10-607 Computational Foundations for Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

APPLICATION:
Variable Elimination

Matt Gormley
Lecture 11
Nov. 28, 2018

Reminders

* Homework C: Data Structures
— Out: Mon, Nov. 26
— Due: Mon, Dec. 3 at 11:59pm

* Quiz B: Computation; Programming &

Efficiency
— Wed, Dec. 5, in-class

— Covers Lectures 7 —12

APPLICATION: EXACT INFERENCE
IN GRAPHICAL MODELS

EXACT INFERENCE

Exact Inference

l"‘l')AA TN

Complexity Classes

* Analgorithm runs in polynomial time if its runtime is a polynomial function of
the input size (e.g. O(n*) for some fixed constant k)

* The class P consists of all problems that can be solved in polynomial time

* A problem for which the answer is
binary (e.g. yes/no)is called a
decision problem

* The class NP contains all decision t
problems where ‘yes’ answers can
be verified (proved) in polynomial
time

. g 8roblem is NP-Hard if given an '/mﬂi-om—pletx‘ / R —\
| np |

NP-Hard NP-Hard

) oracle to solve it, every

problem in NP can be solved in I' N:.f;o:,:;e I|
polynomial time (e.g. by reduction) \ Tl).

* Aproblemis NP-Complete if it w
belongs to both the classes NP and :

NP-Hard P = NP P = NP

38
Figure from https://en.wikipedia.org/wiki/NP-completeness

(#P-Hard)

(NP-Hard)

Marginals by Sampling on Factor Graph

Suppose we took many samples from the distribution over
taggings: »@) =, [[va(a)

Sample 1:
Sample 2:
Sample 3:
Sample 4:

Sample 5:

Sample 6:

20000000
()

B

|
#O0O00000

<START>

Marginals by Sampling on Factor Graph

The marginal p(X; = x,) gives the probability that variable X,
takes value x. in a random sample

Sample 1:
Sample 2:
Sample 3:
Sample 4:

Sample 5:

Sample 6:

20000000
()

B

|
#O0O00000

<START>

N

Marginals by Sampling on Factor Graph

Estimate the
marginals as:

DT

Sample 1:
Sample 2:
Sample 3:

Sample 4:

Sample 5:

Sample 6:

B

20000000

- N
20000000
(‘D O

N
N

s@@Q@@Q%

5@00000%

<START>

W

Simple and general exact inference for graphical models

VARIABLE ELIMINATION

43

Brute Force (Naive) Inference

For all i, suppose the range of X is {0, I, 2}.
Let k=3 denote the size of the range.
The distribution factorizes as:

p(x) =Y12(z1, x2)Y13(T1, £3)P24(T2, 24)
V234(T2, T3, T4)Va5(T4, T5)1Y5(T5)

Naively, we compute the partition function

as:
Z=3.2.2.2. 2 r@)
r1 Xo X3 x4 Is

Brute Force (Naive) Inference

For all i, suppose the range of X is {0, I, 2}. p(x) can be represented as a

Let k=3 denote the size of the range.

The distribution factorizes as: entries:

p(x) =Y12(z1, x2)Y13(T1, £3)P24(T2, 24)
V234(T2, T3, T4)Va5(T4, T5)1Y5(T5)

Naively, we compute the partition function

as:
Z=3.2.2.2. 2 r@)
r1 Xo X3 x4 Is

joint probability table with 3°

px)

0.019517693

0.017090249

0.014885825

0.024117638

0.000925849

0.028112576

0.028050205

0.004812689

0.007987737

0.028433687

0.037073469

0.013558227

0.019479016

0.012312901

0.023439775

0.038206131

0.038996005

0.041458783

0.044616806

0.020846989

0.03006475

0.048436964

0.02854376

0.029191506

0.031531118

0.005132392

SOOOOOOOOOOOOOOOOOOOOOOOOOOO\%<

EC)OC.?bOOOOOOOOOOOOOOOOOOOOOOOO\E‘<

ENNNNNNNNN—»—n—x—»—a-x—»—a—xoooooooooﬁ<

SNNN—\—\—\OOONNN—\—‘—\OOONNN—\A—\OOO§

EN—-xON—\OM—\ON—\ON—\ON—\ON—\ON—\ON—\oi<

0.032027091

Brute Force (Naive) Inference

For all i, suppose the range of X is {0, I, 2}. p(x) can be represented as a
Let k=3 denote the size of the range. joint probability table with 3°

The distribution factorizes as: entries: p(x)

0.019517693

0.017090249

p(x) =Y12(z1, x2)Y13(T1, £3)P24(T2, 24)

0.014885825

0.024117638

77b234 ('CCQ’ X3, $4)¢45 (334, 375)¢5 (1'5) 0.000925849

0.028112576

0.028050205

0.004812689

0.007987737

0.028433687

0.037073469

0.013558227

0.019479016

0.012312901

0.023439775

0.038206131

0.038996005

0.041458783

0.044616806

Naively, we compute the partition function 0.020846989

NNmmm-x-a-x-x-a-x—x—a—-ooooooooow><

OOOOOOOOOOOOOOOOOOOOOOO\%<
OOOOOOOOOOOOOOOOOOOOOOO\E‘<

@) —‘—\OOONNN—\—K—\OOONNN_\A_\ooob
N—\ow—\ow—\ON-\ou-\ou-\ou-\ou—\oﬁ

3% additions.
Can we do better?

0.03006475
as: 0.048436964
- -~ -~ —~ —~ 0.02854376
4 = > > > > > p(iB) Naive computation of Z requires
et Lk Lk Lk Lo
r1 Xo X3 x4 Is

The Variable Elimination Algorithm

Instead, capitalize on the factorization of

p(x).

7 = yj y: yj y: Sj P12(x1, 2)Y13(21, £3) V24 (22, Ta) Y234 (T2, T3, £4) a5 (24, T5) Y5 (T5)

1 2 r3 T4 Ts

_77771012 (71, 22)¢13(%1, T3)24(T2, T4)P234(T2, T3, T4) ZWLS 4, 35)5(25)

1 o 3 T4

Only 3° This “factor” is a
additions are much smaller table
needed to with 32 entries:
marginalize x,x] pix)
OUt.x . o |o 0.019517693
5 0 | 1| 0.017090249
0 | 2 | 0.014885825
We denote the 1| 0| 0.024117638
.) 1 | 1| 0.000925849
mal’gmal S 1 | 2| 0.028112576
2 | 0| 0.028050205
table by 2 | 1| 0.004812689
m5(x4) : 2 | 2 | 0.007987737

The Variable Elimination Algorithm

Instead, capitalize on the factorization of

p(x).

7 = yj yj yj y: Sj P12(x1, 22)Y13(21, £3) Y24 (22, Ta) Y234 (T2, T3, T4) Va5 (24, T5) Y5 (T5)

T1 2 r3 T4 Ts

—YYYY@DQ (1, 22)¥13(21, 3)V24(T2, T4)V234 (22, 73, 24) Z¢45 T4, T5)P5(Ts5)

Tq) 3 T4

— y: y: y: y: V12(1, 22)V13(21, £3) 24 (T2, Ta) V234 (2, X3, 334)7“5(334)

1 T2 I3 T4

L Z¢45(x4,x5)¢5(375)

The Variable Elimination Algorithm

Instead, capitalize on the factorization of

p(x).

7 = yj yj yj yj Sj P12(x1, 22)Y13(21, £3) Y24 (22, Ta) Y234 (T2, T3, T4) Va5 (24, T5) Y5 (T5)

1) xr3 T4 s

—YYYY@DQ (1, 22)¥13(21, 3)V24(T2, T4)V234 (22, 73, 24) Z¢45 T4, T5)P5(Ts5)

1 T2 T3 T4

— y: y: y: y: V12(1, 22)V13(21, £3) P24 (22, Ta) V234 (T2, X3, 334)7“5(334)

T 2 3 T4

This “factor” is still a 3 table so 5 (x4) 2 2: WYa5(x4, T5) 05 (xs5)
apply the same trick again.

The Variable Elimination Algorithm

Instead, capitalize on the factorization of

p(x).

Z = Zzwm X1, T2 Z¢13 T1,T3 2%4 T2, X4)Y234(x2, T3, 24) Z¢45 (74, 25)05(2s5)
:Zzwu L1,y L2 Z¢13 L1, L3 2%4 $2,$4)¢234(33279337$4)m5($4) %
r1 X2 2 qng

_ZZ@Dm L1, T2 2%3 $1,3?3 m4 332,333)% 37 additions

- 33 additions
=ZZ¢12 T1,T2)m3(T1,T2)
B 33 additions
= ma(x)
N 3? additions Naive solution requires 39=243
ﬁ additions.
3 additions Variable elimination only requires

3+32+33+33+32 = 75 additions.

The Variable Elimination Algorithm

The same trick can be used to compute
marginal probabilities. Just choose the
variable elimination order such that the
query variables are last.

p(z1) :% D ra(wr,2) Y this(wr,w3) Y thou(we, a)hosa (e, 3, 04) Y thus (w4, w5) s (25)
PN xTo T3 T4 Ts5

:% Z P12(x1, T2) Z P13(x1, 3) Z V24(Z2, Ta)tho3a(22, 23, Ta)05 (2 4) %

1 w2 s o % 3? additions
== Z P12(w1, x2) Z VP13(T1, x3)ma (T2, 3)

1 v e % 3% additions
:E Z le(l’l, fEQ)mS(:Ula x?)

1 .~ 3additions
=—ma(z1)

Z For directed graphs, Z =1.

For undirected graphs, if we compute
each (unnormalized) value on the LHS,
we can sum them to get Z.

37 additions

3 different values on LHS

The Variable Elimination Algorithm

Z = Zzwm X1, T2 21013 T1,T3 2%4 T2, X4)Y234(x2, T3, 24) Z¢45 T4, 25)P5(Ts5)

1 X2

222%2 L1, L2 Z%g L1, L3 Z¢24 $2,$4)¢234(33279337374)m5(334)

r1 X2

_22%2 X1,T2 Z%g $1,333 my 332,333)

r1 X2

In a factor graph, variable elimination
corresponds to replacement of a subgraph
with a factor.

The Variable Elimination Algorithm

Z = Zzwm X1, T2 21013 T1,T3 2%4 T2, X4)Y234(x2, T3, 24) Z¢45 T4, 25)P5(Ts5)

1 X2

222%2 L1, L2 Z%g L1, L3 2%4 $2,$4)¢234($2ax37w4)m5($4)

r1 X2

_22%2 X1,T2 Z%g $1,333 my 332,333)

r1 X2

In a factor graph, variable elimination
corresponds to replacement of a subgraph
with a factor.

The Variable Elimination Algorithm

X <X2>'_ Xy

Z = Zzwm X1, T2 21013 T1,T3 2%4 T2, X4)Y234(x2, T3, 24) 21045 (74, 25)05(25)

1 X2

222%2 L1, L2 Z%g L1, L3 2%4 332,$4)¢234($27w37w4)m5(334)

r1 X2

_22%2 X1,T2 Z%g $1,333 my 332,51?3)

r1 X2

In a factor graph, variable elimination
corresponds to replacement of a subgraph
with a factor.

The Variable Elimination Algorithm

Z = Zzwm X1, T2 21013 T1,T3 2%4 T2, X4)Y234(x2, T3, 24) Z¢45 (74, 25)05(25)

1 X2

222%2 L1, L2 Z%g L1, L3 2%4 332,$4)¢234($27w37w4)m5($4)

r1 X2

_22%2 X1,T2 Z%g $1,333 my 332,51?3)

r1 X2

In a factor graph, variable elimination
corresponds to replacement of a subgraph
with a factor.

Variable Elimination
for Marginal Inference

Algorithm 1: Variable Elimination for Marginal Inference
Input: the factor graph and the query variable
Output: the marginal distribution for the query variable

a. Run a breadth-first-search starting at the query variable to obtain an ordering of the
variable nodes

b. Reverse that ordering

C. Eliminate each variable in the reversed ordering using Algorithm 2

Eliminate One Variable
Input: the variable to be eliminated

Output: new factor graph with the variable marginalized out

a. Find the input variable and its neighboring factors -- call this set the eliminated set
b. Replace the eliminated set with a new factor
a. The neighbors of the new factor should be all the neighbors of all the factors in the eliminated
set
b. The new factor should assign a score to each possible assignment of its neighboring variables
c. Said score should be identical to the product of the factors it is replacing, summing over the

eliminated variable

Variable Elimination
for Marginal Inference

Variable Elimination for the Partition Function
Input: the factor graph
Output: the partition function

a. Run a breadth-first-search starting at an arbitrary variable to obtain an ordering of the
variable nodes
b. Eliminate each variable in the ordering using Algorithm 2

Algorithm 2: Eliminate One Variable
Input: the variable to be eliminated

Output: new factor graph with the variable marginalized out

a. Find the input variable and its neighboring factors - call this set the eliminated set
b. Replace the eliminated set with a new factor
a. The neighbors of the new factor should be all the neighbors of all the factors in the eliminated
set
b. The new factor should assign a score to each possible assignment of its neighboring variables
c. Said score should be identical to the product of the factors it is replacing, summing over the

eliminated variable

Variable Elimination Complexity

Instead, capitalize on the factorization of

P(x).

In-Class Exercise: Fill in the blank

58

PROFILING FOR EFFICIENCY

Software Profiling

CPU Profiler:
— Intermediate Coal: Analyze the CPU usage of a program
at a fine-grained level
(e.g. time spent within each function)
— End Goal: To make the program more CPU efficient by
optimizing most time consuming parts of program

Analyze the memory consumption of
a program
(e.g. how much space does a particular type of object
use on the heap)
To make the program more memory by
utilizing different data structures or data storage
techniques to reduce memory load

Software Profiling

Deterministic CPU Profiler Statistical CPU Profiler
* Augments the code with * Leaves the code nearly
additional bookkeeping calls unchanged, and instead takes
. samples (hundreds or more) of
* Provides exact number of YV SIS S~
times each function is called, « Provides the proportion of
and exact amount of time samples that landed in each
spent in each function function and estimates the total

time spent in each function

* Typically yields little to no
slowdown of the code

e Comes at the cost of much
slower runtime

Line Profiler
* Same as above for each type, but counts the number of times each line
is executed and provides the amount of time spent on each line

* Increases complexity of the profiler, but provides much more detailed
analysis

Type Level of
Detail

cProfile

profile
line_profiler
pprofile
PyFlame by

Uber

Plop by
Dropbox

Python Profilers

deterministic

deterministic

deterministic
+ statistical

deterministic
+ statistical

deterministic
+ statistical

deterministic
+ statistical

function-
level

function-

level

line-level

line-level

line-level

line-level

console

console
console
console
flame
graph

bubble
plot

built into Python standard
library; C-based
implementation

same as cProfile, but
implemented in pure Python

C-based implementation
pure Python implementation
(few users)

Linux only as of 2018

(few users)

63

cProfile Output

$ python -m cProfile -s cumtime lwn2pocket.py
72270 function calls (70640 primitive calls) in 4.481 seconds
Ordered by: cumulative time
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.004 0.004 4.481 4.481 lwn2pocket.py:2(<module>)
1 0.001 0.001 4.296 4.296 lwn2pocket.py:51(main)
3 0.000 0.000 4.286 1.429 api.py:17(request)
3 0.000 0.000 4.268 1.423 sessions.py:386(request)
4/3 ©.000 0.000 3.816 1.272 sessions.py:539(send)
4 0.000 0.000 2.965 ©.741 adapters.py:323(send)
4 0.000 0.000 2.962 0.740 connectionpool.py:421(urlopen)
4 0.000 0.000 2.961 ©.740 connectionpool.py:317(_make_request)
2 0.000 0.000 2.675 1.338 api.py:98(post)
30 0.000 0.000 1.621 0.0854 ssl.py:727(recv)
30 ©.000 0.000 1.621 9.0854 ssl.py:610(read)
30 1.621 9.054 1.621 0.0854 {method 'read' of '_ssl._ SSLSocket' objects}
1l ©.000 ©.000 1.611 1.611 api.py:58(get)
4 0.000 0.000 1.572 0.393 httplib.py:1095(getresponse)
4 0.000 0.000 1.572 0.393 httplib.py:446(begin)
60 0.000 0.000 1.571 0.026 socket.py:410(readline)
4 0.000 0.000 1.571 0.393 httplib.py:407(_read_status)
1 0.000 0.000 1.462 1.462 pocket.py:44(wrapped)
1 0.000 0.000 1.462 1.462 pocket.py:152(make_request)
1 0.000 0.000 1.462 1.462 pocket.py:139(_make_request)
1 0.000 0.000 1.459 1.459 pocket.py:134(_post_request)
=]

Figure from https://julien.danjou.info/guide-to-python-profiling-cprofile-concrete-case-carbonara/

64

line profiler Output

Pystone(1.1) time for 50000 passes =
This machine benchmarks at 20161.3 pystones/second
Wrote profile results to pystone.py.lprof

Timer unit: 1e-©6 s

File: pystone.py

Function: Proc2 at line 149

Total time: 0.606656 s

2.48

Line Contents

Line # Hits
149
150
151 50000
152 50000
153 50000
154 50000
155 50000
156 50000
157 50000
158 50000
159 50000

Figure from https://github.com/rkern/line_profiler

82003
63162
69065
66354
67263
65494
68001
63739
61575

L = I = ==
NOWR WW WS WO

H Uy N - O B B un

@profile
def Proc2(IntParl0):
IntLoc = IntParIO + 10
while 1:
if CharlGlob == 'A':
IntLoc = IntlLoc - 1
IntParI0 = IntLoc - IntGlob
EnumLoc = Identl
if EnumLoc == Identl:
break
return IntParlIO

65

PyFIame Output

| fusvlocal/ib/python? 7/dist-packagestc..

Hﬁ.___
—===m
—==uB
uuuuuu |uwwmm-|_mm_-n-n--—-— "
————
S W [[| |
mes-T=eELLC@IEENTEREENEC:N:
— 5
TTTT===sEEenEBE: 2 __./Im---- _ .
CU WEsT T semas l ||l
e .
|||-|mm.||
|||||||

66

Figure from https://github.com/uber/pyflame

Plop Output

Figure from https://blogs.dropbox.com/tech/2012/07/plop-low-overhead-profiling-for-python/

67

