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Figure 2: Convolutional neural network character recognizer. This architecture 
is robust to local translations and distortions, with subsampling, shared weights, 
and local receptive fields. 

number of subsampling layers and the sizes of the kernels are chosen, 
the sizes of all the layers, including the input, are determined unambigu- 
ously. The only architectural parameters that remain to be selected are 
the number of feature maps in each layer, and the information as to what 
feature map is connected to what other feature map. In our case, the sub- 
sampling rates were chosen as small as possible (2 x 2), and the kernels 
as small as possible in the first layer (3 x 3) to limit the total number of 
connections. Kernel sizes in the upper layers are chosen to be as small as 
possible while satisfying the size constraints mentioned above. The last 
subsampling layer performs a vertical subsampling to make the network 
more robust to errors of the word normalizer (which tends to create vari- 
ations in vertical position). Several architectures were tried (but clearly 
not exhaustively), varying the type of layers (convolution, subsampling), 
the kernel sizes, and the number of feature maps. 

Larger architectures did not necessarily perform better and required 
considerably more time to be trained. A very small architecture with 
half the input field also performed worse, because of insufficient input 
resolution. Note that the input resolution is nonetheless much less than 
for optical character resolution, because the angle and curvature provide 
more information than a single grey level at each pixel. 

Training proceeded in two phases. First, we kept the centers of the 
RBFs fixed, and trained the network weights so as to maximize the log- 
arithm of the output RBF corresponding to the correct class (maximum 
log-likelihood). This is equivalent to minimizing the mean-squared er- 
ror between the previous layer and the center of the correct-class RBF. 

Computer Vision

4. Learning to recognize images
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“…The recognizer is a 
convolution network that can 
be spatially replicated. From 
the network output, a hidden 
Markov model produces 
word scores. The entire 
system is globally trained to 
minimize word-level 
errors.…”

(LeCun et al., 1995)

THEN NOW

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201678

(slide from Kaiming He’s recent presentation)

Images from https://blog.openai.com/generative-models/
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Syllabus Highlights

The syllabus is located on the course webpage:

http://www.cs.cmu.edu/~mgormley/courses/606-607-f18

The course policies are required reading.
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606/607 Syllabus Highlights
• Grading: 55% homework, 10% in-

class quizzes, 30% final exam, 5% 
participation

• Final Exam: 
– 606: Mini-I final exam week, date 

TBD
– 607: Mini-II final exam week, date 

TBD
• In-Class Quizzes: always 

announced ahead of time
• Homework: 4 assignments with 

written / programming portions
– 2 grace days for the unexpected
– Late submissions: 80% day 1, 60% 

day 2, 40% day 3, 20% day 4
– No submissions accepted after 4 

days w/o extension
– Extension requests: see syllabus

• Recitations: Fridays, same 
time/place as lecture (optional, 
interactive sessions)

• Readings: required, online, 
recommended for after lecture

• Technologies: Piazza (discussion), 
Gradescope (homework), Canvas 
(gradebook only)

• Academic Integrity:
– Collaboration encouraged, but 

must be documented
– Solutions must always be written 

independently
– No re-use of found code / past 

assignments
– Severe penalties (i.e. failure)

• Office Hours: posted on Google 
Calendar on “People” page
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Lectures

• You should ask lots of questions
– Interrupting (by raising a hand) to ask your 

question is strongly encouraged
– Asking questions later on Piazza is also great

• When I ask a question…
– I want you to answer
– Even if you don’t answer, think it through as 

though I’m about to call on you
• Interaction improves learning (both in-class 

and at my office hours)
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Textbooks

These are optional, but highly recommended 
as an alternate presentation of the material
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Expected Background
10-606 (Math Background 4 ML)
You should be familiar with some of the 
following…

• Calculus: 
– can take scalar derivatives
– can solve scalar integrals

• Linear Algebra:
– know basic vector operations
– seen matrix multiplication

• Probability:
– seen the basics: conditioning, Bayes Rule, 

etc.
• Programming:

– know some Python 
OR
have sufficient programming background 
to pick up the basics of Python

But we’ll offer practice to make sure you 
can catch up on your weaker areas

10-607 (CS Background 4 ML)
You should…

• be comfortable with all the topics 
listed for 10-606

• ideally, have the mathematical 
maturity of someone who completed 
10-606 because it will aide in 
understanding the motivating 
examples from machine learning

That said, the content of 10-607 is 
designed stand alone
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Q&A
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Q: Is this course right for me?

A: • If you’re a Master’s or PhD and you lack some of the prerequisite 
material for 10-601/701, this is definitely the right course for you!

• If you’re a Master’s or PhD and you studied the prerequisite 
material for 10-601/701…but it was a long time ago, this is certainly 
the right course for you.

• If you’re an undergrad, I would recommend the usual prereq
sequence required for 10-601/701. 

• For ugrad/MS/PhD: If you tried taken an Intro ML course here and 
felt a bit lost in all the math/CS, this is a great place to start.

Q: What calculus textbook would you recommend?

A: Good question…I’m still working on that one. 



Q&A
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Q: What do I do if I’m feeling a bit lost in the math 
and CS in 10-606/607?

A: Let me know ASAP! (Do so in office hours, 
Piazza note, the middle of class, etc.) Our goal 
is to provide you with a learning environment 
in which you thrive. We’ll certainly make 
adjustments if we need to.



MOTIVATION: SETS & TYPES
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Sets, Types, and 
Functions show up 

everywhere in Machine 
Learning



(Negative) Gradients
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These are the negative gradients that 

Gradient Descent would follow.



So instead, we could offer a mathematical definition.

…but even this definition requires some carefully defined objects 
(the vectors, a function, the set of reals, the set of real-valued 
vectors of length M, etc.)

We could draw a picture.

…but that’s a bit informal.

Convexity
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Slide adapted from William Cohen

Suppose we wish to define convexity of a function…



Data for ML
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10601 Notation Crib Sheet

Matthew R. Gormley

February 26, 2018

1 Scalars, Vectors, Matrices

Scalars are either lowercase letters x, y, z,α,β, γ or uppercase Latin letters N,M, T . The latter
are typically used to indicate a count (e.g. number of examples, features, timesteps) and are often
accompanied by a corresponding index n,m, t (e.g. current example, feature, timestep). Vectors
are bold lowercase letters x = [x1, x2, . . . , xM ]T and are typically assumed to be column vectors—
hence the transposed row vector in this example. When handwritten, a vector is indicated by an
over-arrow x⃗ = [x1, x2, . . . , xM ]T . Matrices are bold uppercase letters:

U =

⎡

⎢⎢⎢⎣

U11 U12 . . . U1m

U21 U22
... . . . ...

Un1 . . . Unm

⎤

⎥⎥⎥⎦

As in the examples above, subscripts are used as indices into structured objects such as vectors or
matrices.

2 Sets

Sets are represented by caligraphic uppercase letters X ,Y,D. We often index a set by labels in
parenthesized superscripts S = {s(1), s(2), . . . , s(S)}, where S = |S|. A shorthand for this equiva-
lently defines S = {s(s)}Ss=1. This shorthand is convenient when defining a set of training exam-
ples: D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N))} is equivalent to D = {(x(n), y(n))}Nn=1.

3 Random Variables

Random variables are also uppercase Latin letters X,Y, Z, but their use is typically apparent
from context. When a random variable Xi and a scalar xi are upper/lower-case versions of each
other, we typically mean that the scalar is a value taken by the random variable.

When possible, we try to reserve Greek letters for parameters θ,φ or hyperparameters α,β, γ.

For a random variable X, we write X ∼ Gaussian(µ,σ2) to indicate that X follows a 1D Gaussian
distribution with mean µ and variance σ2. We write x ∼ Gaussian(µ,σ2) to say that x is a value
sampled from the same distribution.

1

What is the object we talk 
about more in Machine 

Learning than anything else?

Our data!
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1

The data consists of a 
set of tuples



The importance of sets…

• Gaussian Discriminant Analysis and Gaussian 
Mixture Models are almost identical

• There’s really only one practical difference
• Can you spot it?
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See next two slides…



Gaussian Discriminant Analysis
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Data: 

Model: Joint:

Log-likelihood:

Generative Story: z � Categorical(�)

� Gaussian(µz,�z)

p( , z; �, µ,�) = p( |z; µ,�)p(z; �)

D = {( (i), (i))}N
i=1 where

(i) � RM and z(i) � {1, . . . , K}

�(�, µ,�) =
N�

i=1

p( (i), z(i); �, µ,�)

=
N�

i=1

p( (i)|z(i); µ,�) + p(z(i); �)



Gaussian Mixture-Model
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Data: 

Assumewe are given data, D, consisting ofN fully unsupervised ex-
amples in M dimensions:

D = { (i)}N
i=1 where (i) � RM

Model: Joint:

Marginal:

(Marginal) Log-likelihood:

Generative Story: z � Categorical(�)

� Gaussian(µz,�z)

p( ; �, µ,�) =
K�

z=1

p( |z; µ,�)p(z; �)

p( , z; �, µ,�) = p( |z; µ,�)p(z; �)

�(�, µ,�) =
N�

i=1

p( (i); �, µ,�)

=
N�

i=1

K�

z=1

p( (i)|z; µ,�)p(z; �)



Notation for ML
Machine Learning is notorious for requiring lots of 
notation…and not always being terribly consistent about it!
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A conditional probability distribution over random variable X given Y and Z is written
P (X|Y, Z) and its probability mass function (pmf) or probability density function (pdf)
is p(x|y, z). If the probability distribution has parameters α,β, we can write its pmf/pdf in at least
three equivalent ways: A statistician might prefer p(x|y, z;α,β) to clearly demarcate the parame-
ters. A graphical models expert prefer p(x|y, z,α,β) since said parameters are really just additional
random variables. A typographer might prefer to save ink by writing pα,β(x|y, z). To refer to this
pmf/pdf as a function over possible values of a we would elide it as in pα,β(·|y, z). Using our ∼
notation from above, we could then write that X follows the distribution X ∼ pα,β(·|y, z) and x is
a sample from it x ∼ pα,β(·|y, z).

The expectation of a random variable X is E[X]. When dealing with random quantities for which
the generating distribution might not be clear we can denote it in the expectation. For example,
Ex∼pα,β(·|y,z)[f(x, y, z)] is the expectation of f(x, y, z) for some function f where x is sampled from
the distribution pα,β(·|y, z) and y and z are constant for the evaluation of this expectation.

4 Functions and Derivatives

Suppose we have a function f(x). We write its partial derivative with respect to x as ∂f(x)
∂x or

df(x)
dx .1 We also denote its first derivative as f ′(x), its second derivative as f ′′(x), and so on. For

a multivariate function f(x) = f(x1, . . . , xM ), we write its gradient with respect to x as ∇xf(x)
and frequently omit the subscript, i.e. ∇f(x), when it is clear from context—it might not be for a
gradient such as ∇yg(x,y).

5 Common Conventions

The table below lists additional common conventions we follow:

Notation Description

N number of training examples
M number of feature types
K number of classes

n or i current training example
m current feature type
k current class
Z set of integers
R set of reals

RM set of real-valued vectors of length M
{0, 1}M set of binary vectors of length M

x feature vector (input) where x = [x1, x2, . . . , xM ]T ; typically
x ∈ RM or x ∈ {0, 1}M

1Note that a more careful notation system would always use ∂f(x)
∂x for partial derivatives, since df(x)

dx is typically
reserved for total derivatives. However, only partial derivatives make an appearance herein.

2

y label / regressand (output); for classification y ∈
{1, 2, . . . ,K}; for binary classification y ∈ {0, 1} or y ∈
{+1,−1}; for regression, y ∈ R

X input space, i.e. x ∈ X
Y output space, i.e. y ∈ Y c

x(i) the ith feature vector in the training data
y(i) the ith true output in the training data
x(i)m the mth feature of the ith feature vector

(x(i), y(i)) the ith training example (feature vector, true output)
D set of training examples; for supervised learning D =

{(x(n), y(n))}Nn=1; for unsupervised learning D = {x(n)}Nn=1

X design matrix; the ith row contains the features of the ith
training example x(i); i.e the ith row contains x(i)1 , . . . , x(i)M

X1, . . . , XM random variables corresponding to feature vector x; (note:
we generally avoid defining a vector-valued random variable
X = [X1, X2, . . . , XM ]T so that X is not overloaded with the
design matrix)

Y random variable corresponding to predicted class y
P (Y = y|X = x) probability of random variable Y taking value y given that

random variable X takes value x
p(y|x) shorthand for P (Y = y|X = x)

θ model parameters
w model parameters (weights of linear model)
b model parameter (bias term of linear model)

ℓ(θ) log-likelihood of the data; depending on context, this might
alternatively be the log- conditional likelihood or log-
marginal likelihood

J(θ) objective function
J (i)(θ) example i’s contribution to the objective function; typically

J(θ) = 1
N

∑N
i=1 J

(i)(θ)
∇J(θ) gradient of the objective function with respect to model pa-

rameters θ
∇J (i)(θ) gradient of J (i)(θ) with respect to model parameters θ

λ stepsize in numerical optimization
θTx or xTθ or θ · x dot product of model parameters and features

hθ(x) decision function / decision rule / hypothesis
H hypothesis space; we say that h ∈ H
ŷ prediction of a decision function, e.g. ŷ = hθ(x)

θ̂ model parameters that result from learning
ℓ(ŷ, y) loss function

p∗(x, y) unknown data generating distribution of labeled examples
p∗(x) unknown data generating distribution of feature vectors only
c∗(x) true unknown hypothesis (i.e. oracle labeling function), e.g.

y = c∗(x)

z Values of unknown variables (latent)
Z1, . . . , ZC random variables (latent) corresponding to z

3

y predicted structure (output) for structured prediction
Y1, . . . , YC random variables corresponding to predicted structure y

I(a = b) indicator function which returns 1 when a equals b and 0
otherwise—other notations are also possible I(a = b) =
1(a = b) = 1a=b

4
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PRELIMINARIES: SETS AND TYPES
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Sets
Chalkboard
– Definitions: Set, element of, equality, subset
– Example: Sets of sets
– Set builder notation
– Python list/set comprehentions
– Exercise: Set builder notation
– Definitions: Union, intersection, difference, 

complement
– Exercise: Set complement
– Tuples and set product
– Exercise: Set product
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Data Types and Functions

Chalkboard
– Data types, structs, unions
– Tagged unions
– Exercise: Tagged unions
– Functions
– Anonymous functions
– Exercises: Functions
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