10-606 Mathematical Foundations for Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University # Sets, Data Types, and Functions Matt Gormley Lecture 2 August 29, 2018 ### Computer Vision Correction... ### 4. Learning to recognize images "...The recognizer is a convolution network that can be spatially replicated. From the network output, a hidden Markov model produces word scores. The entire system is globally trained to minimize word-level errors...." ### **SYLLABUS HIGHLIGHTS** ### Syllabus Highlights The syllabus is located on the course webpage: http://www.cs.cmu.edu/~mgormley/courses/606-607-f18 The course policies are required reading. # 606/607 Syllabus Highlights - Grading: 55% homework, 10% inclass quizzes, 30% final exam, 5% participation - Final Exam: - 606: Mini-I final exam week, date TBD - 607: Mini-II final exam week, date TBD - In-Class Quizzes: always announced ahead of time - Homework: 4 assignments with written / programming portions - 2 grace days for the unexpected - Late submissions: 80% day 1, 60% day 2, 40% day 3, 20% day 4 - No submissions accepted after 4 days w/o extension - Extension requests: see syllabus - Recitations: Fridays, same time/place as lecture (optional, interactive sessions) - Readings: required, online, recommended for after lecture - Technologies: Piazza (discussion), Gradescope (homework), Canvas (gradebook only) - Academic Integrity: - Collaboration encouraged, but must be documented - Solutions must always be written independently - No re-use of found code / past assignments - Severe penalties (i.e. failure) - Office Hours: posted on Google Calendar on "People" page # 606/607 Syllabus Highlights - Grading: 55% homework, 10% inclass quizzes, 30% final exam, 5% participation - Final Exam: - 606: Mini-I final exam week, date TBD - 607: Mini-II final exam week, date TBD - In-Class Quizzes: always announced ahead of time - Homework: 4 assignments with written / programming portions - 2 grace days for the unexpected - Late submissions: 80% day 1, 60% day 2, 40% day 3, 20% day 4 - No submissions accepted after 4 days w/o extension - Extension requests: see syllabus - Recitations: Fridays, same time/place as lecture (optional, interactive sessions) - Readings: required, online, recommended for after lecture - Technologies: Piazza (discussion), Gradescope (homework), Canvas (gradebook only) - Academic Integrity: - Collaboration encouraged, but must be documented - Solutions must always be written independently - No re-use of found code / past assignments - Severe penalties (i.e. failure) - Office Hours: posted on Google Calendar on "People" page # 606/607 Syllabus Highlights - Grading: 55% homework, 10% inclass quizzes, 30% final exam, 5% participation - Final Exam: - 606: Mini-I final exam week, date TBD - 607: Mini-II final exam week, date TBD - In-Class Quizzes: always announced ahead of time - Homework: 4 assignments with written / programming portions - 2 grace days for the unexpected - Late submissions: 80% day 1, 60% day 2, 40% day 3, 20% day 4 - No submissions accepted after 4 days w/o extension - Extension requests: see syllabus - Recitations: Fridays, same time/place as lecture (optional, interactive sessions) - Readings: required, online, recommended for after lecture - Technologies: Piazza (discussion), Gradescope (homework), Canvas (gradebook only) - Academic Integrity: - Collaboration encouraged, but must be documented - Solutions must always be written independently - No re-use of found code / past assignments - Severe penalties (i.e. failure) - Office Hours: posted on Google Calendar on "People" page ### Lectures - You should ask lots of questions - Interrupting (by raising a hand) to ask your question is strongly encouraged - Asking questions later on Piazza is also great - When I ask a question... - I want you to answer - Even if you don't answer, think it through as though I'm about to call on you - Interaction improves learning (both in-class and at my office hours) ### **Textbooks** These are optional, but highly recommended as an alternate presentation of the material # **Expected Background** ### 10-606 (Math Background 4 ML) You should be familiar with some of the following... - Calculus: - can take scalar derivatives - can solve scalar integrals - Linear Algebra: - know basic vector operations - seen matrix multiplication - Probability: - seen the basics: conditioning, Bayes Rule, etc. - Programming: - know some Python OR have sufficient programming background to pick up the basics of Python But we'll offer practice to make sure you can catch up on your weaker areas ### 10-607 (CS Background 4 ML) You should... - be comfortable with all the topics listed for 10-606 - ideally, have the mathematical maturity of someone who completed 10-606 **because** it will aide in understanding the motivating examples from machine learning That said, the content of 10-607 is designed stand alone ### Q&A ### Q: Is this course right for me? - If you're a Master's or PhD and you lack some of the prerequisite material for 10-601/701, this is definitely the right course for you! - If you're a Master's or PhD and you studied the prerequisite material for 10-601/701... but it was a long time ago, this is certainly the right course for you. - If you're an undergrad, I would recommend the usual prereq sequence required for 10-601/701. - For ugrad/MS/PhD: If you tried taken an Intro ML course here and felt a bit lost in all the math/CS, this is a great place to start. Q: What calculus textbook would you recommend? A: Good question... I'm still working on that one. ### Q&A Q: What do I do if I'm feeling a bit lost in the math and CS in 10-606/607? A: Let me know ASAP! (Do so in office hours, Piazza note, the middle of class, etc.) Our goal is to provide you with a learning environment in which you thrive. We'll certainly make adjustments if we need to. ### **MOTIVATION: SETS & TYPES** # Sets, Types, and Functions show up everywhere in Machine Learning # (Negative) Gradients These are the **negative** gradients that Gradient **Descent** would follow. ### Convexity Suppose we wish to define convexity of a function... We could draw a picture. ... but that's a bit informal. So instead, we could offer a mathematical definition. Function $$f:\mathbb{R}^M o \mathbb{R}$$ is **convex** if $\forall \ \mathbf{x}_1 \in \mathbb{R}^M, \mathbf{x}_2 \in \mathbb{R}^M, 0 \leq t \leq 1$: $$f(t\mathbf{x}_1 + (1-t)\mathbf{x}_2) \leq tf(\mathbf{x}_1) + (1-t)f(\mathbf{x}_2)$$... but even this definition requires some carefully defined objects (the vectors, a function, the set of reals, the set of real-valued vectors of length M, etc.) ### Data for ML What is the object we talk about more in Machine Learning than anything else? Our data! $$\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$$ The data consists of a set of tuples $$\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(N)}, y^{(N)}) \}$$ ### The importance of sets... - Gaussian Discriminant Analysis and Gaussian Mixture Models are almost identical - There's really only one practical difference - Can you spot it? See next two slides... ### Gaussian Discriminant Analysis **Data:** $\mathcal{D} = \{(\mathbf{x}^{(i)}, \mathbf{z}^{(i)})\}_{i=1}^N$ where $\mathbf{x}^{(i)} \in \mathbb{R}^M$ and $z^{(i)} \in \{1, \dots, K\}$ **Generative Story:** $z \sim \mathsf{Categorical}(\phi)$ $\mathbf{x} \sim \mathsf{Gaussian}(oldsymbol{\mu}_z, oldsymbol{\Sigma}_z)$ Model: Joint: $p(\mathbf{x}, z; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = p(\mathbf{x}|z; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z; \boldsymbol{\phi})$ Log-likelihood: $$\ell(\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \log \prod_{i=1}^{N} p(\mathbf{x}^{(i)}, z^{(i)}; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$ $$= \sum_{i=1}^{N} \log p(\mathbf{x}^{(i)} | z^{(i)}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) + \log p(z^{(i)}; \boldsymbol{\phi})$$ ### Gaussian Mixture-Model **Data:** $$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$$ where $\mathbf{x}^{(i)} \in \mathbb{R}^M$ **Generative Story:** $z \sim \mathsf{Categorical}(\phi)$ $\mathbf{x} \sim \mathsf{Gaussian}(oldsymbol{\mu}_z, oldsymbol{\Sigma}_z)$ Model: Joint: $p(\mathbf{x}, z; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = p(\mathbf{x}|z; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z; \boldsymbol{\phi})$ Marginal: $$p(\mathbf{x}; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{z=1}^K p(\mathbf{x}|z; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z; \boldsymbol{\phi})$$ ### (Marginal) Log-likelihood: $$\ell(\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \log \prod_{i=1}^{N} p(\mathbf{x}^{(i)}; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$ $$= \sum_{i=1}^{N} \log \sum_{z=1}^{K} p(\mathbf{x}^{(i)}|z; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z; \boldsymbol{\phi})$$ ### Notation for ML # Machine Learning is notorious for requiring lots of notation... and not always being terribly consistent about it! 10601 Notation Crib Sheet Matthew R. Gormley February 26, 2018 ### 1 Scalars, Vectors, Matrices Scalars are either lowercase letters $x_{(k),1,0,0,0}$, or uppercase Latin letters N,M,T. The latter are typically used to indicate a count (e.g., number of casample, Sattures, timestep) and are often accompanied by a corresponding index n, m_t (e.g. current example, foatures, timestep). Vectors are bold lowercase letters $\mathbf{x} = [x_1, x_2, \dots, x_M]^T$ and are typically assumed to be column vector—hence the transposed row vector in this example. When handwritten, a vector is indicated by an over-arrow $\mathbf{z} = [x_1, x_2, \dots, x_M]^T$ and are typicase letters: $$\mathbf{U} = \begin{bmatrix} U_{11} & U_{12} & \dots & U_{1m} \\ U_{21} & U_{22} & & & \\ \vdots & & \ddots & \vdots \\ U_{n1} & & \dots & U_{nm} \end{bmatrix}$$ As in the examples above, subscripts are used as indices into structured objects such as vectors matrices ### 2 Sets Sets are represented by caligraphic uppercase letters $X, \mathcal{Y}, \mathcal{D}$. We often index a set by labels in parenthesized superacipts $S = \{g^{(1)}, g^{(2)}, \dots, g^{(N)}\}$, where S = |S|. A shorthand for this equivalently define $S = \{g^{(1)}, g^{(2)}, \dots, g^{(N)}\}$ such such than disconvenient when defining a set of training examples: $\mathcal{D} = \{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(N)}, \mathbf{y}^{(N)})\}$ is equivalent to $\mathcal{D} = \{(\mathbf{x}^{(n)}, \mathbf{y}^{(n)}), \mathbf{y}^{(n)}, \mathbf{y}^{(N)}\}$ ### 3 Random Variables Random variables are also uppercase Latin letters X, Y, Z, but their use is typically apparent from context. When a random variable X_i and a scalar x_i are upper/lower-case versions of each other, we typically mean that the scalar is a value taken by the random variable. When possible, we try to reserve Greek letters for parameters θ , ϕ or hyperparameters α , β , γ . For a random variable X, we write $X \sim \operatorname{Gaussian}(\mu, \sigma^2)$ to indicate that X follows a 1D Gaussian distribution with mean μ and variance σ^2 . We write $x \sim \operatorname{Gaussian}(\mu, \sigma^2)$ to say that x is a value A conditional probability distribution over madom variable X given Y and Z is written P(X|Y,Z) and its probability density function (grid) in $p(g|_{X})$. If the probability distribution has parameters α, β, w can write its purifyed in a loss three equivalent ways. A statistical multipreter $P(g|_{X})$ is α, β to density demantice the parameters. A graphical models expert prefer $p(g|_{X})$; α, β , since said parameters are radly just additional maximum variables. A propagation g in the prefer to saw in the yearing $g_{\alpha,\beta}(g_{\alpha})$; α is often to this institute of g in The expectation of a random variable X is $\mathbb{E}[X]$. When dealing with random quantities for which the generating distribution might not be clear we can denote it in the expectation. For example, $\mathbb{E}_{x\sim p_{-n}/y_{-n}}[f(x,y,z)]$ is the expectation of f(x,y,z) for some function f where x is sampled from the distribution $p_{-n}g'(|y,z)$ and y and z are constant for the evaluation of this expectation. ### 4 Functions and Derivatives Suppose we have a function f(x). We write its partial derivative with respect to x as $\frac{\partial f(x)}{\partial x}$ or $\frac{\partial f(x)}{\partial x}$ or $\frac{\partial f(x)}{\partial x}$ is second derivative as f'(x), and so on. For a multivariate function $f(\mathbf{x}) = f(x_1, \dots x_d)$, we write to gradient with respect to $\mathbf{x} = \mathbf{x}_d \cdot \mathbf{x}_d$ and frequently omit the subscript, i.e. $\nabla f(\mathbf{x})$, when it is clear from context—it might not be for a gradient such as $\nabla f(\mathbf{x})$ and $\nabla f(\mathbf{x})$. ### 5 Common Conventions e table below lists additional common conventions we follow: ``` Notation Description M number of training compiles M number of facture types K number of facture types n or i current training comaple m current facture type Z set of integers R set of reals R set of reals G and one of the compile ``` ¹Note that a more careful notation system would always use $\frac{\partial f(x)}{\partial x}$ for partial derivatives, since $\frac{\partial f(x)}{\partial x}$ is typical 2 y label / regressand (output); for classification $y \in \{1,2,\dots,K\}$; for binary classification $y \in \{1,2,\dots,K\}$; or primary classification $y \in \{1,2,\dots,K\}$; or primary classification $y \in \{0,1\}$ or $y \in \{1,1,\dots,K\}$; for primary classification $y \in \{0,1\}$ or $y \in \{1,1,\dots,K\}$; or primary classification $y \in \{0,1\}$ or $y \in \{1,1,\dots,K\}$; or primary classification $y \in \{1,\dots,K\}$; or $\{1,\dots,K\}$; or the finite contains the feature of the first three primary classifies $y \in \{1,\dots,K\}$; or $y \in \{1,\dots,K\}$; or the $y \in \{1,\dots,K\}$ or $y \in \{1,\dots,K\}$; or the $y \in \{1,\dots,K\}$ or $y \in \{1,\dots,K\}$; or the $y \in \{1,\dots,K\}$ or $y \in \{1,\dots,K\}$; or the $y \in \{1,\dots,K\}$ or $y \in \{1,\dots,K\}$; or the $y \in \{1,\dots,K\}$ or $y \in \{1,\dots,K\}$; or the $y \in \{1,\dots,K\}$ or $y \in \{1,\dots,K\}$; or the $y \in \{1,\dots,K\}$ or $y \in \{1,\dots,K\}$; or $y \in \{1,\dots,K\}$; or the $y \in \{1,\dots,K\}$ or $y \in \{1,\dots,K\}$; y produced structure (output) for structured prediction $Y_1,...,Y_n$: random variables corresponding to predicted structure y $\mathbb{I}(a=b)$ indicator function which returns I when a equals b and 0 orderwise—other notations are also possible $\mathbb{I}(a=b)=\mathbb{I}_{a=b}$ ### PRELIMINARIES: SETS AND TYPES ### Sets ### Chalkboard - Definitions: Set, element of, equality, subset - Example: Sets of sets - Set builder notation - Python list/set comprehentions - Exercise: Set builder notation - Definitions: Union, intersection, difference, complement - Exercise: Set complement - Tuples and set product - Exercise: Set product ### Data Types and Functions ### Chalkboard - Data types, structs, unions - Tagged unions - Exercise: Tagged unions - Functions - Anonymous functions - Exercises: Functions