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Reminders

• Homework A: 
– Out: Tue, Oct. 29
– Due: Wed, Nov. 7 at 11:59pm
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Q&A
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THE PERCEPTRON ALGORITHM
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Perceptron Algorithm: Example
Example: −1,2 −

-
+
+

𝑤& = (0,0)

𝑤+ = 𝑤& − −1,2 = (1,−2)

𝑤, = 𝑤+ + 1,1 = (2,−1)

𝑤. = 𝑤, − −1,−2 = (3,1)

+
-
-

Perceptron Algorithm: (without the bias term)
§ Set t=1, start with all-zeroes weight vector 𝑤&.
§ Given example 𝑥, predict positive iff𝑤1 ⋅ 𝑥 ≥ 0.
§ On a mistake, update as follows: 

• Mistake on positive, update 𝑤15& ← 𝑤1 + 𝑥
• Mistake on negative, update 𝑤15& ← 𝑤1 − 𝑥

1,0 +
1,1 +

−1,0 −
−1,−2 −
1,−1 +

X
a
X

a
X

a

Slide adapted from Nina Balcan



Background: Hyperplanes

H = {x : wT x = b}
Hyperplane (Definition 1): 

w

Hyperplane (Definition 2): 

Half-spaces: 

Notation Trick: fold the 
bias b and the weights w
into a single vector θ by 

prepending a constant to 
x and increasing 

dimensionality by one!



(Online) Perceptron Algorithm
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Learning: Iterative procedure:
• initialize parameters to vector of all zeroes
• while not converged

• receive next example (x(i), y(i))
• predict y’ = h(x(i))
• if positive mistake: add x(i) to parameters
• if negative mistake: subtract x(i) from parameters

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.

Prediction: Output determined by hyperplane.

ŷ = h�(x) = sign(�T x) sign(a) =

�
1, if a � 0

�1, otherwise



(Online) Perceptron Algorithm
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Learning:

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.

Prediction: Output determined by hyperplane.

ŷ = h�(x) = sign(�T x) sign(a) =

�
1, if a � 0

�1, otherwise

Implementation Trick: same 
behavior as our “add on 

positive mistake and 
subtract on negative 

mistake” version, because 
y(i) takes care of the sign



(Batch) Perceptron Algorithm
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Learning for Perceptron also works if we have a fixed training 
dataset, D. We call this the “batch” setting in contrast to the “online” 
setting that we’ve discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)

1: procedure PĊėĈĊĕęėĔē(D = {( (1), y(1)), . . . , ( (N), y(N))})
2: � � 0 � Initialize parameters
3: while not converged do
4: for i � {1, 2, . . . , N} do � For each example
5: ŷ � sign(�T (i)) � Predict
6: if ŷ �= y(i) then � If mistake
7: � � � + y(i) (i) � Update parameters
8: return �



(Batch) Perceptron Algorithm
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Learning for Perceptron also works if we have a fixed training 
dataset, D. We call this the “batch” setting in contrast to the “online” 
setting that we’ve discussed so far.

Discussion:
The Batch Perceptron Algorithm can be derived in two ways.

1. By extending the online Perceptron algorithm to the batch 
setting (as mentioned above)

2. By applying Stochastic Gradient Descent (SGD) to minimize a 
so-called Hinge Loss on a linear separator



Extensions of Perceptron
• Voted Perceptron

– generalizes better than (standard) perceptron
– memory intensive (keeps around every weight vector seen during 

training, so each one can vote)
• Averaged Perceptron

– empirically similar performance to voted perceptron
– can be implemented in a memory efficient way 

(running averages are efficient)
• Kernel Perceptron

– Choose a kernel K(x’, x)
– Apply the kernel trick to Perceptron
– Resulting algorithm is still very simple

• Structured Perceptron
– Basic idea can also be applied when y ranges over an exponentially 

large set
– Mistake bound does not depend on the size of that set
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ANALYSIS OF PERCEPTRON
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Geometric Margin
Definition: The margin of example 𝑥 w.r.t. a linear sep.𝑤 is the 
distance from 𝑥	to the plane 𝑤 ⋅ 𝑥 = 0 (or the negative if on wrong side)

𝑥&
w

Margin of positive example 𝑥&

𝑥+

Margin of negative example 𝑥+

Slide from Nina Balcan



Geometric Margin

Definition: The margin 𝛾9 of a set of examples 𝑆 wrt a linear 
separator 𝑤 is the smallest margin over points 𝑥 ∈ 𝑆.
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Definition: The margin of example 𝑥 w.r.t. a linear sep.𝑤 is the 
distance from 𝑥	to the plane 𝑤 ⋅ 𝑥 = 0 (or the negative if on wrong side)

Slide from Nina Balcan
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Definition: The margin 𝛾 of a set of examples 𝑆 is the maximum 𝛾9
over all linear separators 𝑤.

Geometric Margin

Definition: The margin 𝛾9 of a set of examples 𝑆 wrt a linear 
separator 𝑤 is the smallest margin over points 𝑥 ∈ 𝑆.

Definition: The margin of example 𝑥 w.r.t. a linear sep.𝑤 is the 
distance from 𝑥	to the plane 𝑤 ⋅ 𝑥 = 0 (or the negative if on wrong side)

Slide from Nina Balcan



Linear Separability
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Def: For a binary classification problem, a set of examples 𝑆
is linearly separable if there exists a linear decision boundary 
that can separate the points

+
+-

Case 1:

+ +
-

Case 2:

+
++

Case 3:

+
+-
-

Case 4:



Analysis: Perceptron
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(Normalized margin: multiplying all points by 100, or dividing all points by 100, 
doesn’t change the number of mistakes; algo is invariant to scaling.)

Perceptron Mistake Bound
Guarantee: If data has margin � and all points inside a ball of
radius R, then Perceptron makes � (R/�)2 mistakes.
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Analysis: Perceptron
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(Normalized margin: multiplying all points by 100, or dividing all points by 100, 
doesn’t change the number of mistakes; algo is invariant to scaling.)

Perceptron Mistake Bound
Guarantee: If data has margin � and all points inside a ball of
radius R, then Perceptron makes � (R/�)2 mistakes.
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R

��Def: We say that the (batch) perceptron algorithm has 
converged if it stops making mistakes on the training data 
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the 
perceptron algorithm cycles repeatedly through the data, 
it will converge in a finite # of steps.



Analysis: Perceptron
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Perceptron Mistake Bound
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Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {( (i), y(i))}N

i=1.
Suppose:

1. Finite size inputs: ||x(i)|| � R
2. Linearly separable data: ��� s.t. ||��|| = 1 and

y(i)(�� · (i)) � �, �i
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k � (R/�)2



Analysis: Perceptron
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Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k



Analysis: Perceptron
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Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {( (i), y(i))}N

i=1.
Suppose:

1. Finite size inputs: ||x(i)|| � R
2. Linearly separable data: ��� s.t. ||��|| = 1 and

y(i)(�� · (i)) � �, �i
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k � (R/�)2

Algorithm 1 Perceptron Learning Algorithm (Online)

1: procedure PĊėĈĊĕęėĔē(D = {( (1), y(1)), ( (2), y(2)), . . .})
2: � � 0, k = 1 � Initialize parameters
3: for i � {1, 2, . . .} do � For each example
4: if y(i)(�(k) · (i)) � 0 then � If mistake
5: �(k+1) � �(k) + y(i) (i) � Update parameters
6: k � k + 1
7: return �



Analysis: Perceptron

Chalkboard: 
– Proof of Perceptron Mistake Bound
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Analysis: Perceptron
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Proof of Perceptron Mistake Bound:
Part 1: for some A, Ak � ||�(k+1)|| � B

�
k

�(k+1) · �� = (�(k) + y(i) (i))��

by Perceptron algorithm update

= �(k) · �� + y(i)(�� · (i))

� �(k) · �� + �

by assumption

� �(k+1) · �� � k�

by induction on k since �(1) = 0

� ||�(k+1)|| � k�

since || || � || || � · and ||��|| = 1

Cauchy-Schwartz inequality



Analysis: Perceptron
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Proof of Perceptron Mistake Bound:
Part 2: for some B, Ak � ||�(k+1)|| � B

�
k

||�(k+1)||2 = ||�(k) + y(i) (i)||2

by Perceptron algorithm update

= ||�(k)||2 + (y(i))2|| (i)||2 + 2y(i)(�(k) · (i))

� ||�(k)||2 + (y(i))2|| (i)||2

since kth mistake � y(i)(�(k) · (i)) � 0

= ||�(k)||2 + R2

since (y(i))2|| (i)||2 = || (i)||2 = R2 by assumption and (y(i))2 = 1

� ||�(k+1)||2 � kR2

by induction on k since (�(1))2 = 0

� ||�(k+1)|| �
�

kR



Analysis: Perceptron
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Proof of Perceptron Mistake Bound:
Part 3: Combining the bounds finishes the proof.

k� � ||�(k+1)|| �
�

kR

�k � (R/�)2

The total number of mistakes 
must be less than this



Analysis: Perceptron
What if the data is not linearly separable?

1. Perceptron will not converge in this case (it can’t!)
2. However, Freund & Schapire (1999) show that by projecting the 

points (hypothetically) into a higher dimensional space, we can 
achieve a similar bound on the number of mistakes made on 
one pass through the sequence of examples
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LARGE MARGIN CLASSIFICATION USING THE PERCEPTRON ALGORITHM 281

Similarly,

∥vk+1∥2 = ∥vk∥2 + 2yi (vk · xi ) + ∥xi∥2 ≤ ∥vk∥2 + R2.

Therefore, ∥vk+1∥2 ≤ kR2.
Combining, gives

√
kR ≥ ∥vk+1∥ ≥ vk+1 · u ≥ kγ

which implies k ≤ (R/γ )2 proving the theorem. ✷

3.2. Analysis for the inseparable case

If the data are not linearly separable then the Theorem 1 cannot be used directly. However,
we now give a generalized version of the theorem which allows for some mistakes in the
training set. As far as we know, this theorem is new, although the proof technique is very
similar to that of Klasner and Simon (1995, Theorem 2.2). See also the recent work of
Shawe-Taylor and Cristianini (1998) who used this technique to derive generalization error
bounds for any large margin classifier.

Theorem2. Let ⟨(x1, y1), . . . , (xm, ym)⟩bea sequenceof labeled exampleswith∥xi∥ ≤ R.
Let u be any vector with ∥u∥ = 1 and let γ > 0. Define the deviation of each example as

di = max{0, γ − yi (u · xi )},

and define D =
√∑m

i=1 d
2
i . Then the number of mistakes of the online perceptron algorithm

on this sequence is bounded by

(
R + D

γ

)2
.

Proof: The case D = 0 follows from Theorem 1, so we can assume that D > 0.
The proof is based on a reduction of the inseparable case to a separable case in a higher

dimensional space. As we will see, the reduction does not change the algorithm.
We extend the instance space Rn to Rn+m by adding m new dimensions, one for each

example. Let x′
i ∈ Rn+m denote the extension of the instance xi .We set the first n coordinates

of x′
i equal to xi . We set the (n + i)’th coordinate to " where " is a positive real constant

whose value will be specified later. The rest of the coordinates of x′
i are set to zero.

Next we extend the comparison vector u ∈ Rn to u′ ∈ Rn+m . We use the constant Z ,
whichwe calculate shortly, to ensure that the length ofu′ is one.We set the first n coordinates
of u′ equal to u/Z . We set the (n+ i)’th coordinate to (yidi )/(Z"). It is easy to check that
the appropriate normalization is Z =

√
1+ D2/"2.



Summary: Perceptron
• Perceptron is a linear classifier
• Simple learning algorithm: when a mistake is 

made, add / subtract the features
• Perceptron will converge if the data are linearly 

separable, it will not converge if the data are 
linearly inseparable

• For linearly separable and inseparable data, we 
can bound the number of mistakes (geometric 
argument)

• Extensions support nonlinear separators and 
structured prediction
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