselves with, e.g., all the top k
elements in Ab or simply one of the best elements in Ab. Surrogate losses are then large when the
scores lead to discarding desired elements in Ab, and small when the scores lead to comfortably
keeping the desired elements in Ab.

Surrogate Loss Functions The following additional notation allows us to define losses precisely.
Let Ab = {v1, . . . , vn} be an arbitrary ordering of the neighbors of the elements in b. Let c =
c1, . . . , cn be the corresponding costs, where ci = c∗(vi) for all i ∈ [n], and s = s1, . . . , sn be the
corresponding scores, where si = s(vi, θ) for all i ∈ [n]. Let σ∗ : [n]→ [n] be a permutation such
that cσ∗(1) ≤ . . . ≤ cσ∗(n), i.e., vσ∗(1), . . . , vσ∗(n) are ordered in increasing order of cost. Note that
c∗(b) = cσ∗(1). Similarly, let σ̂ : [n] → [n] be a permutation such that sσ̂(1) ≥ . . . ≥ sσ̂(n), i.e.,
vσ̂(1), . . . , vσ̂(n) are ordered in decreasing order of score. We assume unique σ∗ : [n] → [n] and
σ̂ : [n] → [n] for simplifying the presentation of the loss functions (which can be guaranteed via
the tie-breaking total order on V ). In this case, at b ∈ Vk, the successor beam b′ ∈ Nb is uniquely
determined by the scores of the elements of Ab.

For each (x, y) ∈ X × Y , the corresponding cost function c∗ : V → R is independent of the
parameters θ ∈ Θ. We define a loss function `(·, b) : Θ → R at a beam b ∈ Vk in terms of the
oracle costs of the elements of Ab. We now introduce some well-motivated surrogate loss functions.
Perceptron and large-margin inspired losses have been used in early update [6], LaSO [7], and
BSO [11]. We also introduce two log losses.

perceptron (first) Penalizes the lowest cost element in Ab not being put at the top of the beam.
When applied on the first cost increase, this is equivalent to an “early update” [6].

`(s, c) = max
(
0, sσ̂(1) − sσ∗(1)

)
. (6)

perceptron (last) Penalizes the lowest cost element in Ab falling out of the beam.

`(s, c) = max
(
0, sσ̂(k) − sσ∗(1)

)
. (7)

margin (last) Prefers the lowest cost element to be scored higher than the last element in the beam
by a margin. This yields updates that are similar but not identical to the approximate large-margin
variant of LaSO [7].

`(s, c) = max
(
0, 1 + sσ̂(k) − sσ∗(1)

)
(8)

cost-sensitive margin (last) Weights the margin loss by the cost difference between the lowest
cost element and the last element in the beam. When applied on a LaSO-style cost increase, this is
equivalent to the BSO update of [11].

`(s, c) = (cσ̂(k) − cσ∗(1)) max
(
0, 1 + sσ̂(k) − sσ∗(1)

)
. (9)

upper bound Convex upper bound to the expected beam transition cost, Eb′∼π(b,·)c(b, b
′) : Θ→ R,

where b′ is induced by the scores s ∈ Rn.

`(s, c) = max (0, δk+1, . . . , δn) (10)

where δj = (cσ∗(j) − cσ∗(1))(sσ∗(j) − sσ∗(1) + 1) for j ∈ {k + 1, . . . , n}. Intuitively, this
loss imposes a cost-weighted margin between the best neighbor vσ∗(1) ∈ Ab and the neighbors
vσ∗(k+1), . . . , vσ∗(n) ∈ Ab that ought not to be included in the best successor beam b′. We prove in
Appendix B that this loss is a convex upper bound for the expected beam transition cost.
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log loss (beam) Normalizes only over the top k neighbors of a beam according to the scores s.

`(s, c) = −sσ∗(1) + log

(∑
i∈I

exp(si)

)
, (11)

where I = {σ∗(1), σ̂(1), . . . , σ̂(k)}. The normalization is only over the correct element vσ∗(1) and
the elements included in the beam. The set of indices I ⊆ [n] encodes the fact that the score vector
s ∈ Rn may not place vσ∗(1) in the top k, and therefore it has to also be included in that case. This
loss is used in [9], albeit introduced differently.

log loss (neighbors) Normalizes over all elements in Ab.

`(s, c) = −sσ∗(1) + log

(
n∑
i=1

exp(si)

)
(12)

Discussion The losses here presented directly capture the purpose of using a beam for prediction—
ensuring that the best hypothesis stays in the beam, i.e., that, at b ∈ Vk, vσ∗(1) ∈ Ab is scored
sufficiently high to be included in the successor beam b′ ∈ Nb. If full cost information is not
accessible, i.e., if are not able to evaluate c∗ : V → R for arbitrary elements in V , it is still possible
to use a subset of these losses, provided that we are able to identify the lowest cost element among
the neighbors of a beam, i.e., for all b ∈ Vk, an element v ∈ Ab, such that c∗(v) = c∗(b).

While certain losses do not appear beam-aware (e.g., those in Equation (6) and Equation (12)), it
is important to keep in mind that all losses are collected by executing a policy on the beam search
space Gk. Given a beam b ∈ Vk, the score vector s ∈ Rn and cost vector c ∈ Rn are defined for the
elements of Ab. The losses incurred depend on the specific beams visited. Losses in Equation (6),
(10), and (12) are convex. The remaining losses are non-convex. For k = 1, we recover well-known
losses, e.g., loss in Equation (12) becomes a simple log loss over the neighbors of a single node,
which is precisely the loss used in typical log-likelihood maximization models; loss in Equation (7)
becomes a perceptron loss. In Appendix C we discuss convexity considerations for different types of
losses. In Appendix D, we present additional losses and expand on their connections to existing work.

4.2 Data Collection Strategy

Our meta-algorithm requires choosing a train time policy π : Vk → ∆(Vk) to traverse the beam
search space Gk to collect supervision. Sampling a trajectory to collect training supervision is done
by BEAMTRAJECTORY in Algorithm 2.

oracle Our simplest policy follows the oracle policy π∗ : Vk → ∆(Vk) induced by the optimal
completion cost function c∗ : V → R (as in Section 3). Using the terminology of Algorithm 1, we
can write π∗(b, c∗) = POLICY(G, b, k,−c∗). This policy transitions using the negated sorted costs
of the elements in Ab as scores.

The oracle policy does not address the distribution mismatch problem. At test time, the learned policy
will make mistakes and visit beams for which it has not collected supervision at train time, leading to
error compounding. Imitation learning tells us that it is necessary to collect supervision at train time
with the learned policy to avoid error compounding at test time [5].

We now present data collection strategies that use the learned policy. For brevity, we only cover the
case where the learned policy is always used (except when the transition leads to a cost-increase), and
leave the discussion of additional possibilities (e.g., probabilistic interpolation of learned and oracle
policies) to Appendix E.3. When an edge (b, b′) ∈ Ek incurring cost increase is traversed, different
strategies are possible:

stop Stop collecting the beam trajectory. The last beam in the trajectory is b, i.e., the beam on
which we arrive in the transition that led to a cost increase. This data collection strategy is used in
structured perceptron training with early update [6].

reset Reset the beam to contain only the best state as defined by the optimal completion cost
function: b′ = BEST(b, 1,−c∗). In the subsequent steps of the policy, the beam grows back to size k.
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Table 1: Existing and novel beam-aware algorithms as instances of our meta-algorithm. Our theoret-
ical guarantees require the existence of a deterministic no-regret online learning algorithm for the
resulting problem.

Algorithm Meta-algorithm choices
data collection surrogate loss k

log-likelihood oracle log loss (neighbors) 1
DAGGER [5] continue log loss (neighbors) 1
early update [6] stop perceptron (first) > 1
LaSO (perceptron) [7] reset perceptron (first) > 1
LaSO (large-margin) [7] reset margin (last) > 1
BSO [11] reset cost-sensitive margin (last) > 1
globally normalized [9] stop log loss (beam) > 1
Ours continue [any surrogate loss from 4.1] > 1

LaSO [7] uses this data collection strategy. Similarly to the oracle data collection strategy, rather than
committing to a specific b′ ∈ N∗b , we can sample b′ ∼ π∗(b, c∗) where π∗(b, c∗) is any distribution
over N∗b . The reset data collection strategy collects beam trajectories where the oracle policy π is
executed conditionally, i.e., when the roll-in policy π(·, θt) would lead to a cost increase.

continue We can ignore the cost increase and continue following policy πt. This is the strategy
taken by DAgger [5]. The continue data collection strategy has not been considered in the beam-aware
setting, and therefore it is a novel contribution of our work. Our stronger theoretical guarantees apply
to this case.

5 Theoretical Guarantees

We state regret guarantees for learning beam search policies using the continue, reset, or stop data
collection strategies. One of the main contributions of our work is framing the problem of learning
beam search policies in a way that allows us to obtain meaningful regret guarantees. Detailed proofs
are provided in Appendix E. We begin by analyzing the continue collection strategy. As we will see,
regret guarantees are stronger for continue than for stop or reset.

No-regret online learning algorithms have an important role in the proofs of our guarantees. Let
`1, . . . , `m be a sequence of loss functions with `t : Θ → R for all t ∈ [m]. Let θ1, . . . , θm be a
sequence of iterates with θt ∈ Θ for all t ∈ [m]. The loss function `t can be chosen according to an
arbitrary rule (e.g., adversarially). The online learning algorithm chooses the iterate θt. Both `t and
θt are chosen online, as functions of loss functions `1, . . . , `t−1 and iterates θ1, . . . , θt−1.
Definition 1. An online learning algorithm is no-regret if for any sequence of functions `1, . . . , `m
chosen according to the conditions above we have

1

m

m∑
t=1

`t(θt)−min
θ∈Θ

1

m

m∑
t=1

`t(θ) = γm, (13)

where γm goes to zero as m goes to infinity.

Many no-regret online learning algorithms, especially for convex loss functions, have been proposed
in the literature, e.g., [20, 21, 22]. Our proofs of the theoretical guarantees require the no-regret
online learning algorithm to be deterministic, i.e., θt to be a deterministic rule of previous observed
iterates θ1, . . . , θt−1 and loss functions `1, . . . , `t−1, for all t ∈ [m]. Online gradient descent [20] is
an example of such an algorithm.

In Theorem 1, we prove no-regret guarantees for the case where the no-regret online algorithm is
presented with explicit expectations for the loss incurred by a beam search policy. In Theorem 2,
we upper bound the expected cost incurred by a beam search policy as a function of its expected
loss. This result holds in cases where, at each beam, the surrogate loss is an upper bound on the
expected cost increase at that beam. In Theorem 3, we use Azuma-Hoeffding to prove no-regret
high probability bounds for the case where we only have access to empirical expectations of the loss
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incurred by a policy, rather than explicit expectations. In Theorem 4, we extend Theorem 3 for the
case where the data collection policy is different from the policy that we are evaluating. These results
allow us to give regret guarantees that depend on how frequently is the data collection policy different
from the policy that we are evaluating.

In this section we simply state the results of the theorems alongside some discussion. All proofs
are presented in detail in Appendix E. Our analysis closely follows that of DAgger [5], although
the results need to be interpreted in the beam search setting. Our regret guarantees for beam-aware
algorithms with different data collection strategies are novel.

5.1 No-Regret Guarantees with Explicit Expectations

The sequence of functions `1, . . . , `m can be chosen in a way that applying a no-regret online learning
algorithm to generate the sequence of policies θ1, . . . , θm leads to no-regret guarantees for the
performance of the mixture of θ1, . . . , θm. The adversary presents the no-regret online learning
algorithm with `t = `(·, θt) at time t ∈ [m]. The adversary is able to play `(·, θt) because it can
anticipate θt, as the adversary knows the deterministic rule used by the no-regret online learning
algorithm to pick iterates. Paraphrasing Theorem 1, on the distribution of trajectories induced by the
the uniform stochastic mixture of θ1, . . . , θm, the best policy in Θ for this distribution performs as
well (in the limit) as the uniform mixture of θ1, . . . , θm.

Theorem 1. Let `(θ, θ′) = E(x,y)∼DEb1:h∼π(·,θ′)

(∑h−1
i=1 `(θ, bi)

)
. If the sequence θ1, . . . , θm

is chosen by a deterministic no-regret online learning algorithm, we have 1
m

∑m
t=1 `(θt, θt) −

minθ∈Θ
1
m

∑m
t=1 `(θ, θt) = γm, where γm goes to zero when m goes to infinity.

Furthermore, if for all (x, y) ∈ X × Y the surrogate loss `(·, b) : Θ→ R is an upper bound on the
expected cost increase Eb′∼π(b,·)c(b, b

′) : Θ → R for all b ∈ Vk, we can transform the surrogate
loss no-regret guarantees into performance guarantees in terms of c : Y → R. Theorem 2 tells us
that if the best policy along the trajectories induced by the mixture of θ1, . . . , θm in Θ incurs small
surrogate loss, then the expected cost resulting from labeling examples (x, y) ∈ X ×Y sampled from
D with the uniform mixture of θ1, . . . , θm is also small. It is possible to transform the results about
the uniform mixture of θ1, . . . , θm on results about the best policy among θ1, . . . , θm, e.g., following
the arguments of [23], but for brevity we do not present them in this paper. Proofs of Theorem 1 and
Theorem 2 are in Appendix E.1

Theorem 2. Let all the conditions in Definition 1 be satisfied. Additionally, let c(θ) = c∗(b1) +

E(x,y)∼DEb1:h∼π(·,θ)

(∑h−1
i=1 c(bi, bi+1)

)
= E(x,y)∼DEb1:h∼π(·,θ)c

∗(bh). Let `(·, b) : Θ→ R be an

upper bound on Eb′∼π(b,·)c(b, b
′) : Θ→ R, for all b ∈ Vk. Then, 1

m

∑m
t=1 c(θt) ≤ E(x,y)∼Dc

∗(b1)+

minθ∈Θ
1
m

∑m
t=1 `(θ, θt) + γm, where γm goes to zero as m goes to infinity.

5.2 Finite Sample Analysis

Theorem 1 and Theorem 2 are for the case where the adversary presents explicit expectations, i.e., the
loss function at time t ∈ [m] is `t(·) = E(x,y)∼DEb1:h∼π(·,θt)

(∑h−1
i=1 `(·, bi)

)
. We most likely only

have access to a sample estimator ˆ̀(·, θt) : Θ→ R of the true expectation: we first sample an example
(xt, yt) ∼ D, sample a trajectory b1:h according to π(·, θt), and evaluate ˆ̀(·, θt) =

∑h−1
i=1 `(·, bi).

We prove high probability no-regret guarantees for this case. Theorem 3 tells us that the population
surrogate loss of the mixture of policies θ1, . . . , θm is, with high probability, not much larger than its
empirical surrogate loss. Combining this result with Theorem 1 and Theorem 2 allows us to give
finite sample high probability results for the performance of the mixture of policies θ1, . . . , θm. The
proof of Theorem 3 is found in Appendix E.2.

Theorem 3. Let ˆ̀(·, θ′) =
∑h−1
i=1 `(·, bi) which is generated by sampling (x, y) from D (which

induces the corresponding beam search space Gk and cost functions), and sampling a beam tra-
jectory using π(·, θ′). Let |

∑h−1
i=1 `(θ, bi)| ≤ u for a constant u ∈ R, for all (x, y) ∈ X × Y ,

beam trajectories b1:h, and θ ∈ Θ. Let the iterates be chosen by a no-regret online learn-
ing algorithm, based on the sequence of losses `t = ˆ̀(·, θt) : Θ → R, for t ∈ [m], then
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we have P
(

1
m

∑m
t=1 `(θt, θt) ≤

1
m

∑m
t=1

ˆ̀(θt, θt) + η(δ,m)
)
≥ 1 − δ, where δ ∈ (0, 1] and

η(δ,m) = u
√

2 log(1/δ)/m.

5.3 Finite Sample Analysis for Arbitrary Data Collection Policies

All the results stated so far are for the continue data collection strategy where, at time t ∈ [m], the
whole trajectory b1:h is collected using the current policy π(·, θt). Stop and reset data collection
strategies do not necessarily collect the full trajectory under π(·, θt). If the data collection policy
π′ : Vk → ∆(Vk) is other than the learned policy, the analysis can be adapted by accounting for the
difference in distribution of trajectories induced by the learned policy and the data collection policy.
The insight is that

∑h−1
i=1 `(θ, bi) only depends on b1:h−1, so if no cost increases occur in this portion

of the trajectory, we are effectively sampling the trajectory using π(·, θ) when using the stop and
reset data collection strategies.

Prior work presented only perceptron-style results for these settings [6, 7]—we are the first to present
regret guarantees. Our guarantee depends on the probability with which b1:h−1 is collected solely
with π(·, θ). We state the finite sample analysis result for the case where these probabilities are not
known explicitly, but we are able to estimate them. The proof of Theorem 4 is found in Appendix
E.3.
Theorem 4. Let πt : Vk → ∆(Vk) be the data collection policy for example t ∈ [m], which uses
either the stop or reset data collection strategies. Let α̂(θt) be the empirical estimate of the probability
of π(·, θt) incurring at least one cost increase up to time h− 1. Then,

P

(
1

m

m∑
t=1

`(θt, θt) ≤
1

m

m∑
t=1

ˆ̀(θt, πt) + u

(
1− 1

m

m∑
t=1

α̂(θt)

)
+ 2η(δ,m)

)
≥ 1− δ,

where δ ∈ (0, 1] and η(δ,m) = u
√

2 log(1/δ)/m.

If the probability of stopping or resetting goes to zero as m goes to infinity, then the term captures
the discrepancy between the distributions of induced by π(·, θt) and πt vanishes, and we recover a
guarantee similar to Theorem 3. If the probability of stopping or resetting does not go completely to
zero, it is still possible to provide regret guarantees for the performance of this algorithm but now
with a term that does not vanish with increasing m. These regret guarantees for the different data
collection strategies are novel.

6 Conclusion

We propose a framework for learning beam search policies using imitation learning. We provide
regret guarantees for both new and existing algorithms for learning beam search policies. One of the
main contributions is formulating learning beam search policies in the learning to search framework.
Policies for beam search are induced via a scoring function. The intuition is that the best neighbors in
a beam should be scored sufficiently high, allowing them to be kept in the beam when transitioning
using these scores. Based on this insight, we motivate different surrogate loss functions for learning
scoring functions. We recover existing algorithms in the literature through specific choices for the
loss function and data collection strategy. Our work is the first to provide a beam-aware algorithm
with no-regret guarantees.
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A Conversion to Tree-Structured Search Spaces

We define a search space as an arbitrary finite directed graph G = (V,E), where V is the set of nodes
and E ⊂ V × V is the set of directed edges. Every directed graph G = (V,E) has associated a
tree-structured directed graph Gp = (Vp, Ep) encoding all possible paths through G. An important
reason to do this transformation is that in practice policies often incorporate history features, so they
are functions of the whole path leading to a node in G, rather than just a single node in G. A policy
becomes a function of single nodes of Gp. If G is tree-structured, Gp is isomorphic to G, i.e., they
are the same search space.

The set of terminal nodes Tp contains all paths from the initial node v(0) ∈ V to terminal nodes
v ∈ T . For v ∈ Vp, we denote the length of the sequence encoding a path by |v|. The length of a
path v ∈ Vp is |v| − 1. We write vi for the i-th element of a path v ∈ Vp. For all v ∈ V , vi ∈ V for
all i ∈ [|v|] and v1 = v(0). The sets Np,v, Rp,v, Tp,v for v ∈ Vp are defined analogously to the sets
Nv, Rv, Tv for v ∈ V . For a path v ∈ Vp, v′ ∈ Np,v if v′1:|v| = v, |v| = |v′| − 1, and v′|v′| ∈ Nv′|v| ,
i.e., a path v′ ∈ Vp neighbors v ∈ Vp if it can be written as v followed by an additional node in Nv|v| .
For v ∈ Vp, v′ ∈ Rp,v if v is a prefix of v′ and v′ ∈ Tp,v if v is a prefix of v′ and v′|v′| ∈ T . As Gp is
tree-structured, we can define the depth dv of a path v ∈ Vp as its length, i.e., dv = |v| − 1. If path
v ∈ Vp, then prefix v1:i ∈ Vp, for all i ∈ [|v|], i.e., path prefixes are themselves paths.

Tree-structured search spaces are common in practice. They often occur in write-only search spaces,
where once an action is taken, its effects are irreversible. Typical search spaces for sequence tagging
and machine translation are tree-structured: given a sequence to tag or translate, at each step we
commit to a token and never get to change it. When the search space G is not naturally seen as being
tree-structured, the construction described makes it natural to work with an equivalent tree-structured
search space of paths Gp.

If G has cycles, Gp would be infinite. Infinite cycling in Gp can be prevented by, for example,
introducing a maximum path length or a maximum number of times that any given node v ∈ V can
be visited. In this paper, we also assumed that all nodes in Tp have distance h to the root. It is possible
to transform Gp into a new tree-structured graph G′p by padding shorter paths to length h. Let h be
the maximum distance of any terminal in Tp to the root. For each terminal node v ∈ Tp with distance
dv < h to the root, we extend the path to v by appending a linear chain of h− dv additional nodes.
Node v is no longer a terminal node in G′p, and all the nodes in G′p that resulted from extending the
path are identified with v.

B Convex Upper Bound Surrogate for Expected Beam Transition Cost

In this appendix, we design a convex upper bound surrogate loss `(·, b) : Θ→ R for the expected
beam transition cost Eb′∼π(b,·)c(b, b

′) : Θ → R. Let Ab = {v1, . . . , vn} be an arbitrary ordering
of the neighbors of b, with corresponding costs c1, . . . , cn, with ci = c∗(vi) for all i ∈ [n]. Let
s1, . . . , sn be the corresponding scores, with si = s(vi, θ) for all i ∈ [n]. Let σ∗ : [n] → [n] and
σ̂ : [n]→ [n] be the unique permutations such that cσ∗(1) ≤ . . . ≤ cσ∗(n) and sσ̂(1) ≥ . . . ≥ sσ̂(n),
respectively, with ties broken according to the total order on V . We have c∗(b) = cσ∗(1). Let
k ∈ N be the maximum beam capacity. Let b′ be the beam induced by the scores s1, . . . , sn, i.e.,
b′ = {vσ̂(1), . . . , vσ̂(k′)}, with k′ = min(k, n) and ties broken according to the total order.

Consider the upper bound loss function (repeated here from Equation (10))

`(s, c) = max (0, δk+1, . . . , δn) , (14)

where δj = (cσ∗(j) − cσ∗(1))(sσ∗(j) − sσ∗(1) + 1) for j ∈ {k + 1, . . . , n}.

This loss function is lower bounded by zero, so we only need to show that it upper bounds c(b, b′)
when there is a cost increase, i.e., when c(b, b′) > 0. A cost increase c(b, b′) > 0 implies that the
best element vσ∗(1) fell off the beam, meaning that b′ = {vσ̂(1), . . . , vσ̂(k)} 6= {vσ∗(1), . . . , vσ∗(k)},
and therefore b′ ∩ {vσ∗(k+1), . . . , vσ∗(n)} 6= ∅. Let vσ∗(j) ∈ b′ ∩ {vσ∗(k+1), . . . , vσ∗(n)}, then
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sσ∗(j) ≥ sσ∗(1) and c(b, b′) ≤ cσ∗(j) − cσ∗(1), with j ∈ {k + 1, . . . , n}. We have

max (0, δk+1, . . . , δn) ≥ δj
= (cσ∗(j) − cσ∗(1))(sσ∗(j) − sσ∗(1) + 1)

≥ cσ∗(j) − cσ∗(1)

≥ c(b, b′),
proving the upper bound property of the loss in Equation (14).

This loss is the maximum of a finite number of affine functions of the scores, and therefore convex
with respect to the score vector s ∈ Rn. The resulting optimization problem is convex with respect to
the parameters of the scoring function if, for example, the scoring function is linear with respect to
the parameters θ ∈ Θ, i.e., s(v, θ) = θTφ(v, x), where φ : V ×X → Rp is a fixed feature function
of the state. If Ab has no more than k elements, this surrogate loss is identically zero, i.e., for k ≥ n,
`(s, c) = 0, for all s ∈ Rn and c ∈ Rn. If k = 1, we recover a greedy decoding algorithm and the
loss in Equation (14) becomes a weighted hinge loss.

C Convexity Considerations for Surrogate Loss Functions

It is common in the literature to update the parameters only when a cost increase occurs [10, 8, 9].
We show that the resulting loss surrogate functions are, in general, non-convex in the scores.

The following loss is an upper bound on the beam transition loss c : Ek → R, but is non-convex in
the scores:

`(s, c) = (cσ̂(k) − cσ∗(1)) max(0, sσ̂(k) − sσ∗(1) + 1). (15)

The upper bound property for this loss is easy to verify: if s ∈ Rn at b ∈ Vk induces b′ ∈ Vk with
c(b, b′) > 0, then sσ̂(k) ≥ sσ∗(1) and cσ̂(k) > cσ∗(1), leading to

(cσ̂(k) − cσ∗(1)) max(0, sσ̂(k) − sσ∗(1) + 1) ≥ cσ̂(k) − cσ∗(1)

≥ c(b, b′),
as vσ̂(k) ∈ b′. This loss is used in [11]. The same reasoning holds when substituting k in Equation (15)
by any i ∈ [k].

We now show that two aspects commonly present in the beam-aware literature lead to non-convexity
of the surrogate losses. The first aspect is updating the parameters only when there is a cost increase.
This amounts to defining a new loss function `′ : Rn × Rn → R from ` : Rn × Rn → R of the form

`′(s, c) = `(s, c)1[c(b, b′) > 0],

where b′ is induced by s ∈ Rn. The second aspect that leads to non-convexity is indexing the
score vector s ∈ Rn or cost vector c ∈ Rn with a function of the parameters, e.g., permutation
σ̂ : [n] → [n] depends on the scores s ∈ Rn and therefore, on the parameters θ ∈ Θ. We show
non-convexity with respect to the scores through two simple counter examples.

For the first aspect, let k = 2 and n = 3, with v1, v2, v3 having costs c1 = 0, c2 = 1, c3 = 1.
Any beam that keeps v1 has no cost increase. Consider the scores s1 = 1, s2 = 10, s3 = 0
and s′1 = 1, s′2 = 0, s′3 = 10. Both s and s′ lead to no cost increase, as both score vectors
keep v1 in the beam. For `′ : Rn × Rn → R to be convex in the scores, we must have `′(αs +
(1 − α)s′, c) ≤ α`′(s, c) + (1 − α)`′(s′, c), for all α ∈ [0, 1]. As both s and s′ lead to no cost
increase, we have `′(s, c) = `′(s′, c) = 0, yielding the following necessary condition for convexity:
`(αs + (1 − α)s′, c) ≤ 0 for all α ∈ [0, 1]. For α = 0.5, we have s1 = 1, s2 = 5, s3 = 5, which
leads to a cost increase, and therefore to loss `′(s, c) > 0, implying that `′ : Rn × Rn → R is
non-convex in the scores.

For the second aspect, consider the loss in Equation (15). Ignore the multiplicative term involving the
costs and consider only the hinge part max(0, sσ̂(k) − sσ∗(k) + 1). Let k = 2 and n = 3. Consider
that the elements v1, v2, v3 are sorted in increasing order of cost; let s1 = 2, s2 = 1, s3 = 0, and
s′1 = 2, s′2 = 4, s′3 = 0. In both cases, the hinge part of loss in Equation (15) is zero, but if we take
a convex combination of the scores with α = 0.5, we get s1 = 2, s2 = 2.5, s3 = 0, for which the
surrogate loss is nonzero (assuming that the costs of v1, v2, v3 are unique).
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D Additional Loss Functions

We present additional loss functions that were omitted in Section 4.1 and discuss their connections to
previous work.

cost sensitive margin (beam) Prefers the lowest cost element to be scored higher than best runner-
up in the beam by a cost-weighted margin. With unbounded beam capacity, we recover the structured
max-margin loss of [24] for M3Ns.

`(s, c) = −sσ∗(1) + max
i∈{1,...,k}

(
cσ̂(i) + sσ̂(i)

)
(16)

softmax margin (beam) Log loss that can be understood as smoothing the max in cost sensitive
margin (beam). With unbounded beam capacity, we recover the softmax-margin loss of [25] for
CRFs.

`(s, c) = −sσ∗(1) + log

(
k∑
i=1

exp
(
cσ̂(i) + sσ̂(i)

))
(17)

weighted pairs (all) Reduces the problem of producing the correct ranking over the neighbors to
n(n− 1)/2 weighted binary classification problems. Hinge terms for pairs with the same cost cancel,
effectively expressing that we are indifferent to the relative order of the elements of the pair.

`(s, c) =

n∑
i=1

n∑
j=i+1

(
cσ∗(j) − cσ∗(i)

)
max

(
0, sσ∗(j) − sσ∗(1) + 1

)
(18)

weighted pairs (bipartite) Only weighted pairs between elements than ought to be included in the
beam and those that ought to excluded from the beam. A similar loss has been proposed for bipartite
ranking, where the goal is to order all positive examples before all negative examples

`(s, c) =

k∑
i=1

n∑
j=k+1

(
cσ∗(j) − cσ∗(i)

)
max

(
0, sσ∗(j) − sσ∗(1) + 1

)
(19)

weighted pairs (hybrid) Similar to weighted pairs bipartite but we also include the pairs for the
elements that ought to be included in the beam

`(s, c) =

k∑
i=1

n∑
j=i+1

(
cσ∗(j) − cσ∗(i)

)
max

(
0, sσ∗(j) − sσ∗(1) + 1

)
(20)

The weighted pairs (all) loss provides many different variants as exemplified by weighted pairs
(bipartite) and weighted pairs (hybrid). We believe that exploring the ranking literature can lead to
interesting insights on what losses to use for learning beam search policies in our framework.

E No-Regret Guarantees

This section presents analysis that leads to proofs of theorems 1, 2, 3, and 4. We analyze

c(θ) = E(x,y)∼DEŷ∼π(·,θ)cx,y(ŷ).

The prediction cost cx,y(ŷ) is generated by sampling a beam trajectory b1:h with policy π(·, θ). The
prediction ŷ is extracted from bh. We have

c(θ) = E(x,y)∼DEb1:h∼π(·,θ)

(
c∗(b1) +

h−1∑
i=1

c(bi, bi+1)

)
.

As b1 depends only on x ∈ X , c∗(b1) does not depend on the parameters θ and therefore can be
ignored for optimization purposes. We analyze instead the surrogate

`(θ, θ′) = E(x,y)∼DEb1:h∼π(·,θ′)

(
h−1∑
i=1

`(θ, bi)

)
, (21)
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where `(·, b) : Θ → R is a surrogate for Eb′∼π(b,·)c(b, b
′) : Θ → R. See Section 4.1 for extended

discussion on the motivation behind surrogate loss `(·, b). It is convenient to assume that the policy
π(·, θ′) : Vk → ∆(Vk) used to collect the beam trajectory b1:h can be different than the policy
π(·, θ) : Vk → ∆(Vk) used to evaluate the surrogate losses at the visited beams. The surrogate
loss function ` : Θ× Vk → R depends on the sampled example (x, y) ∈ X × Y , but we omit this
dependency for conciseness.

E.1 No-Regret Guarantees with Explicit Expectations

Here we present the proofs of Theorem 1 and Theorem 2. It is informative to consider the case
where we have access to both explicit expectations. In this case, the no-regret algorithm is run on the
sequence of losses `(θ1, θ1), . . . , `(θm, θm) yielding average regret

γm =
1

m

m∑
t=1

`(θt, θt)−min
θ∈Θ

1

m

m∑
t=1

`(θ, θt).

As the sequence θ1, . . . , θm is generated by a no-regret algorithm, the average regret goes to zero as
m goes to infinity. This result tells us that the uniform mixture obtained by sampling uniformly at
random one of θ1, . . . , θm and acting according to it for the full trajectory, is competitive with the
best policy in Θ along the same induced trajectories. Note that

1

T

T∑
t=1

`(θt, θt)−min
θ∈Θ

1

T

T∑
t=1

`(θ, θt) = Et∼U(1,T )`(θt, θt)−min
θ∈Θ

Et∼U(1,T )`(θ, θt),

where U(1, T ) denotes the uniform distribution over [T ]. Performance guarantees are obtained from
the rearrangement

1

m

m∑
t=1

`(θt, θt) = εm + γm,

where

εm = min
θ∈Θ

1

m

m∑
t=1

`(θ, θt),

γm =
1

m

m∑
t=1

`(θt, θt)−min
θ∈Θ

1

m

m∑
t=1

`(θ, θt).

Furthermore, if the surrogate loss `(·, b) : Θ→ R upper bounds the expected beam transition cost
Eb′∼π(b,·)c(b, b

′) : Θ→ R, i.e., `(θ, b) ≥ Eb′∼π(b,θ)c(b, b
′) for all b ∈ Vk and all θ ∈ Θ, we have

Eb1:h∼π(·,θ)

(
h−1∑
i=1

c(bi, bi+1)

)
≤ Eb1:h∼π(·,θ)

(
h−1∑
i=1

`(θ, bi)

)
,

and consequently,

1

m

m∑
t=1

c(θt) ≤
1

m

m∑
t=1

`(θt, θt) + E(x,y)c
∗(b1),

i.e, we are able to use the expected surrogate loss incurred by the uniform mixture of θ1, . . . , θm
to upper bound the expected labeling cost resulting from labeling examples (x, y) ∼ D with the
uniform mixture of θ1, . . . , θm.

As the sequence θ1, . . . , θm is chosen by a no-regret algorithm, γm goes to zero as m goes to infinity.
The term εm is harder to characterize as m goes to infinity. We are guaranteed that the uniform
mixture of θ1, . . . , θm and, as result the best policy in θ1, . . . , θm, is competitive with the best policy
in hindsight θ∗m ∈ arg minθ∈Θ 1/m

∑m
t=1 `(θ, θt). For the performance guarantees to be interesting,

it is necessary for εm to remain small as m goes to infinity, i.e., there must exist a policy in Θ that
performs well on the distribution of trajectories induced by the uniform mixture of θ1, . . . , θm. We
think that this remark is often not adequately discussed in the literature. Nonetheless, for expressive
policy classes, e.g., neural networks, it is reasonable to assume the existence of such a policy.
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E.2 Finite Sample Analysis

Next we provide a proof of Theorem 3. We typically do not have access to the explicit expectations
in Equation (21). What we do have access to is an estimator

ˆ̀(θ, θ′) =

h−1∑
i=1

`(θ, bi),

which is obtained by sampling an example (x, y) from the data generating distribution D, and
executing policy π(·, θ′) to collect a trajectory b1:h.

Our no-regret algorithm is then run on the sequence of sampled losses, yielding the sequence
θ1, . . . , θm and average regret

γ̂m =
1

m

m∑
t=1

ˆ̀(θt, θt)−min
θ∈Θ

1

m

m∑
t=1

ˆ̀(θ, θt).

We show that the true population loss of the uniform mixture of θ1, . . . , θm is, with high probability,
not much larger than the empirical loss observed on the sampled trajectories, i.e.,

P

(
1

m

m∑
t=1

`(θt, θt) ≤
1

m

m∑
t=1

ˆ̀(θt, θt) + η(δ,m)

)
≥ 1− δ, (22)

where δ ∈ (0, 1] is the probability of the statement, and η(δ,m) depends only on δ and m. Given this
result, we are able to give performance guarantees for the uniform mixture of θ1, . . . , θm as

P

(
1

m

m∑
t=1

`(θt, θt) ≤ ε̂m + γ̂m + η(δ,m)

)
≥ 1− δ. (23)

Proof. Define a function on beam trajectories. Assume that we have 0 ≤ `(θ, b1:h) ≤ u, with u ∈ R,
for all (x, y) ∈ X ×Y and for all beam trajectories b1:h through Gk, i.e., b1 = b(0), bh ∈ Tk, bi ∈ Vk
for all i ∈ [n], and bi+1 ∈ Nbi for i ∈ [h− 1]. As a result, 0 ≤ `(θ, θ′) ≤ u and 0 ≤ ˆ̀(θ, θ′) ≤ u,
for all θ, θ′ ∈ Θ and all (x, y) ∈ X × Y . In our case,

`(θ, b1:h) =

h−1∑
i=1

`(θ, bi). (24)

Construct the martingale sequence

zt =

t∑
j=1

(
`(θj , θj)− ˆ̀(θj , θj)

)
, (25)

for t ∈ [m]. It is simple to verify that the sequence z1, . . . , zm is a martingale, i.e., that we have
Ezt|z1,...,zt−1

zt = zt−1 for all t ∈ [m]. Furthermore, we have |zt − zt−1| ≤ u for all t ∈ [m], where
z0 = 0. The high probability result is obtained by applying the Azuma-Hoeffding inequality to the
martingale sequence zt, for t ∈ N, which yields

P

(
1

m

m∑
t=1

`(θt, θt) ≤
1

m

m∑
t=1

ˆ̀(θt, θt) + u

√
2 log(1/δ)

m

)
≥ 1− δ. (26)

Revisiting Equation (23), for fixed δ ∈ (0, 1], as m goes to infinity, we have that both γ̂m and η(δ,m)
go to zero, proving high probability no-regret guarantees for this setting.

E.3 Finite Sample Analysis for Arbitrary Data Collection Policies

Finally, in this section, we provide a proof of Theorem 4. All the results stated so far are for the
continue data collection strategy where, at time t ∈ [m], the whole trajectory b1:h is collected using
the current policy π(·, θt). Stop and reset data collection strategies do not necessarily collect the
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full trajectory under π(·, θt). If a transition (b, b′) ∼ π(·, θt) leads to a cost increase, then, the stop
data collection strategy stops collecting the trajectory at b′, and the reset data collection strategy, the
oracle policy π∗(·, c∗) is used to sample the transition at b instead.

In this section, we relate the expected loss of π(·, θ) on trajectories collected by a different policy π′
to the expected loss of π(·, θ) on its own trajectories. Consider the following auxiliary lemma:
Lemma 1. Let f : X → R be a function such that f(x) ∈ [a, a+ r], for a, r ∈ R and r ≥ 0 for all
x ∈ X , that can be either discrete or continuous. Let d, d′ be two probability distributions over X .
We have

|Ex∼df(x)− Ex∼d′f(x)| ≤ r/2||d− d′||1. (27)

Proof. We prove the result for the case where X is discrete, i.e., d and d′ are discrete probability
distributions. The result for discrete distributions is sufficient for our purposes. Let |X| = a, with
a ∈ N, then d, d′ ∈ Ra. We have

|Ex∼df(x)− Ex∼d′f(x)| =

∣∣∣∣∣∑
x∈X

d(x)f(x)−
∑
x∈X

d′(x)f(x)

∣∣∣∣∣
=

∣∣∣∣∣∑
x∈X

d(x)(f(x)− c)−
∑
x∈X

d′(x)(f(x)− c)

∣∣∣∣∣
=
∣∣(d− d′)T (f − c)

∣∣
≤ ||f − c||∞||d− d′||1,

where c is an arbitrary constant in R and f ∈ Ra is the vector representation of the function. In
the second equality, we use the fact that

∑
x∈X d(x) =

∑
x∈X d

′(x) = 1. In the third equality, we
express the expectations as inner products and slightly abuse notation by denoting the coordinate-wise
subtraction of c from f as f −c. In the final inequality, we use the Cauchy–Schwarz inequality for the
conjugate pair of norms || · ||1 and || · ||∞. The desired result is obtained by choosing c = a+r/2.

Often, π′ = (1−β)π(·, θ) +βπ∗(·, c∗) for β ∈ [0, 1], i.e., a probabilistic interpolation of the learned
policy and the oracle policy. We do a more general analysis that will be useful to provide regret
guarantees for the stop and reset data collection strategies. It is not necessarily the case that, for a
roll-in policy π′ : Vk → ∆(Vk), there exists θ′ ∈ Θ such that π′ = π(·, θ′). We modify the notation
in Equation (21) to capture this fact and write

`(θ, π′) = E(x,y)∼DEb1:h∼π′
(
h−1∑
i=1

`(θ, bi)

)
. (28)

The roll-in policies π′ : Vk → ∆(Vk) that we consider induce distributions over beam trajectories
in Gk that have a component where the beam trajectory up to h − 1 can be thought as coming
from π(·, θ). For a policy π′ that is somehow derived from the learned policy π(·, θ), we write
dπ′ = α(θ, x, y)dθ + (1− α(θ, x, y))q, where dπ′ is the distribution over trajectories induced by the
roll-in policy π′, dθ is the distribution over trajectories induced by the learned policy π(·, θ), q is
the residual distribution over trajectories of the component that is not captured by dθ, and α(θ, x, y)
is the probability that the trajectory up to bh−1 is drawn from π(·, θ). For example, for the policy
π′ = (1− β)π(·, θ) + βπ∗(·, c∗), we have α(θ, x, y) = (1− β)h−2, where α(θ, x, y) is independent
of θ in this case. In this example, π′, at each step of the trajectory of length h, flips a biased coin and
acts according to π(·, θ) with probability 1− β and according to π(·, c∗) with probability β .

Relating expectations We use Lemma 1 to relate Eb1:h∼π(·,θ)

(∑h−1
i=1 `(θ, bi)

)
and

Eb1:h∼π′
(∑h−1

i=1 `(θ, bi)
)

. We have

||dπ′ − dθ||1 = ||α(θ, x, y)dθ + (1− α(θ, x, y))q − dθ||1
= (1− α(θ, x, y))||q − dθ||1
≤ 2(1− α(θ, x, y)),
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where we used that ||d1 − d2||1 ≤ 2 for any two distributions d1, d2. Revisiting Equation (27), we
have

Eb1:h∼π(·,θ)

(
h−1∑
i=1

`(θ, bi)

)
≤ Eb1:h∼π′

(
h−1∑
i=1

`(θ, bi)

)
+ u(1− α(θ, x, y)),

and as a result

`(θ, θ) = E(x,y)∼DEb1:h∼π(·,θ)

(
h−1∑
i=1

`(θ, bi)

)
(29)

≤ E(x,y)∼D

(
Eb1:h∼π′

(
h−1∑
i=1

`(θ, bi)

)
+ u(1− α(θ, x, y)

)
(30)

= `(θ, π′) + u(1− α(θ)), (31)

where we defined α(θ) = E(x,y)∼Dα(θ, x, y), i.e., the probability of sampling the beam trajectory up
to time h− 1 solely with π(·, θ), or equivalently, the probability of π(·, θ) incurring no cost increases
up to time h− 1.

Finite sample analysis with known schedules We now consider the finite sample analysis for the
setting considered in this section. By arguments similar to those in Appendix E.2, we have

P

(
1

m

m∑
t=1

`(θt, πt) ≤
1

m

m∑
t=1

ˆ̀(θt, πt) + u

√
2 log(1/δ)

m

)
≥ 1− δ,

which, combining with Equation (31) implies

P

(
1

m

m∑
t=1

`(θt, θt) ≤
1

m

m∑
t=1

ˆ̀(θt, πt) + u

√
2 log(1/δ)

m
+ u

(
1− 1

m

m∑
t=1

α(θt)

))
≥ 1− δ,

(32)

Equation (32) can be simplified for roll-in policies πt = (1 − βt)π(·, θ) + βtπ
∗(·, c∗) with fixed

interpolation schedules βt, for t ∈ N. For example, for β1 = 1 for t ∈ [t0], for some t0 ∈ N, and
βt = 0 for t > t0, we have

P

(
1

m

m∑
t=1

`(θt, θt) ≤
1

m

m∑
t=1

ˆ̀(θt, πt) + u

√
2 log(1/δ)

m
+ umin

(
1,
t0
m

))
≥ 1− δ. (33)

Guarantees for the stop and reset data collection strategies The previous analysis allows us to
provide regret guarantees for the reset data collection strategy. Steps in the trajectory are sampled
using the learned policy π(·, θ) when they do not result in cost increase, and sampled from π∗(·, c∗)
otherwise, i.e., while sampling a trajectory b1, . . . , bi with π(·, θ), if a cost increase would occur on
the transition from bi to b′ ∼ π(bi, θ), then rather than transitioning to bi+1 = b′, we transition to
bi+1 ∼ π∗(bi, c

∗), and continue from bi+1 until a terminal beam bh ∈ Tk is reached. In this case,
α(θ, x, y) is interpreted as the probability that the trajectory b1:h−1 on the beam search Gk induced
by x is sampled using only π(·, θ), i.e., no cost increases occur up to time h− 1.

We can use this fact along with the previous results to obtain a regret statement for both the explicit
expectation and the finite sample cases. The main difficulty is that α(θ, x, y) and α(θ) are not known.
Again, the only way that we have access to them is through a sample estimate α̂(θ). We construct a
martingale for this case involving both the randomness of loss function and the reset probability.

We can use this information along with Azuma-Hoeffding inequality to give a joint concentration
result. The martingale sequence that we now construct is

zt =

t∑
j=1

(
`(θj , θj)− ˆ̀(θj , θj) + u (1− α(θj))− u (1− α̂(θj))

)
, (34)

which now includes the random variables of the estimator of the probability that we will reset at least
once. Note that we define α̂(θ) also depends on x, y, b1:h, which we omit for simplicity. Similarly to
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the martingale arguments in Equation (25), Equation (34) defines a martingale. In this case, we have
|zt − zt−1| ≤ 2u for all t ∈ [m], and z0 = 0. Applying Azuma-Hoeffding yields a result similar to
Equation (32), i.e.,

P

(
1

m

m∑
t=1

`(θt, θt) ≤
1

m

m∑
t=1

ˆ̀(θt, πt) + 2u

√
2 log(1/δ)

m
+ u

(
1− 1

m

m∑
t=1

α̂(θt)

))
≥ 1− δ,

(35)

Even if 1/m
∑m
t=1 α̂(θt) remains at some nonzero quantity as m goes to infinity, we can still give a

guarantee with respect to this reset probability. Namely, if we observe that we are most of the time
sampling the full trajectory with the learned policy, then we guarantee that we are not too far away
from the true loss of the mixture policy.
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