
APPLICATION:
Variable Elimination

1

10-607 Computational Foundations for Machine Learning

Matt Gormley
Lecture 11

Nov. 28, 2018

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework C: Data Structures
– Out: Mon, Nov. 26
– Due: Mon, Dec. 3 at 11:59pm

• Quiz B: Computation; Programming &
Efficiency
– Wed, Dec. 5, in-class
– Covers Lectures 7 – 12

2

APPLICATION: EXACT INFERENCE
IN GRAPHICAL MODELS

4

EXACT INFERENCE

36

Exact Inference

37

1. Data 2. Model

4. Learning5. Inference

3. Objective
`(✓;D) =

NX

n=1

log p(x(n) | ✓)

p(x | ✓) = 1

Z(✓)

Y

C2C
 C(xC)

✓⇤
= argmax

✓
`(✓;D)p(xC) =

X

x

0:x0
C=xC

p(x0 | ✓)

Z(✓) =
X

x

Y

C2C
 C(xC)

D = {x(n)}Nn=1

n n v d nSample
2:

time likeflies an arrow

n v p d n
Sample 1:

time likeflies an arrow

p n n v vSample
4:

with youtime will see

n v p n nSample
3:

flies withfly their wings

W1 W2 W3 W4 W5

T1 T2 T3 T4 T5

1. Marginal Inference

2. Partition Function

ˆ

x = argmax

x

p(x | ✓)
3. MAP Inference

Complexity Classes

• A problem for which the answer is
binary (e.g. yes/no) is called a
decision problem

• The class NP contains all decision
problems where ‘yes’ answers can
be verified (proved) in polynomial
time

• A problem is NP-Hard if given an
O(1) oracle to solve it, every
problem in NP can be solved in
polynomial time (e.g. by reduction)

• A problem is NP-Complete if it
belongs to both the classes NP and
NP-Hard

38

• An algorithm runs in polynomial time if its runtime is a polynomial function of
the input size (e.g. O(nk) for some fixed constant k)

• The class P consists of all problems that can be solved in polynomial time

Figure from https://en.wikipedia.org/wiki/NP-completeness

39

p(xC) =
X

x

0:x0
C=xC

p(x0 | ✓)

Z(✓) =
X

x

Y

C2C
 C(xC)

ˆ

x = argmax

x

p(x | ✓)

1. Marginal Inference (#P-Hard)
Compute marginals of variables and cliques

2. Partition Function (#P-Hard)
Compute the normalization constant

3. MAP Inference (NP-Hard)
Compute variable assignment with highest probability

p(x
i

) =
X

x

0:x0
i=xi

p(x0 | ✓)

Three Tasks:

5. Inference

Marginals by Sampling on Factor Graph

40time likeflies an arrow

X1 ψ2 X2 ψ4 X3 ψ6 X4 ψ8 X5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0X0

<START>

n v p d nSample 6:

v n v d nSample 5:

v n p d nSample 4:

n v p d nSample 3:

n n v d nSample 2:

n v p d nSample 1:

Suppose we took many samples from the distribution over
taggings:

Marginals by Sampling on Factor Graph

41time likeflies an arrow

X1 ψ2 X2 ψ4 X3 ψ6 X4 ψ8 X5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0X0

<START>

n v p d nSample 6:

v n v d nSample 5:

v n p d nSample 4:

n v p d nSample 3:

n n v d nSample 2:

n v p d nSample 1:

The marginal p(Xi = xi) gives the probability that variable Xi
takes value xi in a random sample

Marginals by Sampling on Factor Graph

42time likeflies an arrow

X1 ψ2 X2 ψ4 X3 ψ6 X4 ψ8 X5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0X0

<START>

n v p d nSample 6:

v n v d nSample 5:

v n p d nSample 4:

n v p d nSample 3:

n n v d nSample 2:

n v p d nSample 1:

Estimate the
marginals as: n 4/6

v 2/6
n 3/6
v 3/6

p 4/6
v 2/6 d 6/6 n 6/6

VARIABLE ELIMINATION
Simple and general exact inference for graphical models

43

Brute Force (Naïve) Inference
For all i, suppose the range of Xi is {0, 1, 2}.
Let k=3 denote the size of the range.
The distribution factorizes as:

44

X3

X1
ψ12 X2

ψ23 X4

ψ45

X5

ψ13
ψ234

ψ5

Naively, we compute the partition function
as:

Z =
X

x1

X

x2

X

x3

X

x4

X

x5

p(x)

p(x) = 12(x1, x2) 13(x1, x3) 24(x2, x4)

 234(x2, x3, x4) 45(x4, x5) 5(x5)

Brute Force (Naïve) Inference
For all i, suppose the range of Xi is {0, 1, 2}.
Let k=3 denote the size of the range.
The distribution factorizes as:

45

X3

X1
ψ12 X2

ψ23 X4

ψ45

X5

ψ13
ψ234

ψ5

Naively, we compute the partition function
as:

Z =
X

x1

X

x2

X

x3

X

x4

X

x5

p(x)

p(x) = 12(x1, x2) 13(x1, x3) 24(x2, x4)

 234(x2, x3, x4) 45(x4, x5) 5(x5)

p(x) can be represented as a
joint probability table with 35

entries: x1 x2 x3 x4 x5 p(x)
0 0 0 0 0 0.019517693
0 0 0 0 1 0.017090249
0 0 0 0 2 0.014885825
0 0 0 1 0 0.024117638
0 0 0 1 1 0.000925849
0 0 0 1 2 0.028112576
0 0 0 2 0 0.028050205
0 0 0 2 1 0.004812689
0 0 0 2 2 0.007987737
0 0 1 0 0 0.028433687
0 0 1 0 1 0.037073469
0 0 1 0 2 0.013558227
0 0 1 1 0 0.019479016
0 0 1 1 1 0.012312901
0 0 1 1 2 0.023439775
0 0 1 2 0 0.038206131
0 0 1 2 1 0.038996005
0 0 1 2 2 0.041458783
0 0 2 0 0 0.044616806
0 0 2 0 1 0.020846989
0 0 2 0 2 0.03006475
0 0 2 1 0 0.048436964
0 0 2 1 1 0.02854376
0 0 2 1 2 0.029191506
0 0 2 2 0 0.031531118
0 0 2 2 1 0.005132392
0 0 2 2 2 0.032027091

… … … … … …

Brute Force (Naïve) Inference
For all i, suppose the range of Xi is {0, 1, 2}.
Let k=3 denote the size of the range.
The distribution factorizes as:

46

X3

X1
ψ12 X2

ψ23 X4

ψ45

X5

ψ13
ψ234

ψ5

Naively, we compute the partition function
as:

Z =
X

x1

X

x2

X

x3

X

x4

X

x5

p(x)

p(x) = 12(x1, x2) 13(x1, x3) 24(x2, x4)

 234(x2, x3, x4) 45(x4, x5) 5(x5)

p(x) can be represented as a
joint probability table with 35

entries: x1 x2 x3 x4 x5 p(x)
0 0 0 0 0 0.019517693
0 0 0 0 1 0.017090249
0 0 0 0 2 0.014885825
0 0 0 1 0 0.024117638
0 0 0 1 1 0.000925849
0 0 0 1 2 0.028112576
0 0 0 2 0 0.028050205
0 0 0 2 1 0.004812689
0 0 0 2 2 0.007987737
0 0 1 0 0 0.028433687
0 0 1 0 1 0.037073469
0 0 1 0 2 0.013558227
0 0 1 1 0 0.019479016
0 0 1 1 1 0.012312901
0 0 1 1 2 0.023439775
0 0 1 2 0 0.038206131
0 0 1 2 1 0.038996005
0 0 1 2 2 0.041458783
0 0 2 0 0 0.044616806
0 0 2 0 1 0.020846989
0 0 2 0 2 0.03006475
0 0 2 1 0 0.048436964
0 0 2 1 1 0.02854376
0 0 2 1 2 0.029191506
0 0 2 2 0 0.031531118
0 0 2 2 1 0.005132392
0 0 2 2 2 0.032027091

… … … … … …

Naïve computation of Z requires
35 additions.
Can we do better?

The Variable Elimination Algorithm

47

X3

X1
ψ12 X2

ψ23 X4

ψ45

X5

ψ13
ψ234

ψ5

Instead, capitalize on the factorization of
p(x).

Z =
X

x1

X

x2

X

x3

X

x4

X

x5

 12(x1, x2) 13(x1, x3) 24(x2, x4) 234(x2, x3, x4) 45(x4, x5) 5(x5)

=
X

x1

X

x2

X

x3

X

x4

 12(x1, x2) 13(x1, x3) 24(x2, x4) 234(x2, x3, x4)
X

x5

 45(x4, x5) 5(x5)

This “factor” is a
much smaller table
with 32 entries:

x4 x5 p(x)
0 0 0.019517693
0 1 0.017090249
0 2 0.014885825
1 0 0.024117638
1 1 0.000925849
1 2 0.028112576
2 0 0.028050205
2 1 0.004812689
2 2 0.007987737

Only 32

additions are
needed to
marginalize
out x5.
We denote the
marginal’s
table by
m5(x4).

Z =
X

x1

X

x2

X

x3

X

x4

X

x5

 12(x1, x2) 13(x1, x3) 24(x2, x4) 234(x2, x3, x4) 45(x4, x5) 5(x5)

=
X

x1

X

x2

X

x3

X

x4

 12(x1, x2) 13(x1, x3) 24(x2, x4) 234(x2, x3, x4)
X

x5

 45(x4, x5) 5(x5)

=
X

x1

X

x2

X

x3

X

x4

 12(x1, x2) 13(x1, x3) 24(x2, x4) 234(x2, x3, x4)m5(x4)

The Variable Elimination Algorithm

48

X3

X1
ψ12 X2

ψ23 X4

ψ45

X5

ψ13
ψ234

ψ5

Instead, capitalize on the factorization of
p(x).

m5(x4) ,
X

x5

 45(x4, x5) 5(x5)

Z =
X

x1

X

x2

X

x3

X

x4

X

x5

 12(x1, x2) 13(x1, x3) 24(x2, x4) 234(x2, x3, x4) 45(x4, x5) 5(x5)

=
X

x1

X

x2

X

x3

X

x4

 12(x1, x2) 13(x1, x3) 24(x2, x4) 234(x2, x3, x4)
X

x5

 45(x4, x5) 5(x5)

=
X

x1

X

x2

X

x3

X

x4

 12(x1, x2) 13(x1, x3) 24(x2, x4) 234(x2, x3, x4)m5(x4)

The Variable Elimination Algorithm

49

X3

X1
ψ12 X2

ψ23 X4

ψ45

X5

ψ13
ψ234

ψ5

Instead, capitalize on the factorization of
p(x).

This “factor” is still a 34 table so
apply the same trick again.

m5(x4) ,
X

x5

 45(x4, x5) 5(x5)

The Variable Elimination Algorithm

50

X3

X1
ψ12 X2

ψ23 X4

ψ45

X5

ψ13
ψ234

ψ5

Instead, capitalize on the factorization of
p(x).

Z =
X

x1

X

x2

 12(x1, x2)
X

x3

 13(x1, x3)
X

x4

 24(x2, x4) 234(x2, x3, x4)
X

x5

 45(x4, x5) 5(x5)

=
X

x1

X

x2

 12(x1, x2)
X

x3

 13(x1, x3)
X

x4

 24(x2, x4) 234(x2, x3, x4)m5(x4)

=
X

x1

X

x2

 12(x1, x2)
X

x3

 13(x1, x3)m4(x2, x3)

=
X

x1

X

x2

 12(x1, x2)m3(x1, x2)

=
X

x1

m2(x1)

32 additions

33 additions

33 additions

32 additions

3 additions

Naïve solution requires 35=243
additions.
Variable elimination only requires
3+32+33+33+32 = 75 additions.

p(x1) =
1

Z

X

x2

 12(x1, x2)
X

x3

 13(x1, x3)
X

x4

 24(x2, x4) 234(x2, x3, x4)
X

x5

 45(x4, x5) 5(x5)

=
1

Z

X

x2

 12(x1, x2)
X

x3

 13(x1, x3)
X

x4

 24(x2, x4) 234(x2, x3, x4)m5(x4)

=
1

Z

X

x2

 12(x1, x2)
X

x3

 13(x1, x3)m4(x2, x3)

=
1

Z

X

x2

 12(x1, x2)m3(x1, x2)

=
1

Z

m2(x1)

The Variable Elimination Algorithm

51

X3

X1
ψ12 X2

ψ23 X4

ψ45

X5

ψ13
ψ234

ψ5

The same trick can be used to compute
marginal probabilities. Just choose the
variable elimination order such that the
query variables are last.

32 additions

33 additions

33 additions

32 additions

3 different values on LHS

For directed graphs, Z = 1.
For undirected graphs, if we compute
each (unnormalized) value on the LHS,
we can sum them to get Z.

The Variable Elimination Algorithm

52

X3

X1
ψ12 X2

ψ23 X4

ψ45

X5

ψ13
ψ234

ψ5

In a factor graph, variable elimination
corresponds to replacement of a subgraph
with a factor.

Z =
X

x1

X

x2

 12(x1, x2)
X

x3

 13(x1, x3)
X

x4

 24(x2, x4) 234(x2, x3, x4)
X

x5

 45(x4, x5) 5(x5)

=
X

x1

X

x2

 12(x1, x2)
X

x3

 13(x1, x3)
X

x4

 24(x2, x4) 234(x2, x3, x4)m5(x4)

=
X

x1

X

x2

 12(x1, x2)
X

x3

 13(x1, x3)m4(x2, x3)

=
X

x1

X

x2

 12(x1, x2)m3(x1, x2)

=
X

x1

m2(x1)

The Variable Elimination Algorithm

53

X3

X1
ψ12 X2

ψ23 X4

m5

ψ13
ψ234

In a factor graph, variable elimination
corresponds to replacement of a subgraph
with a factor.

Z =
X

x1

X

x2

 12(x1, x2)
X

x3

 13(x1, x3)
X

x4

 24(x2, x4) 234(x2, x3, x4)
X

x5

 45(x4, x5) 5(x5)

=
X

x1

X

x2

 12(x1, x2)
X

x3

 13(x1, x3)
X

x4

 24(x2, x4) 234(x2, x3, x4)m5(x4)

=
X

x1

X

x2

 12(x1, x2)
X

x3

 13(x1, x3)m4(x2, x3)

=
X

x1

X

x2

 12(x1, x2)m3(x1, x2)

=
X

x1

m2(x1)

The Variable Elimination Algorithm

54

X3

X1
ψ12 X2

ψ23 X4

m5

ψ13
ψ234

In a factor graph, variable elimination
corresponds to replacement of a subgraph
with a factor.

Z =
X

x1

X

x2

 12(x1, x2)
X

x3

 13(x1, x3)
X

x4

 24(x2, x4) 234(x2, x3, x4)
X

x5

 45(x4, x5) 5(x5)

=
X

x1

X

x2

 12(x1, x2)
X

x3

 13(x1, x3)
X

x4

 24(x2, x4) 234(x2, x3, x4)m5(x4)

=
X

x1

X

x2

 12(x1, x2)
X

x3

 13(x1, x3)m4(x2, x3)

=
X

x1

X

x2

 12(x1, x2)m3(x1, x2)

=
X

x1

m2(x1)

The Variable Elimination Algorithm

55

X3

X1
ψ12 X2

ψ13

m4

In a factor graph, variable elimination
corresponds to replacement of a subgraph
with a factor.

Z =
X

x1

X

x2

 12(x1, x2)
X

x3

 13(x1, x3)
X

x4

 24(x2, x4) 234(x2, x3, x4)
X

x5

 45(x4, x5) 5(x5)

=
X

x1

X

x2

 12(x1, x2)
X

x3

 13(x1, x3)
X

x4

 24(x2, x4) 234(x2, x3, x4)m5(x4)

=
X

x1

X

x2

 12(x1, x2)
X

x3

 13(x1, x3)m4(x2, x3)

=
X

x1

X

x2

 12(x1, x2)m3(x1, x2)

=
X

x1

m2(x1)

Variable Elimination
for Marginal Inference

Algorithm 1: Variable Elimination for Marginal Inference
Input: the factor graph and the query variable
Output: the marginal distribution for the query variable

a. Run a breadth-first-search starting at the query variable to obtain an ordering of the
variable nodes

b. Reverse that ordering
c. Eliminate each variable in the reversed ordering using Algorithm 2

56

Algorithm 2: Eliminate One Variable
Input: the variable to be eliminated
Output: new factor graph with the variable marginalized out

a. Find the input variable and its neighboring factors -- call this set the eliminated set
b. Replace the eliminated set with a new factor

a. The neighbors of the new factor should be all the neighbors of all the factors in the eliminated
set

b. The new factor should assign a score to each possible assignment of its neighboring variables
c. Said score should be identical to the product of the factors it is replacing, summing over the

eliminated variable

Variable Elimination
for Marginal Inference

Algorithm 3: Variable Elimination for the Partition Function
Input: the factor graph
Output: the partition function

a. Run a breadth-first-search starting at an arbitrary variable to obtain an ordering of the
variable nodes

b. Eliminate each variable in the ordering using Algorithm 2

57

Algorithm 2: Eliminate One Variable
Input: the variable to be eliminated
Output: new factor graph with the variable marginalized out

a. Find the input variable and its neighboring factors -- call this set the eliminated set
b. Replace the eliminated set with a new factor

a. The neighbors of the new factor should be all the neighbors of all the factors in the eliminated
set

b. The new factor should assign a score to each possible assignment of its neighboring variables
c. Said score should be identical to the product of the factors it is replacing, summing over the

eliminated variable

Variable Elimination Complexity

Brute force, naïve,
inference is O(____)

Variable elimination
is O(____)

58

X3

X1
ψ12 X2

ψ23 X4

ψ45

X5

ψ13
ψ234

ψ5

Instead, capitalize on the factorization of
p(x).

where n = # of variables
k = max # values a variable can take
r = # variables participating in

largest “intermediate” table

In-Class Exercise: Fill in the blank

PROFILING FOR EFFICIENCY

60

Software Profiling
CPU Profiler:
– Intermediate Goal: Analyze the CPU usage of a program

at a fine-grained level
(e.g. time spent within each function)

– End Goal: To make the program more CPU efficient by
optimizing most time consuming parts of program

Memory Profiler:
– Intermediate Goal: Analyze the memory consumption of

a program
(e.g. how much space does a particular type of object
use on the heap)

– End Goal: To make the program more memory by
utilizing different data structures or data storage
techniques to reduce memory load

61

Software Profiling

Deterministic CPU Profiler
• Augments the code with

additional bookkeeping calls
• Provides exact number of

times each function is called,
and exact amount of time
spent in each function

• Comes at the cost of much
slower runtime

Statistical CPU Profiler
• Leaves the code nearly

unchanged, and instead takes
samples (hundreds or more) of
the stacktrace

• Provides the proportion of
samples that landed in each
function and estimates the total
time spent in each function

• Typically yields little to no
slowdown of the code

62

Line Profiler
• Same as above for each type, but counts the number of times each line

is executed and provides the amount of time spent on each line
• Increases complexity of the profiler, but provides much more detailed

analysis

Python Profilers
Name Type Level of

Detail
Output Notes

cProfile deterministic function-
level

console built into Python standard
library; C-based
implementation

profile deterministic function-
level

console same as cProfile, but
implemented in pure Python

line_profiler deterministic
+ statistical

line-level console C-based implementation

pprofile deterministic
+ statistical

line-level console pure Python implementation
(few users)

PyFlame by
Uber

deterministic
+ statistical

line-level flame
graph

Linux only as of 2018

Plop by
Dropbox

deterministic
+ statistical

line-level bubble
plot

(few users)

63

cProfile Output

64
Figure from https://julien.danjou.info/guide-to-python-profiling-cprofile-concrete-case-carbonara/

line_profiler Output

65
Figure from https://github.com/rkern/line_profiler

PyFlame Output

66
Figure from https://github.com/uber/pyflame

Plop Output

67
Figure from https://blogs.dropbox.com/tech/2012/07/plop-low-overhead-profiling-for-python/

