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Reminders

* Homework A:
— QOut: Tue, Oct. 29
— Due: Wed, Nov. 7 at 11:59pm







THE PERCEPTRON ALGORITHM



Perceptron Algorithm: Example

Example: (-1,2) - X

(1,0) + \\‘\‘j;‘
1L+ X |
(—1,0) —
(—-1,-2)— X
(1,-1) +

Perceptron Algorithm: (without the bias term)
= Set t=1, start with all-zeroes weight vector w;.
= Given example x, predict positive iff w, - x > 0.
= Onamistake, update as follows: ws =w; +(1,1) = (2,-1)
e Mistake on positive, update wy,; « w; + x wy =wz — (=1,-2) = (3,1)
e Mistake on negative, update wy,; <« w; — x

wy = (0,0)
wy, =wy — (=1,2) = (1,-2)

Slide adapted from Nina Balcan



Background: Hyperplanes

Hyperplane (Definition 1):
H={x:w'x=0b}
Hyperplane (Definition 2):
H={x:0"x=0
and Lo = 1}
0 = [b,wl,...,'wM]T

Half-spaces:

Ht ={x:0"x>0andzy = 1}
H z{x:HTx<Oand$0=1}



(Online) Perceptron Algorithm

Data: Inputs are continuous vectors of length M. Outputs
are discrete. (xD), yM), (x3@), y@), ...
wherex ¢ R® andy € {+1, -1}

Prediction: Output determined by hyperplane.
§ = ho(x) = sign(6" x) sign(a) = {1’ ifa>0

—1, otherwise
Assume @ = [b, w1, ..., wy]? andzg =1
Learning: Iterative procedure:
* initialize parameters to vector of all zeroes
* while not converged
* receive next example (x(), y(®)
 predicty’ = h(x®)
* if positive mistake: add x() to parameters
* if negative mistake: subtract x( from parameters



(Online) Perceptron Algorithm

Data: Inputs are continuous vectors of length M. Outputs
are discrete. (xD), yM), (x3@), y@), ...
wherex ¢ R® andy € {+1, -1}

Prediction: Output determine"l'mp'lemen'tation Trick: same
J = he(x) = Sign(ng) beha\{iqr as our “add on
Assume 8 = [b, w - positive mistake and
Rt VAR R} subtract on negative
Learning: mistake” version, because
Algorithm 1 Perceptron Learning Alg y(') takes care of the sign
procedure PERCEPTRON(D = {(

if § # y(®) then > If mistake

1:

P 00 > Initialize parameters
3: fori € {1,2,...} do > For each example
4 i + sign(67x®) > Predict
-

6 0 — 0 + yIx® > Update parameters
7

return 6




(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch’ setting in contrast to the “online”
setting that we’ve discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)

1: procedure PERCEPTRON(D = {(x1), y), ... (xV) 4V
2 60 > Initialize parameters
3 while not converged do

4 fori e {1,2,..., N} do > For each example
5: § « sign(67 x() > Predict
6

7

8

if § # y(*) then > If mistake
0 «— 6+ yIx) > Update parameters

return 6




(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch’ setting in contrast to the “online”

setting that we’ve discussed so far.

Discussion:
The Batch Perceptron Algorithm can be derived in two ways.
1. By extending the online Perceptron algorithm to the batch
setting (as mentioned above)
2. By applying Stochastic Gradient Descent (SGD) to minimize a

so-called Hinge Loss on a linear separator



Extensions of Perceptron

Voted Perceptron
— generalizes better than (standard) perceptron

— memory intensive (keeps around every weight vector seen during
training, so each one can vote)

Averaged Perceptron
— empirically similar performance to voted perceptron

— can be implemented in a memory efficient way
(running averages are efficient)

Kernel Perceptron
— Choose a kernel K(x’, x)
— Apply the kernel trick to Perceptron
— Resulting algorithm is still very simple
Structured Perceptron

— Basicidea can also be applied when y ranges over an exponentially
large set

— Mistake bound does not depend on the size of that set



ANALYSIS OF PERCEPTRON



Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w-x = 0 (or the negative if on wrong side)

Margin of positive example x;

Margin of negative example x,

Slide from Nina Balcan



Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w-x = 0 (or the negative if on wrong side)

Definition: The margin y,, of a set of examples S wrt a linear
separator w is the smallest margin over points x € S.

Slide from Nina Balcan



Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w - x = 0 (or the negative if on wrong side)

Definition: The margin y,, of a set of examples S wrt a linear
separator w is the smallest margin over points x € S.

Definition: The margin y of a set of examples S is the maximum y,,
over all linear separators w.

Slide from Nina Balcan



Linear Separability

Def: For a binary classification problem, a set of examples S
is linearly separable if there exists a linear decision boundary
that can separate the points

________________________________________________________________________



Analysis: Perceptron

Perceptron Mistake Bound

Guarantee: If data has margin v and all points inside a ball of
radius R, then Perceptron makes < (R/v)? mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

Slide adapted from Nina Balcan



Analysis: Perceptron

Perceptron Mistake Bound

Guarantee: If data has margin v and all points inside a ball of

radius R, then Perceptron makes < (R/+)? mistakes.
(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

- —
- S

e T
XN R
Def: We say that the (batch) perceptron algorithm has
converged if it stops making mistakes on the training data

(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the
perceptron algorithm cycles repeatedly through the data,
it will converge in a finite # of steps.

_ e =



Analysis: Perceptron

Perceptron Mistake Bound

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(x(9), y()I N,

Suppose:
1. Finite size inputs: ||2V|| < R
2. Linearly separable data: 30 s.t. ||0*|| = 1 and

Yy (0" - x D) > v, Vi
Then: The number of mistakes made by the Perceptron

o

algorithm on this dataset is N

k< (R/v)°




Analysis: Perceptron




Analysis: Perceptron

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(x(¥), y() IV

Suppose: ;
1. Finitesizeinputs: ||| < R !
2. Linearly separable data: 30 s.t. ||0*||] = 1and |

\

Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k< (R/v)°

Algorithm 1 Perceptron Learning Algorithm (Online)

1: procedure PERCEPTRON(D = {(x1),y(M), (x() 42, ...}

2 0—0,k=1 > Initialize parameters
3 fori € {1,2,...} do > For each example
4: if y(D (0% . x()) < 0 then > If mistake
5 g+ o gk) 4 (D)% (@) > Update parameters
6 E+—k+1
7 return 6




Analysis: Perceptron

Chalkboard:

— Proof of Perceptron Mistake Bound



Analysis: Perceptron




Analysis: Perceptron




Analysis: Perceptron




Analysis: Perceptron

What if the data is not linearly separable?

1. Perceptron will not converge in this case (it can’t!)

2. However, Freund & Schapire (1999) show that by projecting the
points (hypothetically) into a higher dimensional space, we can
achieve a similar bound on the number of mistakes made on

one pass through the sequence of examples

Theorem?2. Let{((Xi, y1), ..., Xm, Ym)) be asequence of labeled examples with ||X;|| < R.
Let u be any vector with ||u|| = 1 and let y > 0. Define the deviation of each example as

d; = max{0, y — y;(u-x;)},

and define D = />, dl.z. Then the number of mistakes of the online perceptron algorithm
on this sequence is bounded by

20y




Summary: Perceptron

Perceptron is a linear classifier

Simple learning algorithm: when a mistake is
made, add [ subtract the features

Perceptron will converge if the data are linearly
separable, it will not converge if the data are
linearly inseparable

For linearly separable and inseparable data, we
can bound the number of mistakes (geometric
argument)

Extensions support nonlinear separators and
structured prediction



