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Analysis: Perceptron

Perceptron Mistake Bound

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(x(9), y()I N,

Suppose:
1. Finite size inputs: ||z()|| < R
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Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(x(¥), y() IV

Suppose: ;
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2. Linearly separable data: 30 s.t. ||0*||] = 1and |
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Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k< (R/v)°

Algorithm 1 Perceptron Learning Algorithm (Online)

procedure PERCEPTRON(D = {(x1), ), (x(2) 42 . 1)
0—0,k=1 > Initialize parameters
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Propositional Logic

Chalkboard

— Form of arguments

— Components of propositional logic
— Two-column proofs

— modus ponens

— Inference rules

— Lemmas



Inference Rules

¢ modus ponens: from premises ¢ and ¢ — , conclude y.

A introduction: if we separately prove ¢ and y, then that constitutes a proof of
oA .

A elimination: from ¢ A w we can conclude either of ¢ and  separately.

v introduction: from ¢ we can conclude ¢ v w for any .

v elimination (also called proof by cases). if we know ¢ v  (the cases) and we
have both ¢ — y and w — y (the case-specific proofs), then we can conclude y.

e Tintroduction: we can conclude T from no assumptions.
e Felimination: from £ we can conclude an arbitrary formula ¢. (This rule is

sometimes called ex falso or ex falso quodlibet, from the Latin for "from falsehood,
anything.") This rule can be counterintuitive, but one way to think about it is this: we
should never be able to prove F, so there's no danger in letting ourselves prove an
arbitrary formula given F.

Associativity: both A and v are associative: it doesn’t matter how we
parenthesize an expression like a A b A ¢ A d. (So in fact we often just leave the
parentheses out.)

Distributivity: A and v distribute over one another; for example, a A (b V ¢) is
equivalentto (a A b) V (a A ¢).

Commutativity: both A and v are commutative (symmetric in the order of their
arguments), so we can re-order their arguments however we please. For example,
bvevaisequvaenttoavbve.
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e Tintroduction: we can conclude T from no assumptions.

Exercise: Inference Rules

modus ponens: from premises ¢ and ¢ — , conclude . e Associativity: both A and v are associative: it doesn’t matter how we
A introduction: if we separately prove ¢ and , then that constitutes a proof of parenthesize an expression like a A b A ¢ A d. (So in fact we often just leave the
é A . parentheses out.)

e Distributivity: A and v distribute over one another; for example, a A (b V ¢) is
equivalentto (@ A b) V (a A ©).

e Commutativity: both A and v are commutative (symmetric in the order of their
arguments), so we can re-order their arguments however we please. For example,

bvevaisequvaenttoavbVve.

A elimination: from ¢ A w we can conclude either of ¢ and  separately.

v introduction: from ¢ we can conclude ¢ v w for any .

v elimination (also called proof by cases): if we know ¢ v  (the cases) and we
have both ¢ — x and w — y (the case-specific proofs), then we can conclude y.

e F elimination: from F we can conclude an arbitrary formula ¢. (This rule is

sometimes called ex falso or ex falso quodlibet, from the Latin for "from falsehood,
anything.") This rule can be counterintuitive, but one way to think about it is this: we
should never be able to prove F, so there's no danger in letting ourselves prove an
arbitrary formula given F.

Use the above inference rules to prove

(anb) > (bAa).
Write your proof in two-column format: i.e., give an explicit justification for each statement
based on previous statements.

Reminder: use only the above rules, even if you've learned other useful rules in previous
COUrses.
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Exercise: Inference Rules

e modus ponens: from premises ¢ and ¢ — , conclude . e Associativity: both A and v are associative: it doesn’t matter how we

e A introduction: if we separately prove ¢ and w, then that constitutes a proof of parenthesize an expression like a A b A ¢ A d. (So in fact we often just leave the
A w. parentheses out.)

e A elimination: from ¢ A w we can conclude either of ¢ and w separately. e Distributivity: A and v distribute over one another; for example, a A (b V ¢) is

e v introduction: from ¢ we can conclude ¢ v w for any . equivalent 1o (@ A b) V (a A ¢).

e v elimination (also called proof by cases): if we know ¢ v  (the cases) and we e Commutativity: both A and v are commutative (symmetric in the order of their
have both ¢ — y and v — x (the case-specific proofs), then we can conclude y. arguments), so we can re-order their arguments however we please. For example,

e Tintroduction: we can conclude 7' from no assumptions. bvevaisequivalenttoav b ve.

F elimination: from F we can conclude an arbitrary formula ¢. (This rule is
sometimes called ex falso or ex falso quodlibet, from the Latin for "from falsehood,
anything.") This rule can be counterintuitive, but one way to think about it is this: we
should never be able to prove F, so there's no danger in letting ourselves prove an
arbitrary formula given F.

Use the above inference rules to prove

(anb) > (bAa).
Write your proof in two-column format: i.e., give an explicit justification for each statement
based on previous statements.

Reminder: use only the above rules, even if you've learned other useful rules in previous
courses.

Exercise, version 2: prove the same statement without using the inference rule for
commutativity.
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Classical Logic

Chalkboard

— Negation and constructive logic
— Law of the extended middle

— DeMorgan’s laws

— Double negation elimination

— Contraposition

— Resolution

— Scoping rules



Exercise: Mini-Sudoku

In mini sudoku, the digits 1..4 must appear exactly once in each row, column, and bold-
edged 2*2 box of the grid. In the grid below, we've been given five fixed digits (e.g., the 3
in the upper right corner). The squares labeled a, b, ¢, d are currently blank, and we'd like
to figure out how to fill them in:

p——

1

— —

For example, we know that square d can't contain the digit 2, because there's already a 2
directly above it in the same column.

Fill in the squares a, b, ¢, d. (Note: no guessing is required.)

Use the rules of propositional logic to write down the constraints that squares a, b, ¢, d
must satisfy. For example, you should write that the digit 1 must appear exactly once in
the squares a, b, ¢, d. (It may take several logical formulas to implement this constraint.)
For another example, you should write that the digit 2 can't appear in squares b or d
(because of the 2 above them in the same column).

Prove that the solution you gave above is correct, using your formulation of the
constraints together with the rules of propositional logic.
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PROOF TECHNIQUES



Proof Techniques

Chalkboard

— Definitions from Discrete Math



Proof Techniques

Chalkboard

— Proof by Construction
— Proof by Cases

— Proof by Contradiction
— Proof by Contraposition

— Proof by Induction



