10-606 Mathematical Foundations for Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Sets, Data Types, and Functions

Matt Gormley Lecture 2 August 29, 2018

Computer Vision

Correction...

4. Learning to recognize images

"...The recognizer is a convolution network that can be spatially replicated. From the network output, a hidden Markov model produces word scores. The entire system is globally trained to minimize word-level errors...."

SYLLABUS HIGHLIGHTS

Syllabus Highlights

The syllabus is located on the course webpage:

http://www.cs.cmu.edu/~mgormley/courses/606-607-f18

The course policies are required reading.

606/607 Syllabus Highlights

- Grading: 55% homework, 10% inclass quizzes, 30% final exam, 5% participation
- Final Exam:
 - 606: Mini-I final exam week, date
 TBD
 - 607: Mini-II final exam week, date
 TBD
- In-Class Quizzes: always announced ahead of time
- Homework: 4 assignments with written / programming portions
 - 2 grace days for the unexpected
 - Late submissions: 80% day 1, 60% day 2, 40% day 3, 20% day 4
 - No submissions accepted after 4 days w/o extension
 - Extension requests: see syllabus

- Recitations: Fridays, same time/place as lecture (optional, interactive sessions)
- Readings: required, online, recommended for after lecture
- Technologies: Piazza (discussion), Gradescope (homework), Canvas (gradebook only)
- Academic Integrity:
 - Collaboration encouraged, but must be documented
 - Solutions must always be written independently
 - No re-use of found code / past assignments
 - Severe penalties (i.e. failure)
- Office Hours: posted on Google Calendar on "People" page

606/607 Syllabus Highlights

- Grading: 55% homework, 10% inclass quizzes, 30% final exam, 5% participation
- Final Exam:
 - 606: Mini-I final exam week, date
 TBD
 - 607: Mini-II final exam week, date
 TBD
- In-Class Quizzes: always announced ahead of time
- Homework: 4 assignments with written / programming portions
 - 2 grace days for the unexpected
 - Late submissions: 80% day 1, 60% day 2, 40% day 3, 20% day 4
 - No submissions accepted after 4 days w/o extension
 - Extension requests: see syllabus

- Recitations: Fridays, same time/place as lecture (optional, interactive sessions)
- Readings: required, online, recommended for after lecture
- Technologies: Piazza (discussion), Gradescope (homework), Canvas (gradebook only)
- Academic Integrity:
 - Collaboration encouraged, but must be documented
 - Solutions must always be written independently
 - No re-use of found code / past assignments
 - Severe penalties (i.e. failure)
- Office Hours: posted on Google Calendar on "People" page

606/607 Syllabus Highlights

- Grading: 55% homework, 10% inclass quizzes, 30% final exam, 5% participation
- Final Exam:
 - 606: Mini-I final exam week, date
 TBD
 - 607: Mini-II final exam week, date
 TBD
- In-Class Quizzes: always announced ahead of time
- Homework: 4 assignments with written / programming portions
 - 2 grace days for the unexpected
 - Late submissions: 80% day 1, 60% day 2, 40% day 3, 20% day 4
 - No submissions accepted after 4 days w/o extension
 - Extension requests: see syllabus

- Recitations: Fridays, same time/place as lecture (optional, interactive sessions)
- Readings: required, online, recommended for after lecture
- Technologies: Piazza (discussion), Gradescope (homework), Canvas (gradebook only)
- Academic Integrity:
 - Collaboration encouraged, but must be documented
 - Solutions must always be written independently
 - No re-use of found code / past assignments
 - Severe penalties (i.e. failure)
- Office Hours: posted on Google Calendar on "People" page

Lectures

- You should ask lots of questions
 - Interrupting (by raising a hand) to ask your question is strongly encouraged
 - Asking questions later on Piazza is also great
- When I ask a question...
 - I want you to answer
 - Even if you don't answer, think it through as though I'm about to call on you
- Interaction improves learning (both in-class and at my office hours)

Textbooks

These are optional, but highly recommended as an alternate presentation of the material

Expected Background

10-606 (Math Background 4 ML)

You should be familiar with some of the following...

- Calculus:
 - can take scalar derivatives
 - can solve scalar integrals
- Linear Algebra:
 - know basic vector operations
 - seen matrix multiplication
- Probability:
 - seen the basics: conditioning, Bayes Rule, etc.
- Programming:
 - know some Python
 OR
 have sufficient programming background to pick up the basics of Python

But we'll offer practice to make sure you can catch up on your weaker areas

10-607 (CS Background 4 ML)

You should...

- be comfortable with all the topics listed for 10-606
- ideally, have the mathematical maturity of someone who completed 10-606 **because** it will aide in understanding the motivating examples from machine learning

That said, the content of 10-607 is designed stand alone

Q&A

Q: Is this course right for me?

- If you're a Master's or PhD and you lack some of the prerequisite material for 10-601/701, this is definitely the right course for you!
 - If you're a Master's or PhD and you studied the prerequisite material for 10-601/701... but it was a long time ago, this is certainly the right course for you.
 - If you're an undergrad, I would recommend the usual prereq sequence required for 10-601/701.
 - For ugrad/MS/PhD: If you tried taken an Intro ML course here and felt a bit lost in all the math/CS, this is a great place to start.

Q: What calculus textbook would you recommend?

A: Good question... I'm still working on that one.

Q&A

Q: What do I do if I'm feeling a bit lost in the math and CS in 10-606/607?

A: Let me know ASAP! (Do so in office hours, Piazza note, the middle of class, etc.) Our goal is to provide you with a learning environment in which you thrive. We'll certainly make adjustments if we need to.

MOTIVATION: SETS & TYPES

Sets, Types, and Functions show up everywhere in Machine Learning

(Negative) Gradients

These are the **negative** gradients that Gradient **Descent** would follow.

Convexity

Suppose we wish to define convexity of a function...

We could draw a picture.

... but that's a bit informal.

So instead, we could offer a mathematical definition.

Function
$$f:\mathbb{R}^M o \mathbb{R}$$
 is **convex** if $\forall \ \mathbf{x}_1 \in \mathbb{R}^M, \mathbf{x}_2 \in \mathbb{R}^M, 0 \leq t \leq 1$:
$$f(t\mathbf{x}_1 + (1-t)\mathbf{x}_2) \leq tf(\mathbf{x}_1) + (1-t)f(\mathbf{x}_2)$$

... but even this definition requires some carefully defined objects (the vectors, a function, the set of reals, the set of real-valued vectors of length M, etc.)

Data for ML

What is the object we talk about more in Machine Learning than anything else?

Our data!

$$\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$$

The data consists of a set of tuples

$$\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(N)}, y^{(N)}) \}$$

The importance of sets...

- Gaussian Discriminant Analysis and Gaussian Mixture Models are almost identical
- There's really only one practical difference
- Can you spot it?

See next two slides...

Gaussian Discriminant Analysis

Data: $\mathcal{D} = \{(\mathbf{x}^{(i)}, \mathbf{z}^{(i)})\}_{i=1}^N$ where $\mathbf{x}^{(i)} \in \mathbb{R}^M$ and $z^{(i)} \in \{1, \dots, K\}$

Generative Story: $z \sim \mathsf{Categorical}(\phi)$

 $\mathbf{x} \sim \mathsf{Gaussian}(oldsymbol{\mu}_z, oldsymbol{\Sigma}_z)$

Model: Joint: $p(\mathbf{x}, z; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = p(\mathbf{x}|z; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z; \boldsymbol{\phi})$

Log-likelihood:

$$\ell(\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \log \prod_{i=1}^{N} p(\mathbf{x}^{(i)}, z^{(i)}; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$= \sum_{i=1}^{N} \log p(\mathbf{x}^{(i)} | z^{(i)}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) + \log p(z^{(i)}; \boldsymbol{\phi})$$

Gaussian Mixture-Model

Data:
$$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$$
 where $\mathbf{x}^{(i)} \in \mathbb{R}^M$

Generative Story: $z \sim \mathsf{Categorical}(\phi)$

 $\mathbf{x} \sim \mathsf{Gaussian}(oldsymbol{\mu}_z, oldsymbol{\Sigma}_z)$

Model: Joint: $p(\mathbf{x}, z; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = p(\mathbf{x}|z; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z; \boldsymbol{\phi})$

Marginal:
$$p(\mathbf{x}; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{z=1}^K p(\mathbf{x}|z; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z; \boldsymbol{\phi})$$

(Marginal) Log-likelihood:

$$\ell(\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \log \prod_{i=1}^{N} p(\mathbf{x}^{(i)}; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$= \sum_{i=1}^{N} \log \sum_{z=1}^{K} p(\mathbf{x}^{(i)}|z; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z; \boldsymbol{\phi})$$

Notation for ML

Machine Learning is notorious for requiring lots of notation... and not always being terribly consistent about it!

10601 Notation Crib Sheet

Matthew R. Gormley

February 26, 2018

1 Scalars, Vectors, Matrices

Scalars are either lowercase letters $x_{(k),1,0,0,0}$, or uppercase Latin letters N,M,T. The latter are typically used to indicate a count (e.g., number of casample, Sattures, timestep) and are often accompanied by a corresponding index n, m_t (e.g. current example, foatures, timestep). Vectors are bold lowercase letters $\mathbf{x} = [x_1, x_2, \dots, x_M]^T$ and are typically assumed to be column vector—hence the transposed row vector in this example. When handwritten, a vector is indicated by an over-arrow $\mathbf{z} = [x_1, x_2, \dots, x_M]^T$ and are typicase letters:

$$\mathbf{U} = \begin{bmatrix} U_{11} & U_{12} & \dots & U_{1m} \\ U_{21} & U_{22} & & & \\ \vdots & & \ddots & \vdots \\ U_{n1} & & \dots & U_{nm} \end{bmatrix}$$

As in the examples above, subscripts are used as indices into structured objects such as vectors matrices

2 Sets

Sets are represented by caligraphic uppercase letters $X, \mathcal{Y}, \mathcal{D}$. We often index a set by labels in parenthesized superacipts $S = \{g^{(1)}, g^{(2)}, \dots, g^{(N)}\}$, where S = |S|. A shorthand for this equivalently define $S = \{g^{(1)}, g^{(2)}, \dots, g^{(N)}\}$ such such than disconvenient when defining a set of training examples: $\mathcal{D} = \{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(N)}, \mathbf{y}^{(N)})\}$ is equivalent to $\mathcal{D} = \{(\mathbf{x}^{(n)}, \mathbf{y}^{(n)}), \mathbf{y}^{(n)}, \mathbf{y}^{(N)}\}$

3 Random Variables

Random variables are also uppercase Latin letters X, Y, Z, but their use is typically apparent from context. When a random variable X_i and a scalar x_i are upper/lower-case versions of each other, we typically mean that the scalar is a value taken by the random variable.

When possible, we try to reserve Greek letters for parameters θ , ϕ or hyperparameters α , β , γ . For a random variable X, we write $X \sim \operatorname{Gaussian}(\mu, \sigma^2)$ to indicate that X follows a 1D Gaussian distribution with mean μ and variance σ^2 . We write $x \sim \operatorname{Gaussian}(\mu, \sigma^2)$ to say that x is a value A conditional probability distribution over madom variable X given Y and Z is written P(X|Y,Z) and its probability density function (grid) in $p(g|_{X})$. If the probability distribution has parameters α, β, w can write its purifyed in a loss three equivalent ways. A statistical multipreter $P(g|_{X})$ is α, β to density demantice the parameters. A graphical models expert prefer $p(g|_{X})$; α, β , since said parameters are radly just additional maximum variables. A propagation g in the prefer to saw in the yearing $g_{\alpha,\beta}(g_{\alpha})$; α is often to this institute of g in g in

The expectation of a random variable X is $\mathbb{E}[X]$. When dealing with random quantities for which the generating distribution might not be clear we can denote it in the expectation. For example, $\mathbb{E}_{x\sim p_{-n}/y_{-n}}[f(x,y,z)]$ is the expectation of f(x,y,z) for some function f where x is sampled from the distribution $p_{-n}g'(|y,z)$ and y and z are constant for the evaluation of this expectation.

4 Functions and Derivatives

Suppose we have a function f(x). We write its partial derivative with respect to x as $\frac{\partial f(x)}{\partial x}$ or $\frac{\partial f(x)}{\partial x}$ or $\frac{\partial f(x)}{\partial x}$ is second derivative as f'(x), and so on. For a multivariate function $f(\mathbf{x}) = f(x_1, \dots x_d)$, we write to gradient with respect to $\mathbf{x} = \mathbf{x}_d \cdot \mathbf{x}_d$ and frequently omit the subscript, i.e. $\nabla f(\mathbf{x})$, when it is clear from context—it might not be for a gradient such as $\nabla f(\mathbf{x})$ and $\nabla f(\mathbf{x})$.

5 Common Conventions

e table below lists additional common conventions we follow:

```
Notation Description

M number of training compiles

M number of facture types

K number of facture types

n or i current training comaple
m current facture type

Z set of integers

R set of reals

R set of reals

G and one of the compile of the
```

¹Note that a more careful notation system would always use $\frac{\partial f(x)}{\partial x}$ for partial derivatives, since $\frac{\partial f(x)}{\partial x}$ is typical

2

y label / regressand (output); for classification $y \in \{1,2,\dots,K\}$; for binary classification $y \in \{1,2,\dots,K\}$; or primary classification $y \in \{1,2,\dots,K\}$; or primary classification $y \in \{0,1\}$ or $y \in \{1,1,\dots,K\}$; for primary classification $y \in \{0,1\}$ or $y \in \{1,1,\dots,K\}$; or primary classification $y \in \{0,1\}$ or $y \in \{1,1,\dots,K\}$; or primary classification $y \in \{1,\dots,K\}$; or $\{1,\dots,K\}$; or the finite contains the feature of the first three primary classifies $y \in \{1,\dots,K\}$; or $y \in \{1,\dots,K\}$; or the $y \in \{1,\dots,K\}$ or $y \in \{1,\dots,K\}$; or the $y \in \{1,\dots,K\}$ or $y \in \{1,\dots,K\}$; or the $y \in \{1,\dots,K\}$ or $y \in \{1,\dots,K\}$; or the $y \in \{1,\dots,K\}$ or $y \in \{1,\dots,K\}$; or the $y \in \{1,\dots,K\}$ or $y \in \{1,\dots,K\}$; or the $y \in \{1,\dots,K\}$ or $y \in \{1,\dots,K\}$; or the $y \in \{1,\dots,K\}$ or $y \in \{1,\dots,K\}$; or $y \in \{1,\dots,K\}$; or the $y \in \{1,\dots,K\}$ or $y \in \{1,\dots,K\}$; or

y produced structure (output) for structured prediction $Y_1,...,Y_n$: random variables corresponding to predicted structure y $\mathbb{I}(a=b)$ indicator function which returns I when a equals b and 0 orderwise—other notations are also possible $\mathbb{I}(a=b)=\mathbb{I}_{a=b}$

PRELIMINARIES: SETS AND TYPES

Sets

Chalkboard

- Definitions: Set, element of, equality, subset
- Example: Sets of sets
- Set builder notation
- Python list/set comprehentions
- Exercise: Set builder notation
- Definitions: Union, intersection, difference, complement
- Exercise: Set complement
- Tuples and set product
- Exercise: Set product

Data Types and Functions

Chalkboard

- Data types, structs, unions
- Tagged unions
- Exercise: Tagged unions
- Functions
- Anonymous functions
- Exercises: Functions