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Reminders

• Homework C: Data Structures
– Out: Mon, Nov. 26
– Due: Mon, Dec. 3 at 11:59pm

• Quiz B: Computation; Programming & 
Efficiency
– Wed, Dec. 5, in-class
– Covers Lectures 7 – 12
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Q&A
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APPLICATION: EXACT INFERENCE 
IN GRAPHICAL MODELS
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MOTIVATION: STRUCTURED 
PREDICTION
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Structured Prediction

• Most of the models we’ve seen so far were 
for classification
– Given observations: x = (x1, x2, …, xK) 
– Predict a (binary) label: y

• Many real-world problems require 
structured prediction
– Given observations: x = (x1, x2, …, xK) 
– Predict a structure: y = (y1, y2, …, yJ) 

• Some classification problems benefit from 
latent structure
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Structured Prediction Examples

• Examples of structured prediction

– Part-of-speech (POS) tagging
– Handwriting recognition
– Speech recognition
– Word alignment
– Congressional voting

• Examples of latent structure

– Object recognition
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n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised 
Part-of-Speech (POS) Tagging
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n v p d n
Sample 1:

time likeflies an arrow

p n n v v
Sample 4:

with youtime will see

n v p n n
Sample 3:

flies withfly their wings

D = {x(n),y(n)}Nn=1Data:
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x(1)

y(2)
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x(3)

y(4)

x(4)



Dataset for Supervised 
Handwriting Recognition
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D = {x(n),y(n)}Nn=1Data:

values. The obtained results are depicted in Table 4; we
provide means, standard deviations, and the p-metric value
of the Student’s-t test run on the pairs of performances of
the models (CRF, CRF1), (moderate order CRF, CRF1),
and (HMM, CRF1).

As we observe, the proposed approach offers a sig-
nificant improvement over first-order linear-chain CRFs, as
well as the rest of the considered alternatives. Therefore, we
once again notice the practical significance of coming up

with computationally efficient ways of relaxing the Marko-
vian assumption in linear-chain CRF models applied to
sequential data modeling. Note also that, in this experi-
ment, the moderate order CRF models of [41] seem to yield
a rather competitive result. This was expectable since the
average modeled sequence in this experiment is less than
10 time points long. Finally, regarding the HMM method,
with the number of mixture components M selected so as to
optimize model performance, we observe that the CRF1

model yields a clear improvement, irrespective of the
employed likelihood optimization approach.

4.3 Part-of-Speech Tagging

Finally, here we consider an experiment with the Penn
Treebank corpus [25], containing 74,029 sentences with a
total of 1,637,267 words. It is comprised of 49,115 unique
words, and each word in the corpus is labeled according to
its part of speech; there are a total of 43 different part-of-
speech labels. We use four types of features:

1. First-order word-presence features.
2. Four-character prefix presence features.

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 12, XXXXXXX 2013

TABLE 3
Activity-Based Segmentation of Skateboard: Push and Turn

Videos: Error Rates Obtained by the Evaluated Methods

Fig. 4. Skateboard: push and turn: A few example frames from a sequence considered in our experiments.

Fig. 5. Handwriting recognition: Example words from the dataset used.

TABLE 4
Handwriting Recognition: Error Rates Obtained

by the Evaluated Methods
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Dataset for Supervised 
Phoneme (Speech) Recognition
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D = {x(n),y(n)}Nn=1Data:

Figures from (Jansen & Niyogi, 2013)

h# ih w z iy
Sample 1:

y(1)

x(1)
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Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping
was used.

where are the input unlabeled data and is the

new parametrization of the function we need to estimate. To

proceed, we plug the functional form of (9) into the optimization

problem of (8). Taking the gradient with respect to the parameter

vector and setting it to zero sets up the following generalized

eigenvalue problem:

(10)

Here, is the Grammatrix defined on the input unlabeled
data by . This eigenvalue decomposition will

produce a full spectrum of eigenvectors, each defining its own
intrinsic projection map defined by the th eigenvector .

Unlike the unsupervised learning algorithm of [5], we are now

interested in several of the , not just one for binary clas-

sification or clustering. Recall that the intrinsic basis functions
produced by the Laplacian eigenmaps algorithm were defined
only on the points used to construct the graph Laplacian. Our

new set of projection maps is now defined out-of-sample, i.e.,
may be computed for arbitrary points on the manifold and

may also be used more generally for any point in .

B. Intrinsic Spectrogram Algorithm

Given the nomenclature define above, the algorithm for com-
puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not
required to obtain good performance in the experiments in Section VII in which
we randomly selected examples from the entire corpus (ignoring class).
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Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping
was used.
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B. Intrinsic Spectrogram Algorithm
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puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not
required to obtain good performance in the experiments in Section VII in which
we randomly selected examples from the entire corpus (ignoring class).
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Word Alignment / Phrase Extraction

• Variables (boolean):
– For each (Chinese phrase, 

English phrase) pair, 
are they linked?

• Interactions:
– Word fertilities
– Few “jumps” (discontinuities)
– Syntactic reorderings
– “ITG contraint” on alignment
– Phrases are disjoint (?)

11(Burkett & Klein, 2012)

Application:



Figure 1: An example of a debate structure from the Con-
Vote corpus. Each black square node represents a factor
and is connected to the variables in that factor, shown
as round nodes. Unshaded variables correspond to the
representatives’ votes and depict the output variables that
we learn to jointly predict. Shaded variables correspond
to the observed input data— the text of all speeches of a
representative (in dark gray) or all local contexts of refer-
ences between two representatives (in light gray).

and that ERMA further significantly improves per-
formance, particularly when it properly trains with
the same inference algorithm (max-product vs. sum-
product) to be used at test time.

Baseline. As an exact baseline, we compare
against the results of Thomas et al. (2006). Their
test-time Min-Cut algorithm is exact in this case: bi-
nary variables and a two-way classification.

4.2 Information Extraction from
Semi-Structured Text

We utilize the CMU seminar announcement corpus
of Freitag (2000) consisting of emails with seminar
announcements. The task is to extract four fields that
describe each seminar: speaker, location, start time
and end time. The corpus annotates the document
with all mentions of these four fields.

Sequential CRFs have been used successfully for
semi-structured information extraction (Sutton and
McCallum, 2005; Finkel et al., 2005). However,
they cannot model non-local dependencies in the
data. For example, in the seminar announcements
corpus, if “Sutner” is mentioned once in an email
in a context that identifies him as a speaker, it is

Figure 2: Skip-chain CRF for semi-structured informa-
tion extraction.

likely that other occurrences of “Sutner” in the same
email should be marked as speaker. Hence Finkel et
al. (2005) and Sutton and McCallum (2005) propose
adding non-local edges to a sequential CRF to repre-
sent soft consistency constraints. The model, called
a “skip-chain CRF” and shown in Figure 2, contains
a factor linking each pair of capitalized words with
the same lexical form. The skip-chain CRF model
exhibits better empirical performance than its se-
quential counterpart (Sutton and McCallum, 2005;
Finkel et al., 2005).

The non-local skip links make exact inference
intractable. To train the full model, Finkel et al.
(2005) estimate the parameters of a sequential CRF
and then manually select values for the weights of
the non-local edges. At test time, they use Gibbs
sampling to perform inference. Sutton and McCal-
lum (2005) use max-product loopy belief propaga-
tion for test-time inference, and compare a train-
ing procedure that uses a piecewise approximation
of the partition function against using sum-product
loopy belief propagation to compute output variable
marginals. They find that the two training regimens
perform similarly on the overall task. All of these
training procedures try to approximately maximize
conditional likelihood, whereas we will aim to mini-
mize the empirical loss of the approximate inference
and decoding procedures.

Baseline. As an exact (non-loopy) baseline, we
train a model without the skip chains. We give two
baseline numbers in Table 1—for training the exact
CRF with MLE and with ERM. The ERM setting re-
sulted in a statistically significant improvement even
in the exact case, thanks to the use of the loss func-
tion at training time.

4.3 Multi-Label Classification

Multi-label classification is the problem of assign-
ing multiple labels to a document. For example, a
news article can be about both “Libya” and “civil

125

Congressional Voting

12(Stoyanov & Eisner, 2012)

Application:

• Variables:

– Text of all speeches of a 
representative 

– Local contexts of 
references between two 
representatives

• Interactions:
– Words used by 

representative and their 
vote

– Pairs of representatives 
and their local context



Structured Prediction Examples

• Examples of structured prediction

– Part-of-speech (POS) tagging
– Handwriting recognition
– Speech recognition
– Word alignment
– Congressional voting

• Examples of latent structure

– Object recognition

13



Case Study: Object Recognition

Data consists of images x and labels y.

14

pigeon

leopard llama

rhinocerosy(1)

x(1)

y(2)

x(2)

y(4)

x(4)

y(3)

x(3)



Case Study: Object Recognition

Data consists of images x and labels y.

15

• Preprocess data into 
“patches”

• Posit a latent labeling z
describing the object’s 
parts (e.g. head, leg, 
tail, torso, grass)

leopard

• Define graphical 
model with these 
latent variables in 
mind

• z is not observed at 
train or test time



Case Study: Object Recognition

Data consists of images x and labels y.
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• Preprocess data into 
“patches”

• Posit a latent labeling z
describing the object’s 
parts (e.g. head, leg, 
tail, torso, grass)

leopard

• Define graphical 
model with these 
latent variables in 
mind

• z is not observed at 
train or test time

X2

Z2

X7

Z7

Y



Case Study: Object Recognition

Data consists of images x and labels y.
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• Preprocess data into 
“patches”

• Posit a latent labeling z
describing the object’s 
parts (e.g. head, leg, 
tail, torso, grass)

leopard

• Define graphical 
model with these 
latent variables in 
mind

• z is not observed at 
train or test time

ψ2
ψ4

X2

Z2

ψ3

X7

Z7

ψ1

ψ4

ψ4

Y



Structured Prediction
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Preview of challenges to come…
• Consider the task of finding the most probable 

assignment to the output 

Classification Structured Prediction
ŷ =

y
p(y| )

where y � {+1, �1}

ˆ = p( | )

where � Y
and |Y| is very large



Machine Learning

19

The data inspires 
the structures 

we want to 
predict It also tells us 

what to optimize

Our model
defines a score 

for each structure

Learning tunes the 
parameters of the 

model

Inference finds 
{best structure, marginals, 

partition function} for a 
new observation

Domain 
Knowledge

Mathematical 
Modeling

OptimizationCombinatorial 
Optimization

ML

(Inference is usually 
called as a subroutine 

in learning)



Machine Learning
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Data
Model

Learning

Inference

(Inference is usually 
called as a subroutine 

in learning)
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FACTOR GRAPHS
Representation of both directed and undirected graphical models
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Sampling from a Joint Distribution

22time likeflies an arrow

X1 ψ2 X2 ψ4 X3 ψ6 X4 ψ8 X5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0X0

<START>

n v p d nSample 6:

v n v d nSample 5:

v n p d nSample 4:

n v p d nSample 3:

n n v d nSample 2:

n v p d nSample 1:

A joint distribution defines a probability p(x) for each assignment of values x to variables X. 
This gives the proportion of samples that will equal x.



Sampling from a Joint Distribution
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X1

ψ1

ψ2

X2

ψ3

ψ4

X3

ψ5

ψ6

X4

ψ7

ψ8

X5

ψ9

X6

ψ10

X7

ψ12

ψ11

Sample 1:
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ψ12

ψ11

Sample 2:
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ψ10

ψ12

ψ11

Sample 3:

ψ1
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ψ3
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ψ5

ψ6

ψ7

ψ8

ψ9

ψ10

ψ12

ψ11

Sample 4:

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

ψ8

ψ9

ψ10

ψ12

ψ11

A joint distribution defines a probability p(x) for each assignment of values x to variables X. 
This gives the proportion of samples that will equal x.



n n v d n
Sample 2:

time likeflies an arrow

Sampling from a Joint Distribution

24W1 W2 W3 W4 W5

X1 ψ2 X2 ψ4 X3 ψ6 X4 ψ8 X5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0X0

<START>

n v p d n
Sample 1:

time likeflies an arrow

p n n v v
Sample 4:

with youtime will see

n v p n n
Sample 3:

flies withfly their wings

A joint distribution defines a probability p(x) for each assignment of values x to variables X. 
This gives the proportion of samples that will equal x.



W1 W2 W3 W4 W5

X1 ψ2 X2 ψ4 X3 ψ6 X4 ψ8 X5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0X0

<START>

Factors have local opinions (≥ 0)

25

Each black box looks at some of the tags Xi and words Wi

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

Note: We chose to reuse 
the same factors at 

different positions in the 
sentence.



Factors have local opinions (≥ 0)
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time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

Each black box looks at some of the tags Xi and words Wi

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

ti
m

e
fli
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lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

p(n, v, p, d, n, time, flies, like, an, arrow)     =      ?



Global probability = product of local opinions
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p(n, v, p, d, n, time, flies, like, an, arrow)     =       (4 * 8 * 5 * 3 * …)

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

Uh-oh! The probabilities of 
the various assignments sum 

up to Z > 1.
So divide them all by Z.



Markov Random Field (MRF)
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time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

p(n, v, p, d, n, time, flies, like, an, arrow)     =       (4 * 8 * 5 * 3 * …)

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

Joint distribution over tags Xi and words Wi
The individual factors aren’t necessarily probabilities.



time flies like an arrow

n v p d n<START>

Bayesian Networks

29

But sometimes we choose to make them probabilities.  
Constrain each row of a factor to sum to one.  Now Z = 1.

v n p d
v .1 .4 .2 .3
n .8 .1 .1 0
p .2 .3 .2 .3
d .2 .8 0 0

v n p d
v .1 .4 .2 .3
n .8 .1 .1 0
p .2 .3 .2 .3
d .2 .8 0 0

ti
m

e
fli

es
lik

e
…

v .2 .5 .2
n .3 .4 .2
p .1 .1 .3
d .1 .2 .1

ti
m

e
fli

es
lik

e
…

v .2 .5 .2
n .3 .4 .2
p .1 .1 .3
d .1 .2 .1

p(n, v, p, d, n, time, flies, like, an, arrow)     =       (.3 * .8 * .2 * .5 * …)



Markov Random Field (MRF)
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time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

p(n, v, p, d, n, time, flies, like, an, arrow)     =       (4 * 8 * 5 * 3 * …)

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

Joint distribution over tags Xi and words Wi



Conditional Random Field (CRF)

31time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

v 3
n 4

p 0.1
d 0.1

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v 5

n 5
p 0.1
d 0.2

Conditional distribution over tags Xi given words wi.
The factors and Z are now specific to the sentence w.

p(n, v, p, d, n | time, flies, like, an, arrow)     =       (4 * 8 * 5 * 3 * …)



How General Are Factor Graphs?

• Factor graphs can be used to describe
– Markov Random Fields (undirected graphical models)

• i.e., log-linear models over a tuple of variables
– Conditional Random Fields
– Bayesian Networks (directed graphical models)

• Inference treats all of these interchangeably.
– Convert your model to a factor graph first.
– Pearl (1988) gave key strategies for exact inference:
• Belief propagation, for inference on acyclic graphs
• Junction tree algorithm, for making any graph acyclic

(by merging variables and factors: blows up the runtime)



Factor Graph Notation
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• Variables:

• Factors:

Joint Distribution
X1

ψ1

ψ2 X2

ψ3

X3

ψ5

X

ψ

time likeflies an

X8

X7

X9

ψ{1,8,9}

ψ1

ψ{1,8,9}

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ{3}ψ{2}

ψ{1,2}

ψ{1}

ψ{1,8,9}

ψ{2,7,8}

ψ{3,6,7}

ψ{2,3} ψ{3,4}



X1

ψ1

ψ2 X2

ψ3

X3

ψ5

X

ψ

time likeflies an

X8

X7

X9

ψ{1,8,9}

ψ1

ψ{1,8,9}

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ{3}ψ{2}

ψ{1,2}

ψ{1}

ψ{1,8,9}

ψ{2,7,8}

ψ{3,6,7}

ψ{2,3} ψ{3,4}

Factors are Tensors
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• Factors:

v 3
n 4
p 0.1
d 0.1

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

s vp pp …
s 0 2 .3

vp 3 4 2
pp .1 2 1
…

s vp pp …
s 0 2 .3

vp 3 4 2
pp .1 2 1
…

s vp pp …
s 0 2 .3

vp 3 4 2
pp .1 2 1
…s

vp
pp



Converting to Factor Graphs
Each conditional and 
marginal distribution in a 
directed GM becomes a 
factor

Each clique in an 
undirected GM becomes a 
factor
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X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1

X1 X1 X1

X1

X1 X1


