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Reminders

• Homework C: Data Structures
– Out: Mon, Nov. 26
– Due: Mon, Dec. 3 at 11:59pm

• Quiz B: Computation; Programming & 
Efficiency
– Wed, Dec. 5, in-class
– Covers Lectures 7 – 12
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APPLICATION: EXACT INFERENCE 
IN GRAPHICAL MODELS
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EXACT INFERENCE
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Exact Inference
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4. Learning5. Inference
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x
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Complexity Classes

• A problem for which the answer is 
binary (e.g. yes/no) is called a 
decision problem

• The class NP contains all decision 
problems where ‘yes’ answers can 
be verified (proved) in polynomial 
time

• A problem is NP-Hard if given an 
O(1) oracle to solve it, every 
problem in NP can be solved in 
polynomial time (e.g. by reduction)

• A problem is NP-Complete if it 
belongs to both the classes NP and 
NP-Hard
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• An algorithm runs in polynomial time if its runtime is a polynomial function of 
the input size (e.g. O(nk) for some fixed constant k)

• The class P consists of all problems that can be solved in polynomial time

Figure from https://en.wikipedia.org/wiki/NP-completeness
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p(xC) =
X

x

0:x0
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p(x0 | ✓)

Z(✓) =
X

x

Y

C2C
 C(xC)

ˆ

x = argmax

x

p(x | ✓)

1. Marginal Inference (#P-Hard)
Compute marginals of variables and cliques

2. Partition Function (#P-Hard)
Compute the normalization constant

3. MAP Inference (NP-Hard)
Compute variable assignment with highest probability

p(x
i

) =
X

x

0:x0
i=xi

p(x0 | ✓)

Three Tasks:

5. Inference



Marginals by Sampling on Factor Graph

40time likeflies an arrow

X1 ψ2 X2 ψ4 X3 ψ6 X4 ψ8 X5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0X0

<START>

n v p d nSample 6:

v n v d nSample 5:

v n p d nSample 4:

n v p d nSample 3:

n n v d nSample 2:

n v p d nSample 1:

Suppose we took many samples from the distribution over 
taggings:



Marginals by Sampling on Factor Graph

41time likeflies an arrow
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The marginal p(Xi = xi) gives the probability that variable Xi
takes value xi in a random sample



Marginals by Sampling on Factor Graph
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Estimate the 
marginals as: n 4/6
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VARIABLE ELIMINATION
Simple and general exact inference for graphical models
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Brute Force (Naïve) Inference
For all i, suppose the range of Xi is {0, 1, 2}. 
Let k=3 denote the size of the range.
The distribution factorizes as:
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Naively, we compute the partition function 
as:
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p(x)

p(x) = 12(x1, x2) 13(x1, x3) 24(x2, x4)

 234(x2, x3, x4) 45(x4, x5) 5(x5)



Brute Force (Naïve) Inference
For all i, suppose the range of Xi is {0, 1, 2}. 
Let k=3 denote the size of the range.
The distribution factorizes as:
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Naively, we compute the partition function 
as:

Z =
X

x1

X

x2

X

x3

X

x4
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x5

p(x)

p(x) = 12(x1, x2) 13(x1, x3) 24(x2, x4)

 234(x2, x3, x4) 45(x4, x5) 5(x5)

p(x) can be represented as a 
joint probability table with 35

entries: x1 x2 x3 x4 x5 p(x)
0 0 0 0 0 0.019517693
0 0 0 0 1 0.017090249
0 0 0 0 2 0.014885825
0 0 0 1 0 0.024117638
0 0 0 1 1 0.000925849
0 0 0 1 2 0.028112576
0 0 0 2 0 0.028050205
0 0 0 2 1 0.004812689
0 0 0 2 2 0.007987737
0 0 1 0 0 0.028433687
0 0 1 0 1 0.037073469
0 0 1 0 2 0.013558227
0 0 1 1 0 0.019479016
0 0 1 1 1 0.012312901
0 0 1 1 2 0.023439775
0 0 1 2 0 0.038206131
0 0 1 2 1 0.038996005
0 0 1 2 2 0.041458783
0 0 2 0 0 0.044616806
0 0 2 0 1 0.020846989
0 0 2 0 2 0.03006475
0 0 2 1 0 0.048436964
0 0 2 1 1 0.02854376
0 0 2 1 2 0.029191506
0 0 2 2 0 0.031531118
0 0 2 2 1 0.005132392
0 0 2 2 2 0.032027091

… … … … … …
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For all i, suppose the range of Xi is {0, 1, 2}. 
Let k=3 denote the size of the range.
The distribution factorizes as:

46

X3

X1
ψ12 X2

ψ23 X4

ψ45

X5

ψ13
ψ234

ψ5

Naively, we compute the partition function 
as:

Z =
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joint probability table with 35
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0 0 0 1 1 0.000925849
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0 0 1 0 2 0.013558227
0 0 1 1 0 0.019479016
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0 0 1 2 2 0.041458783
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0 0 2 1 1 0.02854376
0 0 2 1 2 0.029191506
0 0 2 2 0 0.031531118
0 0 2 2 1 0.005132392
0 0 2 2 2 0.032027091

… … … … … …

Naïve computation of Z requires 
35 additions.
Can we do better?



The Variable Elimination Algorithm
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Instead, capitalize on the factorization of 
p(x).

Z =
X
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X
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 12(x1, x2) 13(x1, x3) 24(x2, x4) 234(x2, x3, x4) 45(x4, x5) 5(x5)
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X

x5
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This “factor” is a 
much smaller table 
with 32 entries:

x4 x5 p(x)
0 0 0.019517693
0 1 0.017090249
0 2 0.014885825
1 0 0.024117638
1 1 0.000925849
1 2 0.028112576
2 0 0.028050205
2 1 0.004812689
2 2 0.007987737

Only 32

additions are 
needed to 
marginalize 
out x5.
We denote the 
marginal’s
table by 
m5(x4).
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Instead, capitalize on the factorization of 
p(x).

This “factor” is still a 34 table so 
apply the same trick again.

m5(x4) ,
X

x5

 45(x4, x5) 5(x5)



The Variable Elimination Algorithm
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Instead, capitalize on the factorization of 
p(x).
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32 additions

33 additions

33 additions

32 additions

3 additions

Naïve solution requires 35=243
additions.
Variable elimination only requires 
3+32+33+33+32 = 75 additions.
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The same trick can be used to compute 
marginal probabilities. Just choose the 
variable elimination order such that the 
query variables are last.

32 additions

33 additions

33 additions

32 additions

3 different values on LHS

For directed graphs, Z = 1.
For undirected graphs, if we compute 
each (unnormalized) value on the LHS, 
we can sum them to get Z.



The Variable Elimination Algorithm

52

X3

X1
ψ12 X2

ψ23 X4

ψ45

X5

ψ13
ψ234

ψ5

In a factor graph, variable elimination
corresponds to replacement of a subgraph
with a factor. 
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The Variable Elimination Algorithm
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Variable Elimination 
for Marginal Inference

Algorithm 1: Variable Elimination for Marginal Inference
Input: the factor graph and the query variable
Output: the marginal distribution for the query variable

a. Run a breadth-first-search starting at the query variable to obtain an ordering of the 
variable nodes

b. Reverse that ordering
c. Eliminate each variable in the reversed ordering using Algorithm 2
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Algorithm 2: Eliminate One Variable
Input: the variable to be eliminated
Output: new factor graph with the variable marginalized out

a. Find the input variable and its neighboring factors -- call this set the eliminated set
b. Replace the eliminated set with a new factor

a. The neighbors of the new factor should be all the neighbors of all the factors in the eliminated 
set

b. The new factor should assign a score to each possible assignment of its neighboring variables
c. Said score should be identical to the product of the factors it is replacing, summing over the 

eliminated variable



Variable Elimination 
for Marginal Inference

Algorithm 3: Variable Elimination for the Partition Function
Input: the factor graph
Output: the partition function

a. Run a breadth-first-search starting at an arbitrary variable to obtain an ordering of the 
variable nodes

b. Eliminate each variable in the ordering using Algorithm 2
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Algorithm 2: Eliminate One Variable
Input: the variable to be eliminated
Output: new factor graph with the variable marginalized out

a. Find the input variable and its neighboring factors -- call this set the eliminated set
b. Replace the eliminated set with a new factor

a. The neighbors of the new factor should be all the neighbors of all the factors in the eliminated 
set

b. The new factor should assign a score to each possible assignment of its neighboring variables
c. Said score should be identical to the product of the factors it is replacing, summing over the 

eliminated variable



Variable Elimination Complexity

Brute force, naïve,
inference is O(____)

Variable elimination 
is O(____)
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Instead, capitalize on the factorization of 
p(x).

where n = # of variables
k = max # values a variable can take
r = # variables participating in

largest “intermediate” table

In-Class Exercise: Fill in the blank



PROFILING FOR EFFICIENCY
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Software Profiling
CPU Profiler:
– Intermediate Goal: Analyze the CPU usage of a program 

at a fine-grained level 
(e.g. time spent within each function)

– End Goal: To make the program more CPU efficient by 
optimizing most time consuming parts of program

Memory Profiler:
– Intermediate Goal: Analyze the memory consumption of 

a program 
(e.g. how much space does a particular type of object 
use on the heap)

– End Goal: To make the program more memory by 
utilizing different data structures or data storage 
techniques to reduce memory load
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Software Profiling

Deterministic CPU Profiler
• Augments the code with 

additional bookkeeping calls
• Provides exact number of 

times each function is called, 
and exact amount of time 
spent in each function

• Comes at the cost of much 
slower runtime

Statistical CPU Profiler
• Leaves the code nearly  

unchanged, and instead takes 
samples (hundreds or more) of 
the stacktrace

• Provides the proportion of 
samples that landed in each 
function and estimates the total 
time spent in each function

• Typically yields little to no 
slowdown of the code
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Line Profiler
• Same as above for each type, but counts the number of times each line 

is executed and provides the amount of time spent on each line
• Increases complexity of the profiler, but provides much more detailed 

analysis



Python Profilers
Name Type Level of 

Detail
Output Notes

cProfile deterministic function-
level

console built into Python standard 
library; C-based 
implementation

profile deterministic function-
level

console same as cProfile, but 
implemented in pure Python

line_profiler deterministic
+ statistical

line-level console C-based implementation

pprofile deterministic
+ statistical

line-level console pure Python implementation 
(few users)

PyFlame by 
Uber

deterministic
+ statistical

line-level flame 
graph

Linux only as of 2018

Plop by 
Dropbox

deterministic
+ statistical

line-level bubble 
plot

(few users)
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cProfile Output

64
Figure from https://julien.danjou.info/guide-to-python-profiling-cprofile-concrete-case-carbonara/



line_profiler Output

65
Figure from https://github.com/rkern/line_profiler



PyFlame Output
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Figure from https://github.com/uber/pyflame



Plop Output

67
Figure from https://blogs.dropbox.com/tech/2012/07/plop-low-overhead-profiling-for-python/


