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SYLLABUS HIGHLIGHTS



Syllabus Highlights

The syllabus is located on the course webpage:

The course policies are required reading.



606/607 Syllabus Highlights

Grading: 55% homework, 10% in-
class quizzes, 30% final exam, 5%
participation

Final Exam:

— 606: Mini-I final exam week, date
TBD

— 607: Mini-ll final exam week, date
TBD

In-Class Quizzes: always
announced ahead of time

Homework: 4 assignments with
written / programming portions
— 2 grace days for the unexpected

— Late submissions: 80% day 1, 60%
day 2, 40% day 3, 20% day 4

— No submissions accepted after 4
days w/o extension

— Extension requests: see syllabus

Recitations: Fridays, same
time/place as lecture (optional,
interactive sessions)

Readings: required, online,
recommended for after lecture
Technologies: Piazza (discussion),
Gradescope (homework), Canvas
(gradebook only)

Academic Integrity:

— Collaboration encouraged, but
must be documented

— Solutions must always be written
independently

— No re-use of found code / past
assignments

— Severe penalties (i.e. failure)

Office Hours: posted on Google
Calendar on “People” page
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Lectures

* You should ask lots of questions

— Interrupting (by raising a hand) to ask your
question is strongly encouraged

— Asking questions later on Piazza is also great
* When | ask a question...

— | want you to answer

— Even if you don’t answer, think it through as
though I’m about to call on you

* Interaction improves learning (both in-class
and at my office hours)



Textbooks

These are optional, but highly recommended
as an alternate presentation of the material

INTRODUCTION TO

PROBABILITY




Expected Background

10-606 (Math Background 4 ML)

You should be familiar with some of the
following...

e Calculus:
— can take scalar derivatives
— cansolve scalar integrals
* Linear Algebra:
— know basic vector operations
— seen matrix multiplication
* Probability:
— seen the basics: conditioning, Bayes Rule,
etc.

* Programming:
— know some Python
OR

have sufficient programming background
to pick up the basics of Python

But we’ll offer practice to make sure you
can catch up on your weaker areas

10-607 (CS Background 4 ML)

You should...

* be comfortable with all the topics
listed for 10-606

* ideally, have the mathematical
maturity of someone who completed
10-606 because it will aide in
understanding the motivating
examples from machine learning

That said, the content of 10-607 is
designed stand alone



Q&A

Q: Is this course right for me?

A:

If you’re a Master’s or PhD and you lack some of the prerequisite
material for 10-601/701, this is definitely the right course for you!

If you’re a Master’s or PhD and you studied the prerequisite
material for 10-601/701... but it was a long time ago, this is certainly
the right course for you.

If you’re an undergrad, | would recommend the usual prereq
sequence required for 10-601/701.

For ugrad/MS/PhD: If you tried taken an Intro ML course here and
felt a bit lost in all the math/CS, this is a great place to start.

Q: What calculus textbook would you recommend?

A: Good question... I’m still working on that one.



Q&A

Q: What do | do if ’'m feeling a bit lost in the math

A:

and CS in 10-606/607?

Let me know ASAP! (Do so in office hours,
Piazza note, the middle of class, etc.) Our goal
is to provide you with a learning environment
in which you thrive. We’ll certainly make
adjustments if we need to.



MOTIVATION: SETS & TYPES



Sets, Types, and
Functions show up
everywhere in Machine

Learning
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Gradient Descent would follow.



Convexity

Suppose we wish to define convexity of a function...

We could draw a picture.

.. but that’s a bit informal.

So instead, we could offer a mathematical definition.

" Function f : RM — R is convex
ifVx; eRM xo e RM 0 <t <1

fltxa + (1 =)x2) <tf(x1) + (1 - t)f(Xz)

.. but even this definition requires some carefully defined objects
(the vectors, a function, the set of reals, the set of real-valued
vectors of length M, etc.)
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Data for ML

What is the object we talk
about more in Machine
Learning than anything else?

Our data!

D = {(x(™, ™)}

The data consists of a
set of tuples

n=1

D = {(x1),yW), x®,y@), .. (x5}



The importance of sets...

* Gaussian Discriminant Analysis and Gaussian
Mixture Models are almost identical

* There’s really only one practical difference
* Canyou spot it?

See next two slides...




Gaussian Discriminant Analysis

Data: p— {(x® z0)}V wherex® € RM and 2z € {1, ..., K}

Generative Story: ; ~ Categorical(¢)

x ~ Gaussian(p,, X,)

Model: Joint: p(x, PARONTS E) = p(X\Z; 22 E)p(z; ¢)

Log-likelihood: N
U, X) = long<x<@'>, 2, 1, %)

2

=) logp(x?]z; p, ) + log p(21); ¢)
=1



Gaussian Mixture-Model

Data:  p — {(xD}N wherex(" ¢ RM

Generative Story: ; ~ Categorical(¢)

x ~ Gaussian(p,, X,)

K

Marginal: p(x; ¢, pu, 3) = Zp(X‘Z; p, X)p(z; @)

z=1

(Marginal) Log-likelihood:

N
E(qﬁ, L, E) = log Hp(X(Z)a ¢7 122 2)
1=1



Notation for ML

Machine Learning is notorious for requiring lots of
notation... and not always being terribly consistent about it!

A conditional probability dntnhutmn over random variable X given ¥ and Z s written y label / regressand (output); for classification y ¥y predicted structure (output) for structured prediction
P(X|Y.Z) and its probability mass function (pmf) or probability density function (pdf) 1,2, K}: for binary classification y € {0,1} or y € Yi,....Ye random variables corresponding to predicted structure y
is plzly. 2). If the probability 4h~mhuu«m has parameters a, 4, we can write its pmf/pdf in at least +1,—1}: for regression, y € R I(a=1b) indicator function which returns 1 when a equals b and 0
10601 Notation Crib Sheet three equivalent ways: A statistician might prefer p(|y, =@, 5) to clearly demarcate the parame- Y input space, ie. x € X ot other notations are also possible I(a = ) =
A graphical modcls expert prefer p(ely. =, 4) since said parameters are really just additional Y output space, i.e La=b) =1,y

random variables. A typographer might prefer to save ink by writing pa,s(rly, 2). To refer to this 200 the ith feature vector in the training data

Matthew R. Gormley pmf/pdf as a function over possible values of a we would clide it as in pas(ly, 2). Using our @ the ith true output in the traini
notation from above, we could then wite that X follows the distribution X ~ pua(-ly.2) and = is 29 the mth feature of the ith featuro sector
February 26, 2018 a sample from it 2 ~ P s(-ly, 2) (20, y®)  the ith training mm,m»um“m»wm true output)
The expectation of a random variable X is E[X]. When dealing with random quantities for which D st of training examples: for supervised leaming D =
) e snain dtition it s b cls v con et i tho cxpetatin. o i (@, ) o v g D ().,
1 Scalars, Vectors, Matrices f(z,1,2)] i the expectation of f(z,,2) for some function J where @ is sampled from X desgal matrix; the ith row contains the fentures of the ih
the distribution po, 5(-ly.2) and y and = are constant for the evalnation of rlnw‘(puhmwm training cxample x; i.c the ith row contains 2. v
Scalars are cither lowercase letters .y, 2,a. . or uppercase Latin letters N, M,T. The latter Xi--..Xas  random variables corresponding to feature vector x; (nole
are typically used to indicate a count (e.g, number of examples, features, timesteps) and are often e gl o e et o vl
accompanied by a corresponding index 1, m, ¢ (o.g. current example, feature, timestep). Vectors 4 Functions and Derivatives X =[x Xu|T 5o that X s ot overloaded with the
are bold lowercase letters x = [£1,3,..., 77 and are typically assumed to be column vectors design matrix
hence the transposed row vector in this example. When handwritten, a vector is indicated by an uppose we have a function f(z). We write its partial derivative with respect to o as 2L or ¥ random variable corresponding to predicted class y
over-atrow = [z1,22,..., z]T. Matrices are bold uppercase ltters o e i function / s partial derivative with resp 7 P(Y =yX =x) _probability of random variable ¥ taking value y given that
- " L1 We also denote its first derivative as f'(x), its second derivative as f"(x), and so on. For random variable X takes value x
] Uim a multivariate function f(x) = f(z1 2ar), we write its gradient with respect to x as Vi f(x) plulx)  shorthand for P(Y = y|X = x)
and frequently omit the subseript, 6. ¥ (x), when i i clea from context—it might not be for a ) ot
U model parameters
gradient such as Vyg(x, ) w  model parameters (weights of linear model)
b model porameter (blas term of linear model

n, T SRS e s 2 dlos nto shucure chiect e vectore 5 Common Conventions il e the log. condiiond] Helibosd o1 1

inal likelihood
The table below lists additional couunon couventions we follow J(0) obiective function
2 Sets JO(6) " example i’ contrbution to the objective unction; typically
Notation _Description 10) = £ T, 19(0)
T —— VJ(6)  gradient 0f the objective function with respect to model pa-
Sets s gt b clfgaplic uppcse s 4,3, W ften ndes .y labels i N mmber of training exampl ) e o) ! ;
parcthesied aupersripte S o 40,4 ) where § = 5] A shorthand for his i v ) e ) it et 1o el parates
lently defines S = {s Hu\~lmxrlmndhurmumm\\h(umhmn«/u\\roHv:\\mngr);\mr K ’ ! ““ erical opt - par
ples: D = (<, 1), (3., (<0, ) i civaent o D = (x5 )R 1 ot i oo or 70008 % dor oaduck of el et and feakures
K cument class ha(x) decision function / decision rule / hypothesis
3 Random Variables Z  set of integers H_ hypothesis space; we say that h € H )
R st of reals 4 prediction of a decision function, e.. § = ha(x)
= RY et of real-valuod vectors of length M 6 model parameters that result from learning
Random variables are also uppercase Latin lotters X,Y, Z, but their use s typically apparent (0111 oot of b vectons ot ength 31 Gz oo Tunction
from context. When a random variable X; and a scalar 2, are upperlower-case versions of cach e o () ek [ 5.l (1) unknown data gencrating distribution of labeled examples
other, we typically mean that the scalar i a value taken by the random variable R e o () unknown data generating distribution of feature vectors only
When possible, we try to reserve Greek letters for parameters 8, ¢ or hyperparameters a, 5, v e(x)  true vmk;mm hiypothesis (i.e. oracle labeling function), e
y=cx
For a random variable X, we write X ~ Gaussian(s, 0%) to indicate that X follows a 1D Gaussian
distribution with mean 1 and variance 0%, We write z ~ Gaussian(p, %) to say that  is a value Nt e o otation systom o alvaye us for partal deivatives, since 221 s ypically . ; Values of vmk‘n[mn]humbl«‘\Himm\l ]
sampled from the same disribution ecnve o vl v, Howeoer ol o st e o sppeseans b -+ random variables (latent) corresponding to %




PRELIMINARIES: SETS AND TYPES



Sets
Chalkboard

— Definitions: Set, element of, equality, subset
— Example: Sets of sets

— Set builder notation

— Python list/set comprehentions

— Exercise: Set builder notation

— Definitions: Union, intersection, difference,
complement

— Exercise: Set complement
— Tuples and set product
— Exercise: Set product



Data Types and Functions

Chalkboard

— Data types, structs, unions
— Tagged unions

— Exercise: Tagged unions

— Functions

— Anonymous functions

— Exercises: Functions



