### 10-606 Mathematical Foundations for Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University





# Sets, Data Types, and Functions

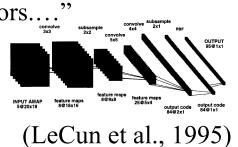
Matt Gormley Lecture 2 August 29, 2018

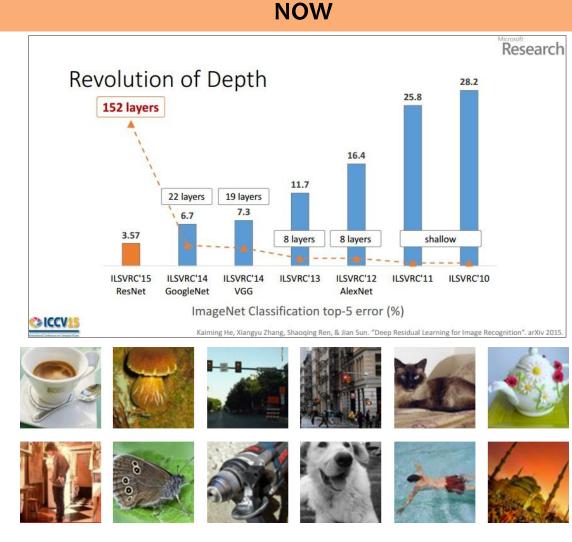
### Computer Vision

Correction...

### 4. Learning to recognize images

"...The recognizer is a convolution network that can be spatially replicated. From the network output, a hidden Markov model produces word scores. The entire system is globally trained to minimize word-level errors...."





### **SYLLABUS HIGHLIGHTS**

### Syllabus Highlights

The syllabus is located on the course webpage:

http://www.cs.cmu.edu/~mgormley/courses/606-607-f18

The course policies are required reading.

# 606/607 Syllabus Highlights

- Grading: 55% homework, 10% inclass quizzes, 30% final exam, 5% participation
- Final Exam:
  - 606: Mini-I final exam week, date
     TBD
  - 607: Mini-II final exam week, date
     TBD
- In-Class Quizzes: always announced ahead of time
- Homework: 4 assignments with written / programming portions
  - 2 grace days for the unexpected
  - Late submissions: 80% day 1, 60% day 2, 40% day 3, 20% day 4
  - No submissions accepted after 4 days w/o extension
  - Extension requests: see syllabus

- Recitations: Fridays, same time/place as lecture (optional, interactive sessions)
- Readings: required, online, recommended for after lecture
- Technologies: Piazza (discussion), Gradescope (homework), Canvas (gradebook only)
- Academic Integrity:
  - Collaboration encouraged, but must be documented
  - Solutions must always be written independently
  - No re-use of found code / past assignments
  - Severe penalties (i.e. failure)
- Office Hours: posted on Google Calendar on "People" page

# 606/607 Syllabus Highlights

- Grading: 55% homework, 10% inclass quizzes, 30% final exam, 5% participation
- Final Exam:
  - 606: Mini-I final exam week, date
     TBD
  - 607: Mini-II final exam week, date
     TBD
- In-Class Quizzes: always announced ahead of time
- Homework: 4 assignments with written / programming portions
  - 2 grace days for the unexpected
  - Late submissions: 80% day 1, 60% day 2, 40% day 3, 20% day 4
  - No submissions accepted after 4 days w/o extension
  - Extension requests: see syllabus

- Recitations: Fridays, same time/place as lecture (optional, interactive sessions)
- Readings: required, online, recommended for after lecture
- Technologies: Piazza (discussion), Gradescope (homework), Canvas (gradebook only)
- Academic Integrity:
  - Collaboration encouraged, but must be documented
  - Solutions must always be written independently
  - No re-use of found code / past assignments
  - Severe penalties (i.e. failure)
- Office Hours: posted on Google Calendar on "People" page

# 606/607 Syllabus Highlights

- Grading: 55% homework, 10% inclass quizzes, 30% final exam, 5% participation
- Final Exam:
  - 606: Mini-I final exam week, date
     TBD
  - 607: Mini-II final exam week, date
     TBD
- In-Class Quizzes: always announced ahead of time
- Homework: 4 assignments with written / programming portions
  - 2 grace days for the unexpected
  - Late submissions: 80% day 1, 60% day 2, 40% day 3, 20% day 4
  - No submissions accepted after 4 days w/o extension
  - Extension requests: see syllabus

- Recitations: Fridays, same time/place as lecture (optional, interactive sessions)
- Readings: required, online, recommended for after lecture
- Technologies: Piazza (discussion), Gradescope (homework), Canvas (gradebook only)
- Academic Integrity:
  - Collaboration encouraged, but must be documented
  - Solutions must always be written independently
  - No re-use of found code / past assignments
  - Severe penalties (i.e. failure)
- Office Hours: posted on Google Calendar on "People" page

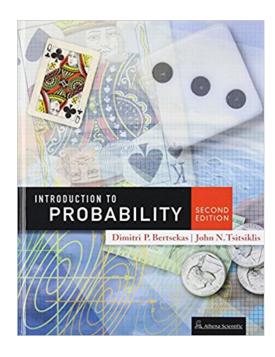
### Lectures

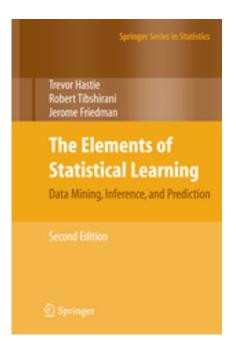
- You should ask lots of questions
  - Interrupting (by raising a hand) to ask your question is strongly encouraged
  - Asking questions later on Piazza is also great
- When I ask a question...
  - I want you to answer
  - Even if you don't answer, think it through as though I'm about to call on you
- Interaction improves learning (both in-class and at my office hours)

### **Textbooks**

These are optional, but highly recommended as an alternate presentation of the material







# **Expected Background**

### 10-606 (Math Background 4 ML)

You should be familiar with some of the following...

- Calculus:
  - can take scalar derivatives
  - can solve scalar integrals
- Linear Algebra:
  - know basic vector operations
  - seen matrix multiplication
- Probability:
  - seen the basics: conditioning, Bayes Rule, etc.
- Programming:
  - know some Python
     OR
     have sufficient programming background to pick up the basics of Python

But we'll offer practice to make sure you can catch up on your weaker areas

### 10-607 (CS Background 4 ML)

You should...

- be comfortable with all the topics listed for 10-606
- ideally, have the mathematical maturity of someone who completed 10-606 **because** it will aide in understanding the motivating examples from machine learning

That said, the content of 10-607 is designed stand alone

### Q&A

### Q: Is this course right for me?

- If you're a Master's or PhD and you lack some of the prerequisite material for 10-601/701, this is definitely the right course for you!
  - If you're a Master's or PhD and you studied the prerequisite material for 10-601/701... but it was a long time ago, this is certainly the right course for you.
  - If you're an undergrad, I would recommend the usual prereq sequence required for 10-601/701.
  - For ugrad/MS/PhD: If you tried taken an Intro ML course here and felt a bit lost in all the math/CS, this is a great place to start.

Q: What calculus textbook would you recommend?

A: Good question... I'm still working on that one.

### Q&A

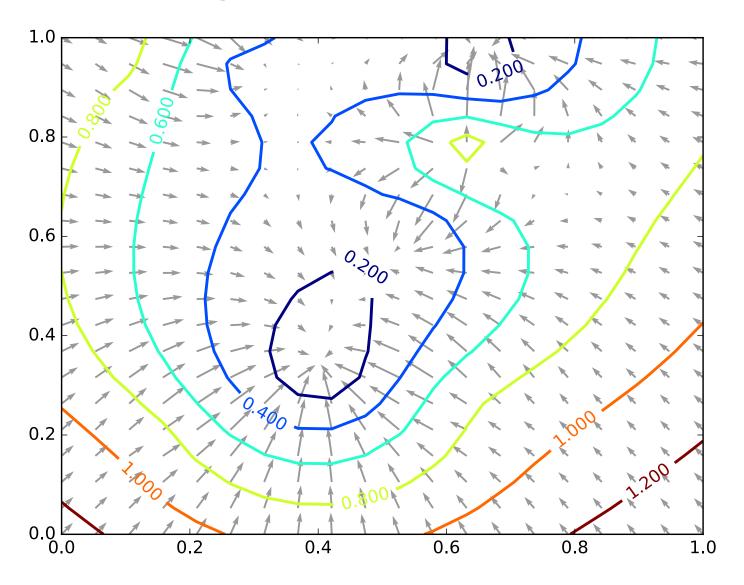
Q: What do I do if I'm feeling a bit lost in the math and CS in 10-606/607?

A: Let me know ASAP! (Do so in office hours, Piazza note, the middle of class, etc.) Our goal is to provide you with a learning environment in which you thrive. We'll certainly make adjustments if we need to.

### **MOTIVATION: SETS & TYPES**

# Sets, Types, and Functions show up everywhere in Machine Learning

# (Negative) Gradients

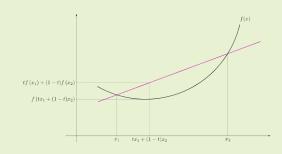


These are the **negative** gradients that Gradient **Descent** would follow.

### Convexity

Suppose we wish to define convexity of a function...

We could draw a picture.



... but that's a bit informal.

So instead, we could offer a mathematical definition.

Function 
$$f:\mathbb{R}^M o \mathbb{R}$$
 is **convex** if  $\forall \ \mathbf{x}_1 \in \mathbb{R}^M, \mathbf{x}_2 \in \mathbb{R}^M, 0 \leq t \leq 1$ : 
$$f(t\mathbf{x}_1 + (1-t)\mathbf{x}_2) \leq tf(\mathbf{x}_1) + (1-t)f(\mathbf{x}_2)$$

... but even this definition requires some carefully defined objects (the vectors, a function, the set of reals, the set of real-valued vectors of length M, etc.)

### Data for ML

What is the object we talk about more in Machine Learning than anything else?

Our data!

$$\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$$

The data consists of a set of tuples

$$\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(N)}, y^{(N)}) \}$$

### The importance of sets...

- Gaussian Discriminant Analysis and Gaussian Mixture Models are almost identical
- There's really only one practical difference
- Can you spot it?

See next two slides...

### Gaussian Discriminant Analysis

**Data:**  $\mathcal{D} = \{(\mathbf{x}^{(i)}, \mathbf{z}^{(i)})\}_{i=1}^N$  where  $\mathbf{x}^{(i)} \in \mathbb{R}^M$  and  $z^{(i)} \in \{1, \dots, K\}$ 

**Generative Story:**  $z \sim \mathsf{Categorical}(\phi)$ 

 $\mathbf{x} \sim \mathsf{Gaussian}(oldsymbol{\mu}_z, oldsymbol{\Sigma}_z)$ 

Model: Joint:  $p(\mathbf{x}, z; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = p(\mathbf{x}|z; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z; \boldsymbol{\phi})$ 

Log-likelihood:

$$\ell(\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \log \prod_{i=1}^{N} p(\mathbf{x}^{(i)}, z^{(i)}; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$= \sum_{i=1}^{N} \log p(\mathbf{x}^{(i)} | z^{(i)}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) + \log p(z^{(i)}; \boldsymbol{\phi})$$

### Gaussian Mixture-Model

**Data:** 
$$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$$
 where  $\mathbf{x}^{(i)} \in \mathbb{R}^M$ 

**Generative Story:**  $z \sim \mathsf{Categorical}(\phi)$ 

 $\mathbf{x} \sim \mathsf{Gaussian}(oldsymbol{\mu}_z, oldsymbol{\Sigma}_z)$ 

Model: Joint:  $p(\mathbf{x}, z; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = p(\mathbf{x}|z; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z; \boldsymbol{\phi})$ 

Marginal: 
$$p(\mathbf{x}; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{z=1}^K p(\mathbf{x}|z; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z; \boldsymbol{\phi})$$

### (Marginal) Log-likelihood:

$$\ell(\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \log \prod_{i=1}^{N} p(\mathbf{x}^{(i)}; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$= \sum_{i=1}^{N} \log \sum_{z=1}^{K} p(\mathbf{x}^{(i)}|z; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z; \boldsymbol{\phi})$$

### Notation for ML

# Machine Learning is notorious for requiring lots of notation... and not always being terribly consistent about it!

10601 Notation Crib Sheet

Matthew R. Gormley

February 26, 2018

### 1 Scalars, Vectors, Matrices

Scalars are either lowercase letters  $x_{(k),1,0,0,0}$ , or uppercase Latin letters N,M,T. The latter are typically used to indicate a count (e.g., number of casample, Sattures, timestep) and are often accompanied by a corresponding index  $n, m_t$  (e.g. current example, foatures, timestep). Vectors are bold lowercase letters  $\mathbf{x} = [x_1, x_2, \dots, x_M]^T$  and are typically assumed to be column vector—hence the transposed row vector in this example. When handwritten, a vector is indicated by an over-arrow  $\mathbf{z} = [x_1, x_2, \dots, x_M]^T$  and are typicase letters:

$$\mathbf{U} = \begin{bmatrix} U_{11} & U_{12} & \dots & U_{1m} \\ U_{21} & U_{22} & & & \\ \vdots & & \ddots & \vdots \\ U_{n1} & & \dots & U_{nm} \end{bmatrix}$$

As in the examples above, subscripts are used as indices into structured objects such as vectors matrices

### 2 Sets

Sets are represented by caligraphic uppercase letters  $X, \mathcal{Y}, \mathcal{D}$ . We often index a set by labels in parenthesized superacipts  $S = \{g^{(1)}, g^{(2)}, \dots, g^{(N)}\}$ , where S = |S|. A shorthand for this equivalently define  $S = \{g^{(1)}, g^{(2)}, \dots, g^{(N)}\}$  such such than disconvenient when defining a set of training examples:  $\mathcal{D} = \{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(N)}, \mathbf{y}^{(N)})\}$  is equivalent to  $\mathcal{D} = \{(\mathbf{x}^{(n)}, \mathbf{y}^{(n)}), \mathbf{y}^{(n)}, \mathbf{y}^{(N)}\}$ 

### 3 Random Variables

Random variables are also uppercase Latin letters X, Y, Z, but their use is typically apparent from context. When a random variable  $X_i$  and a scalar  $x_i$  are upper/lower-case versions of each other, we typically mean that the scalar is a value taken by the random variable.

When possible, we try to reserve Greek letters for parameters  $\theta$ ,  $\phi$  or hyperparameters  $\alpha$ ,  $\beta$ ,  $\gamma$ . For a random variable X, we write  $X \sim \operatorname{Gaussian}(\mu, \sigma^2)$  to indicate that X follows a 1D Gaussian distribution with mean  $\mu$  and variance  $\sigma^2$ . We write  $x \sim \operatorname{Gaussian}(\mu, \sigma^2)$  to say that x is a value A conditional probability distribution over madom variable X given Y and Z is written P(X|Y,Z) and its probability density function (grid) in  $p(g|_{X})$ . If the probability distribution has parameters  $\alpha, \beta, w$  can write its purifyed in a loss three equivalent ways. A statistical multipreter  $P(g|_{X})$  is  $\alpha, \beta$  to density demantice the parameters. A graphical models expert prefer  $p(g|_{X})$ ;  $\alpha, \beta$ , since said parameters are radly just additional maximum variables. A propagation g in the prefer to saw in the yearing  $g_{\alpha,\beta}(g_{\alpha})$ ;  $\alpha$  is often to this institute of g in g in

The expectation of a random variable X is  $\mathbb{E}[X]$ . When dealing with random quantities for which the generating distribution might not be clear we can denote it in the expectation. For example,  $\mathbb{E}_{x\sim p_{-n}/y_{-n}}[f(x,y,z)]$  is the expectation of f(x,y,z) for some function f where x is sampled from the distribution  $p_{-n}g'(|y,z)$  and y and z are constant for the evaluation of this expectation.

### 4 Functions and Derivatives

Suppose we have a function f(x). We write its partial derivative with respect to x as  $\frac{\partial f(x)}{\partial x}$  or  $\frac{\partial f(x)}{\partial x}$  or  $\frac{\partial f(x)}{\partial x}$  is second derivative as f'(x), and so on. For a multivariate function  $f(\mathbf{x}) = f(x_1, \dots x_d)$ , we write to gradient with respect to  $\mathbf{x} = \mathbf{x}_d \cdot \mathbf{x}_d$  and frequently omit the subscript, i.e.  $\nabla f(\mathbf{x})$ , when it is clear from context—it might not be for a gradient such as  $\nabla f(\mathbf{x})$  and  $\nabla f(\mathbf{x})$ .

### 5 Common Conventions

e table below lists additional common conventions we follow:

```
Notation Description

M number of training compiles

M number of facture types

K number of facture types

n or i current training comaple
m current facture type

Z set of integers

R set of reals

R set of reals

G and one of the compile of the
```

<sup>1</sup>Note that a more careful notation system would always use  $\frac{\partial f(x)}{\partial x}$  for partial derivatives, since  $\frac{\partial f(x)}{\partial x}$  is typical

2

y label / regressand (output); for classification  $y \in \{1,2,\dots,K\}$ ; for binary classification  $y \in \{1,2,\dots,K\}$ ; or primary classification  $y \in \{1,2,\dots,K\}$ ; or primary classification  $y \in \{0,1\}$  or  $y \in \{1,1,\dots,K\}$ ; for primary classification  $y \in \{0,1\}$  or  $y \in \{1,1,\dots,K\}$ ; or primary classification  $y \in \{0,1\}$  or  $y \in \{1,1,\dots,K\}$ ; or primary classification  $y \in \{1,\dots,K\}$ ; or  $\{1,\dots,K\}$ ; or the finite contains the feature of the first three primary classifies  $y \in \{1,\dots,K\}$ ; or  $y \in \{1,\dots,K\}$ ; or the  $y \in \{1,\dots,K\}$  or  $y \in \{1,\dots,K\}$ ; or the  $y \in \{1,\dots,K\}$  or  $y \in \{1,\dots,K\}$ ; or the  $y \in \{1,\dots,K\}$  or  $y \in \{1,\dots,K\}$ ; or the  $y \in \{1,\dots,K\}$  or  $y \in \{1,\dots,K\}$ ; or the  $y \in \{1,\dots,K\}$  or  $y \in \{1,\dots,K\}$ ; or the  $y \in \{1,\dots,K\}$  or  $y \in \{1,\dots,K\}$ ; or the  $y \in \{1,\dots,K\}$  or  $y \in \{1,\dots,K\}$ ; or  $y \in \{1,\dots,K\}$ ; or the  $y \in \{1,\dots,K\}$  or  $y \in \{1,\dots,K\}$ ; or

y produced structure (output) for structured prediction  $Y_1,...,Y_n$ : random variables corresponding to predicted structure y  $\mathbb{I}(a=b)$  indicator function which returns I when a equals b and 0 orderwise—other notations are also possible  $\mathbb{I}(a=b)=\mathbb{I}_{a=b}$ 

### PRELIMINARIES: SETS AND TYPES

### Sets

### Chalkboard

- Definitions: Set, element of, equality, subset
- Example: Sets of sets
- Set builder notation
- Python list/set comprehentions
- Exercise: Set builder notation
- Definitions: Union, intersection, difference, complement
- Exercise: Set complement
- Tuples and set product
- Exercise: Set product

### Data Types and Functions

### Chalkboard

- Data types, structs, unions
- Tagged unions
- Exercise: Tagged unions
- Functions
- Anonymous functions
- Exercises: Functions