10-607 Computational Foundations for Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

APPLICATION: Variable Elimination

Matt Gormley Lecture 11 Nov. 28, 2018

Reminders

- Homework C: Data Structures
 - Out: Mon, Nov. 26
 - Due: Mon, Dec. 3 at 11:59pm
- Quiz B: Computation; Programming & Efficiency
 - Wed, Dec. 5, in-class
 - Covers Lectures 7 12

APPLICATION: EXACT INFERENCE IN GRAPHICAL MODELS

EXACT INFERENCE

Exact Inference

1. Data

2. Model

$$p(\boldsymbol{x} \mid \boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \prod_{C \in \mathcal{C}} \psi_C(\boldsymbol{x}_C)$$

3. Objective

$$\ell(\theta; \mathcal{D}) = \sum_{n=1}^{N} \log p(\boldsymbol{x}^{(n)} \mid \boldsymbol{\theta})$$

5. Inference

1. Marginal Inference

$$p(oldsymbol{x}_C) = \sum_{oldsymbol{x}': oldsymbol{x}_C' = oldsymbol{x}_C} p(oldsymbol{x}' \mid oldsymbol{ heta})$$

2. Partition Function

$$Z(\boldsymbol{\theta}) = \sum \prod \psi_C(\boldsymbol{x}_C)$$

3. MAP Inference ^x

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmax}} p(\boldsymbol{x} \mid \boldsymbol{\theta})$$

4. Learning

$$\boldsymbol{\theta}^* = \operatorname*{argmax}_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}; \mathcal{D})$$

Complexity Classes

- An algorithm runs in **polynomial time** if its runtime is a polynomial function of the input size (e.g. $O(n^k)$ for some fixed constant k)
- The class P consists of all problems that can be solved in polynomial time
- A problem for which the answer is binary (e.g. yes/no) is called a decision problem
- The class NP contains all decision problems where 'yes' answers can be verified (proved) in polynomial time
- A problem is NP-Hard if given an O(1) oracle to solve it, every problem in NP can be solved in polynomial time (e.g. by reduction)
- A problem is NP-Complete if it belongs to both the classes NP and NP-Hard

5. Inference

Three Tasks:

1. Marginal Inference (#P-Hard)

Compute marginals of variables and cliques

$$p(x_i) = \sum_{\boldsymbol{x}': x_i' = x_i} p(\boldsymbol{x}' \mid \boldsymbol{\theta}) \qquad \qquad p(\boldsymbol{x}_C) = \sum_{\boldsymbol{x}': \boldsymbol{x}_C' = \boldsymbol{x}_C} p(\boldsymbol{x}' \mid \boldsymbol{\theta})$$

2. Partition Function (#P-Hard)

Compute the normalization constant

$$Z(\boldsymbol{\theta}) = \sum_{\boldsymbol{x}} \prod_{C \in \mathcal{C}} \psi_C(\boldsymbol{x}_C)$$

3. MAP Inference (NP-Hard)

Compute variable assignment with highest probability

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmax}} p(\boldsymbol{x} \mid \boldsymbol{\theta})$$

Marginals by Sampling on Factor Graph

Suppose we took many samples from the distribution over taggings: $p(x) = \frac{1}{Z} \prod \psi_{\alpha}(x_{\alpha})$

Marginals by Sampling on Factor Graph

The marginal $p(X_i = x_i)$ gives the probability that variable X_i takes value x_i in a random sample

Marginals by Sampling on Factor Graph

Simple and general exact inference for graphical models

VARIABLE ELIMINATION

Brute Force (Naïve) Inference

For all *i*, suppose the **range** of X_i is $\{0, 1, 2\}$.

Let k=3 denote the size of the range.

The distribution factorizes as:

Naively, we compute the **partition function** as:

$$Z = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} p(\boldsymbol{x})$$

Brute Force (Naïve) Inference

For all i, suppose the **range** of X_i is $\{0, 1, 2\}$. Let k=3 denote the **size of the range**.

The distribution factorizes as:

$$p(\mathbf{x}) = \psi_{12}(x_1, x_2)\psi_{13}(x_1, x_3)\psi_{24}(x_2, x_4)$$
$$\psi_{234}(x_2, x_3, x_4)\psi_{45}(x_4, x_5)\psi_{5}(x_5)$$

Naively, we compute the **partition function** as:

$$Z = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} p(\mathbf{x})$$

p(x) can be represented as a joint probability table with 3^5

entries:

x_1	x_2	x_3	x_4	x_5	$p(\mathbf{x})$
0	0	0	0	0	0.019517693
0	0	0	0	1	0.017090249
0	0	0	0	2	0.014885825
0	0	0	1	0	0.024117638
0	0	0	1	1	0.000925849
0	0	0	1	2	0.028112576
0	0	0	2	0	0.028050205
0	0	0	2	1	0.004812689
0	0	0	2	2	0.007987737
0	0	1	0	0	0.028433687
0	0	1	0	1	0.037073469
0	0	1	0	2	0.013558227
0	0	1	1	0	0.019479016
0	0	1	1	1	0.012312901
0	0	1	1	2	0.023439775
0	0	1	2	0	0.038206131
0	0	1	2	1	0.038996005
0	0	1	2	2	0.041458783
0	0	2	0	0	0.044616806
0	0	2	0	1	0.020846989
0	0	2	0	2	0.03006475
0	0	2	1	0	0.048436964
0	0	2	1	1	0.02854376
0	0	2	1	2	0.029191506
0	0	2	2	0	0.031531118
0	0	2	2	1	0.005132392
0	0	2	2	2	0.032027091

Brute Force (Naïve) Inference

For all i, suppose the **range** of X_i is $\{0, 1, 2\}$. Let k=3 denote the **size of the range**.

The distribution **factorizes** as:

$$p(\mathbf{x}) = \psi_{12}(x_1, x_2)\psi_{13}(x_1, x_3)\psi_{24}(x_2, x_4)$$
$$\psi_{234}(x_2, x_3, x_4)\psi_{45}(x_4, x_5)\psi_{5}(x_5)$$

Naively, we compute the **partition function** as:

$$Z = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} p(\mathbf{x})$$

p(x) can be represented as a joint probability table with 3^5

entries:

					()
x_1	x_2	x_3	x_4	x_5	$p(\mathbf{x})$
0	0	0	0	0	0.019517693
0	0	0	0	1	0.017090249
0	0	0	0	2	0.014885825
0	0	0	1	0	0.024117638
0	0	0	1	1	0.000925849
0	0	0	1	2	0.028112576
0	0	0	2	0	0.028050205
0	0	0	2	1	0.004812689
0	0	0	2	2	0.007987737
0	0	1	0	0	0.028433687
0	0	1	0	1	0.037073469
0	0	1	0	2	0.013558227
0	0	1	1	0	0.019479016
0	0	1	1	1	0.012312901
0	0	1	1	2	0.023439775
0	0	1	2	0	0.038206131
0	0	1	2	1	0.038996005
0	0	1	2	2	0.041458783
0	0	2	0	0	0.044616806
0	0	2	0	1	0.020846989
0	0	2	0	2	0.03006475
0	0	2	1	0	0.048436964
0	0	2	1	1	0.02854376

Naïve computation of Z requires 3^5 additions.

Can we do better?

Instead, capitalize on the factorization of p(x).

$$Z = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

Only 3^2 additions are needed to marginalize out x_5 .

We denote the marginal's table by $m_5(x_4)$.

This "factor" is a much smaller table with 3^2 entries:

x_4	x_5	$p(\mathbf{x})$
0	0	0.019517693
0	1	0.017090249
0	2	0.014885825
1	0	0.024117638
1	1	0.000925849
1	2	0.028112576
2	0	0.028050205
2	1	0.004812689
2	2	0.007987737

Instead, capitalize on the factorization of p(x).

$$Z = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_{5}(x_4)$$

$$m_5(x_4) \triangleq \sum_{x_5} \psi_{45}(x_4, x_5) \psi_5(x_5)$$

Instead, capitalize on the factorization of p(x).

$$Z = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_{5}(x_4)$$

This "factor" is still a 3⁴ table so apply the same trick again.

$$m_5(x_4) \triangleq \sum_{x_5} \psi_{45}(x_4, x_5) \psi_5(x_5)$$

Instead, capitalize on the factorization of $p(\mathbf{x})$.

$$Z = \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_5(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_5(x_4)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$

$$3^2 \text{ additions}$$

$$3^3 \text{ additions}$$

 $= \sum \sum \psi_{12}(x_1, x_2) m_3(x_1, x_2)$

 $= \sum m_2(x_1)$

 3^3 additions

 3^2 additions

3 additions

Naïve solution requires $3^5=243$ additions.

Variable elimination only requires $3+3^2+3^3+3^3+3^2=75$ additions.

The same trick can be used to compute marginal probabilities. Just choose the variable elimination order such that the query variables are last.

$$p(x_1) = \frac{1}{Z} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_5(x_5)$$

$$= \frac{1}{Z} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_5(x_4)$$

$$= \frac{1}{Z} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$

$$= \frac{1}{Z} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$

$$= \frac{1}{Z} \sum_{x_2} \psi_{12}(x_1, x_2) m_3(x_1, x_2)$$

$$3^3 \text{ additions}$$

3³ additions

 3^2 additions

For directed graphs, Z = 1.

For undirected graphs, if we compute each (unnormalized) value on the LHS, we can sum them to get Z.

3 different values on LHS

 $=\frac{1}{7}m_2(x_1)$

$$Z = \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_5(x_4)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$

$$Z = \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_{5}(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_{5}(x_4)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_{4}(x_2, x_3)$$

$$Z = \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_5(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_5(x_4)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$

$$Z = \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) \sum_{x_5} \psi_{45}(x_4, x_5) \psi_5(x_5)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) \sum_{x_4} \psi_{24}(x_2, x_4) \psi_{234}(x_2, x_3, x_4) m_5(x_4)$$

$$= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{13}(x_1, x_3) m_4(x_2, x_3)$$

Variable Elimination for Marginal Inference

Algorithm 1: Variable Elimination for Marginal Inference

Input: the factor graph and the query variable

Output: the marginal distribution for the query variable

- a. Run a breadth-first-search starting at the query variable to obtain an ordering of the variable nodes
- b. Reverse that ordering
- c. Eliminate each variable in the reversed ordering using Algorithm 2

Algorithm 2: Eliminate One Variable

Input: the variable to be eliminated

Output: new factor graph with the variable marginalized out

- a. Find the input variable and its neighboring factors -- call this set the eliminated set
- b. Replace the eliminated set with a new factor
 - a. The neighbors of the new factor should be all the neighbors of all the factors in the eliminated set
 - b. The new factor should assign a score to each possible assignment of its neighboring variables
 - c. Said score should be identical to the product of the factors it is replacing, summing over the eliminated variable

Variable Elimination for Marginal Inference

Algorithm 3: Variable Elimination for the Partition Function

Input: the factor graph

Output: the partition function

- a. Run a breadth-first-search starting at an arbitrary variable to obtain an ordering of the variable nodes
- b. Eliminate each variable in the ordering using Algorithm 2

Algorithm 2: Eliminate One Variable

Input: the variable to be eliminated

Output: new factor graph with the variable marginalized out

- a. Find the input variable and its neighboring factors -- call this set the eliminated set
- b. Replace the eliminated set with a new factor
 - The neighbors of the new factor should be all the neighbors of all the factors in the eliminated set
 - b. The new factor should assign a score to each possible assignment of its neighboring variables
 - c. Said score should be identical to the product of the factors it is replacing, summing over the eliminated variable

Variable Elimination Complexity

Instead, capitalize on the factorization of p(x).

In-Class Exercise: Fill in the blank

Brute force, naïve, inference is O(____)

Variable elimination is O()

where n = # of variables
k = max # values a variable can take
r = # variables participating in

largest "intermediate" table

PROFILING FOR EFFICIENCY

Software Profiling

CPU Profiler:

- Intermediate Goal: Analyze the CPU usage of a program at a fine-grained level
 (e.g. time spent within each function)
- Ènd Goal: To make the program more CPU efficient by optimizing most time consuming parts of program

Memory Profiler:

- Intermediate Goal: Analyze the memory consumption of a program (e.g. how much space does a particular type of object use on the heap)
- End Goal: To make the program more memory by utilizing different data structures or data storage techniques to reduce memory load

Software Profiling

Deterministic CPU Profiler

- Augments the code with additional bookkeeping calls
- Provides exact number of times each function is called, and exact amount of time spent in each function
- Comes at the cost of much slower runtime

Statistical CPU Profiler

- Leaves the code nearly unchanged, and instead takes samples (hundreds or more) of the stacktrace
- Provides the proportion of samples that landed in each function and estimates the total time spent in each function
- Typically yields little to no slowdown of the code

Line Profiler

- Same as above for each type, but counts the number of times each line
 is executed and provides the amount of time spent on each line
- Increases complexity of the profiler, but provides much more detailed analysis

Python Profilers

Name	Туре	Level of Detail	Output	Notes
cProfile	deterministic	function- level	console	built into Python standard library; C-based implementation
profile	deterministic	function- level	console	same as cProfile, but implemented in pure Python
line_profiler	deterministic + statistical	line-level	console	C-based implementation
pprofile	deterministic + statistical	line-level	console	pure Python implementation (few users)
PyFlame by Uber	deterministic + statistical	line-level	flame graph	Linux only as of 2018
Plop by Dropbox	deterministic + statistical	line-level	bubble plot	(few users)

cProfile Output

```
$ python -m cProfile -s cumtime lwn2pocket.py
         72270 function calls (70640 primitive calls) in 4.481 seconds
   Ordered by: cumulative time
   ncalls tottime percall cumtime percall filename:lineno(function)
             0.004
                      0.004
                               4.481
                                        4.481 lwn2pocket.py:2(<module>)
       1
             0.001
                      0.001
                               4.296
                                        4.296 lwn2pocket.py:51(main)
        3
                               4.286
                                       1.429 api.py:17(request)
             0.000
                      0.000
        3
             0.000
                      0.000
                               4.268
                                        1.423 sessions.py:386(request)
      4/3
             0.000
                      0.000
                               3.816
                                        1.272 sessions.py:539(send)
                               2.965
                                        0.741 adapters.py:323(send)
             0.000
                      0.000
                                        0.740 connectionpool.py:421(urlopen)
             0.000
                      0.000
                               2.962
                               2.961
                                        0.740 connectionpool.py:317(_make_request)
             0.000
                      0.000
        2
             0.000
                      0.000
                               2.675
                                        1.338 api.py:98(post)
                               1.621
                                        0.054 ssl.py:727(recv)
       30
             0.000
                      0.000
             0.000
                      0.000
                               1.621
                                        0.054 ssl.py:610(read)
       30
             1.621
                      0.054
                               1.621
                                        0.054 {method 'read' of '_ssl._SSLSocket' objects}
                               1.611
                                        1.611 api.py:58(get)
       1
             0.000
                      0.000
             0.000
                      0.000
                               1.572
                                        0.393 httplib.py:1095(getresponse)
             0.000
                      0.000
                               1.572
                                        0.393 httplib.py:446(begin)
                               1.571
                                        0.026 socket.py:410(readline)
             0.000
                      0.000
                               1.571
                                        0.393 httplib.py:407(_read_status)
             0.000
                      0.000
                               1.462
                                        1.462 pocket.py:44(wrapped)
             0.000
                      0.000
             0.000
                      0.000
                               1.462
                                        1.462 pocket.py:152(make_request)
                               1.462
                                        1.462 pocket.py:139( make request)
             0.000
                      0.000
             0.000
                      0.000
                               1.459
                                        1.459 pocket.py:134(_post_request)
[...]
```

line_profiler Output

```
Pystone(1.1) time for 50000 \text{ passes} = 2.48
This machine benchmarks at 20161.3 pystones/second
Wrote profile results to pystone.py.lprof
Timer unit: 1e-06 s
File: pystone.py
Function: Proc2 at line 149
Total time: 0.606656 s
Line #
           Hits
                        Time Per Hit % Time Line Contents
______
  149
                                              @profile
                                              def Proc2(IntParIO):
  150
  151
          50000
                       82003
                                 1.6
                                         13.5
                                                  IntLoc = IntParIO + 10
                                         10.4
  152
          50000
                                 1.3
                                                  while 1:
                       63162
  153
          50000
                       69065
                                 1.4
                                         11.4
                                                      if Char1Glob == 'A':
                                 1.3
                                         10.9
                                                          IntLoc = IntLoc - 1
  154
          50000
                       66354
  155
          50000
                       67263
                                 1.3
                                         11.1
                                                          IntParIO = IntLoc - IntGlob
                                 1.3
                                        10.8
                                                          EnumLoc = Ident1
  156
          50000
                       65494
                                                      if EnumLoc == Ident1:
   157
          50000
                                 1.4
                                        11.2
                       68001
   158
                                 1.3
                                         10.5
                                                          break
          50000
                       63739
  159
          50000
                       61575
                                 1.2
                                         10.1
                                                  return IntParIO
```

PyFlame Output

Plop Output

