10-607 Computational Foundations for Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Dynamic Programming
=k

Data Structures

Matt Gormley
Lecture 8
Nov. 14, 2018

Reminders

* Homework B: Complexity & Recursion
— Out: Thu, Nov. 8
— Due: Tue, Nov. 20 at 11:59pm

* Quiz 1: Logic & Proofs; Computation

— Mon, Nov. 19, in-class
— Covers Lectures1-6

RECURSION

Example: Greedy Search

Goal:

* Search space consists
of nodes and weighted

End edges
States e Goalistofind the
lowest (total) weight
path from root to a
leaf

Greedy Search:

. At each node, selects
the edge with lowest
(immediate) weight

. Heuristic method of
search (i.e. does not
necessarily find the
best path)

Example: Greedy Search

Goal:

* Search space consists
of nodes and weighted

End edges
States e Goalistofind the
lowest (total) weight
path from root to a
leaf

Greedy Search:

. At each node, selects
the edge with lowest
(immediate) weight

. Heuristic method of
search (i.e. does not
necessarily find the
best path)

Example: Greedy Search

Goal:

* Search space consists
of nodes and weighted
edges

* Goalisto find the
lowest (total) weight
path from root to a
leaf

Greedy Search:

. At each node, selects
the edge with lowest
(immediate) weight

. Heuristic method of
search (i.e. does not
necessarily find the
best path)

Example: Decision Trees

Serds jru: ~ll fossilyb. fress
3 gterdy seadn , Wzl iag\m ‘n
== ‘94-1— 7@4-'\ s\o(H J 4

jﬂ.dtl-cs &l' g»w-”,os“" ’llNJ.
Cansivlet with le ‘\wb
duke

‘ ;A,Ju L‘L\Ib L'\“h ’ ‘\5 :J:Dg

ﬁOc,cam_'s ’Ra.w: Fmsu.s 7ZLL bl)rf[oy,'

lopotlasic Hob enphas He defe.
C.ﬁ;o, swallest i‘o,e 3 Lest)

Proof by Induction

Chalkboard:

— Weak Induction
* basis case
* inductive hypothesis
* inductive step

— Example: sum of powers of two

— Why does proof by induction work?
* propositional logic interpretation

Proof by Induction

In-Class Exercise

Prove the following
statement by
induction.

Zz n(n+1)/2

1=1

Recursion

Chalkboard:

— Example: Factorial (iterative implementation)
— Example: Factorial (recursive implementation)

— Strong Induction
* multiple basis cases
* complete assumption

— Proof of recursive factorial correctness

Recursion

Chalkboard:

— Definition: Sorted Array

— Example: Insertion Sort (iterative
implementation)

— Example: Insertion Sort (recursive
implementation)

— Big Idea: Divide and Conquer
— Example: Merge Sort

Insertion Sort

def swap(a, i, j):

def

def

’?’Swap the values in a[i] and a[j].’"’

assert 0 <= i and i < len(a)
assert 0 <= j and j < len(a)
tmp = af[i]

al[i] = a[j]

al[j] = tmp

insertion_sort(a):

’??Sort an array in place via insertion sort.’’

for i in range(o, len(a)):
for j in range(i, o, —1):
if a[j—1] < a[j]:
break
Swap(a’] ’ j_1)
return

recursive _insertion_sort(a, n=None):

’’’Sort an array in place via insertion sort up to

n’th element.’’’

if n == None:
n = len(a)

if n == 1:
return

recursive _insertion_sort(a, n—1)
for j in range(n—1, o, —1):
if a[j—1] < a[jl:
break
Swap(ar j) j_1)
return

its

13

Divide and Conquer

Merge Sort

def merge sort(a):
’??Sort the array a in place via merge sort.’’’
if len(a) <= 1:
return

Split into two halves
mid = int(len(a)/2)
left = a[:mid]

right = a[mid:]

Sort each half
merge _sort(left)
merge_sort(right)

Merge sorted halves back into original
i =0
j =0
for k in range(o, len(a)):
if i >= len(left):
alk] = right[j]
jo+= 1
elif j >= len(right):
alk] = left[i]

i += 1
elif left[i] < right[j]:
alk] = left[i]
i += 1
else:
alk] = right[]]
] +=

return

DYNAMIC PROGRAMMING

Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the
tunnel states / travel times with an assumption of dependence between
adjacent tunnel states.

p(0,5,5,0,C,2m,3m, 18m,9m,27m) = (.8 *.08 * .2%.7% .03 %...)

3 O S|C OlS|C
Q- 0O |.9.08.02 0|.9.08.02
Bl S .2.7].4 S|.2.714
2_1 Cl9/ 0] C .9/0].4
o G
H .58
£ E| B
OO
O .1[.2].3

Forward-Backward Algorithm: Finds Marginals

Example Task:

Constituency Parsing

S

* Variables: ~
— Constituent type (or @) op
for each of O(n?) /\np
substrings 7

n \' p d n
I

* Interactions: | | | |

time flies like an arrow

— Constituents must
describe a binary tree

— Tag bigrams
— Nonterminal triples
(parent, left-child,

time flies like an arrow

Dynamic Programming

Key Idea: Divide a large problem into
reusable subproblems and solve each
subproblem, storing the result of each for
later reuse

“Let’s take a word that has an absolutely precise meaning, namely dynamic, in the
classical physical sense. It also has a very interesting property as an adjective, and
that is it’s impossible to use the word, dynamic, in a pejorative sense. Try thinking of
some combination that will possibly give it a pejorative meaning. [. . .] Thus, |
thought dynamic programming was a good name. It was something not even a
Congressman could object to. So | used it as an umbrella for my activities.”

Richard Bellman, Autobiography (1984)

Dynamic Programming
Chalkboard:

— Big Idea: Dynamic Programming
— Example: Fibonacci with and without dynamic
programming
* Recursive Fibonacci’s computational complexity

* Dynamic programming Fibonacci’s computational
complexity

— Types of Dynamic Programming

* Tabulation (bottom-up)
* Memoization (top-down)

— Example: Matrix Product Parenthesization

DATA STRUCTURES FOR ML

Abstractions vs. Data Structures

Abstractions

List

Set

Map

Queue (FIFO)
Stack (LIFO)
Graph

Priority Queue

Data Structures

Array (fixed size)
Array (variable size)
Linked List
Doubly-Linked List
Multidimensional Array
Tensor

Hash Map

Binary Search Tree
Balanced Tree

Trie

Stack

Heap

Graph

Bipartite Graph
Sparse Vector
Sparse Matrix

Data Structures for ML

* Data:
— Dense feature vector (array)
— Sparse feature vector (sparse vector)
— Design matrix (multidimensional array)

* Models:
— Decision Trees (tree)
— Bayesian Network (directed acyclic graph)
— Factor Graph (bipartite graph)
* Algorithms:
— Greedy Search (weighted graph)

— A* Search (priority queue/heap)
— Forward-backward for HMM (trellis)

Trees

Chalkboard:

— Binary Tree
* Representation
* Depth First Search

— pre-order traversal
— in-order traversal

— post-order traversal
* Breadth First Search

— Decision Tree
* Representation

Tree Traversals

Depth First Search

Pre-order In-order Post-order

Figures from Wikipedia

Sparse Vectors

Chalkboard:

— Sparse Vector
* Representation
* Sparse Dot Product
* Addition of dense vector and sparse vector

Data Structures & Algorithms

Chalkboard:
— Weighted Directed Acyclic Graph

* Representation
* Greedy Search
* Dijkstra’s Algorithm
* A¥* Search
— Binary Search Tree

* Representation

* Average vs. Worst Case Time Complexity
* Search

* |Insertion

* Deletion

Efficiency

* CPython vs. PyPy
* Example: Python’s Tuple
— https://stackoverflow.com/questions/14135542/h
ow-is-tuple-implemented-in-cpython

— https://bitbucket.org/python_mirrors/cpython/sr
c/d81d4b3059e4e5dcab7515315c2adabdfe1c52a4/
Objects/tupleobject.c?at=default&fileviewer=file
-view-default

