10-607 Computational Foundations for Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Application: Factor Graphs

Matt Gormley Lecture 10 Nov. 26, 2018

Reminders

- Homework C: Data Structures
 - Out: Mon, Nov. 26
 - Due: Mon, Dec. 3 at 11:59pm
- Quiz B: Computation; Programming & Efficiency
 - Wed, Dec. 5, in-class
 - Covers Lectures 7 12

Q&A

APPLICATION: EXACT INFERENCE IN GRAPHICAL MODELS

MOTIVATION: STRUCTURED PREDICTION

Structured Prediction

 Most of the models we've seen so far were for classification

- Given observations: $\mathbf{x} = (x_1, x_2, ..., x_K)$
- Predict a (binary) label: y
- Many real-world problems require structured prediction
 - Given observations: $\mathbf{x} = (x_1, x_2, ..., x_K)$
 - Predict a structure: $y = (y_1, y_2, ..., y_J)$
- Some classification problems benefit from latent structure

Structured Prediction Examples

Examples of structured prediction

- Part-of-speech (POS) tagging
- Handwriting recognition
- Speech recognition
- Word alignment
- Congressional voting

Examples of latent structure

Object recognition

Dataset for Supervised Part-of-Speech (POS) Tagging

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

Sample 1:	n	flies	p like	d	$\begin{array}{c c} & & \\ & &$
Sample 2:	n	n	like	d	$\begin{array}{c c} n \\ \hline \\ x^{(2)} \\ \end{array}$
Sample 3:	n	fly	with	heir	$\begin{cases} \mathbf{n} \\ \mathbf{vings} \end{cases} \mathbf{y}^{(3)}$
Sample 4:	with	n	you	will	$\begin{cases} \mathbf{v} \\ \mathbf{see} \end{cases} \mathbf{y}^{(4)}$

Dataset for Supervised Handwriting Recognition

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

Dataset for Supervised Phoneme (Speech) Recognition

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

Application:

Word Alignment / Phrase Extraction

Variables (boolean):

For each (Chinese phrase, English phrase) pair, are they linked?

Interactions:

- Word fertilities
- Few "jumps" (discontinuities)
- Syntactic reorderings
- "ITG contraint" on alignment
- Phrases are disjoint (?)

Application:

Congressional Voting

Structured Prediction Examples

Examples of structured prediction

- Part-of-speech (POS) tagging
- Handwriting recognition
- Speech recognition
- Word alignment
- Congressional voting

Examples of latent structure

Object recognition

Data consists of images x and labels y.

Data consists of images x and labels y.

- Preprocess data into "patches"
- Posit a latent labeling z describing the object's parts (e.g. head, leg, tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time

leopard

Data consists of images x and labels y.

- Preprocess data into "patches"
- Posit a latent labeling z
 describing the object's
 parts (e.g. head, leg,
 tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time

leopard (Y)

Data consists of images x and labels y.

- Preprocess data into "patches"
- Posit a latent labeling z describing the object's parts (e.g. head, leg, tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time

Structured Prediction

Preview of challenges to come...

Consider the task of finding the most probable assignment to the output

Classification
$$\hat{y} = \operatorname*{argmax}_{y} p(y|\mathbf{x})$$
 where $y \in \{+1, -1\}$

Structured Prediction
$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y}} p(\mathbf{y}|\mathbf{x})$$
 where $\mathbf{y} \in \mathcal{Y}$ and $|\mathcal{Y}|$ is very large

Machine Learning

The data inspires
the structures
we want to
predict

{best structure, marginals, partition function} for a new observation

(Inference is usually called as a subroutine in learning)

Our **model**defines a score
for each structure

It also tells us what to optimize

Learning tunes the parameters of the model

Machine Learning

Representation of both directed and undirected graphical models

FACTOR GRAPHS

Sampling from a Joint Distribution

A **joint distribution** defines a probability p(x) for each assignment of values x to variables X. This gives the **proportion** of samples that will equal x.

Sampling from a Joint Distribution

A **joint distribution** defines a probability p(x) for each assignment of values x to variables X. This gives the **proportion** of samples that will equal x.

Sampling from a Joint Distribution

A **joint distribution** defines a probability p(x) for each assignment of values x to variables X. This gives the **proportion** of samples that will equal x.

Factors have local opinions (≥ 0)

Each black box looks at *some* of the tags X_i and words W_i

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
p	1	3	1	3
d	0.1	8	0	0

Note: We chose to reuse the same factors at different positions in the sentence.

Factors have local opinions (≥ 0)

Each black box looks at *some* of the tags X_i and words W_i

Global probability = product of local opinions

Each black box looks at *some* of the tags X_i and words W_i

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

Uh-oh! The probabilities of the various assignments sum up to Z > 1.

So divide them all by Z.

Markov Random Field (MRF)

Joint distribution over tags X_i and words W_i The individual factors aren't necessarily probabilities.

0.1 0.1

0.1 0.2 0.1

0.1 0.1 3

0.1 0.2 0.1

Bayesian Networks

But sometimes we *choose* to make them probabilities. Constrain each row of a factor to sum to one. Now Z = 1.

Markov Random Field (MRF)

Joint distribution over tags X_i and words W_i

$$p(n, v, p, d, n, time, flies, like, an, arrow) = \frac{1}{Z}(4*8*5*3*...)$$

	v	n	p	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

30

Conditional Random Field (CRF)

Conditional distribution over tags X_i given words w_i . The factors and Z are now specific to the sentence w.

$$p(n, v, p, d, n | time, flies, like, an, arrow) = \frac{1}{Z} (4 * 8 * 5 * 3 * ...)$$

$$v | n | p | d v | 1 6 3 4 u |$$

How General Are Factor Graphs?

- Factor graphs can be used to describe
 - Markov Random Fields (undirected graphical models)
 - i.e., log-linear models over a tuple of variables
 - Conditional Random Fields
 - Bayesian Networks (directed graphical models)
- Inference treats all of these interchangeably.
 - Convert your model to a factor graph first.
 - Pearl (1988) gave key strategies for exact inference:
 - Belief propagation, for inference on acyclic graphs
 - Junction tree algorithm, for making any graph acyclic (by merging variables and factors: blows up the runtime)

Factor Graph Notation

$$\mathcal{X} = \{X_1, \dots, X_i, \dots, X_n\}$$

• Factors:

$$\psi_{\alpha}, \psi_{\beta}, \psi_{\gamma}, \dots$$

where $\alpha, \beta, \gamma, \ldots \subseteq \{1, \ldots n\}$

Joint Distribution

$$p(\boldsymbol{x}) = rac{1}{Z} \prod_{\alpha} \psi_{\alpha}(\boldsymbol{x}_{\alpha})$$

Factors are Tensors

 $\psi_{\alpha}, \psi_{\beta}, \psi_{\gamma}, \dots$

Converting to Factor Graphs

Each conditional and marginal distribution in a directed GM becomes a factor

Each clique in an **undirected GM** becomes a factor

