10-606 Mathematical Foundations for Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Sets, Data Types, and Functions

Matt Gormley
Lecture 2
August 29, 2018

Computer Vision

4. Learning to recognize images

THEN
convolution network that can
be spatially replicated. From
the network output, a hidden
Markov model produces
word scores. The entire
system is globally trained to
minimize word-level
errors..."

NOW

SYLLABUS HIGHLIGHTS

Syllabus Highlights

The syllabus is located on the course webpage:

http://www.cs.cmu.edu/~mgormley/courses/606-607-f18

The course policies are required reading.

606/607 Syllabus Highlights

- Grading: 55\% homework, 10% inclass quizzes, 30% final exam, 5% participation
- Final Exam:
- 606: Mini-I final exam week, date TBD
- 607: Mini-II final exam week, date TBD
- In-Class Quizzes: always announced ahead of time
- Homework: 4 assignments with written / programming portions
- 2 grace days for the unexpected
- Late submissions: 80\% day 1, 60\% day $2,40 \%$ day $3,20 \%$ day 4
- No submissions accepted after 4 days w/o extension
- Extension requests: see syllabus
- Recitations: Fridays, same time/place as lecture (optional, interactive sessions)
- Readings: required, online, recommended for after lecture
- Technologies: Piazza (discussion), Gradescope (homework), Canvas (gradebook only)
- Academic Integrity:
- Collaboration encouraged, but must be documented
- Solutions must always be written independently
- No re-use of found code / past assignments
- Severe penalties (i.e. failure)
- Office Hours: posted on Google Calendar on "People" page

606/607 Syllabus Highlights

- Grading: 55\% homework, 10% inclass quizzes, 30% final exam, 5% participation
- Final Exam:
- 606: Mini-I final exam week, date TBD
- 607: Mini-II final exam week, date TBD
- In-Class Quizzes: always announced ahead of time
- Homework: 4 assignments with written / programming portions
- 2 grace days for the unexpected
- Late submissions: 80\% day 1, 60\% day $2,40 \%$ day $3,20 \%$ day 4
- No submissions accepted after 4 days w/o extension
- Extension requests: see syllabus
- Recitations: Fridays, same time/place as lecture (optional, interactive sessions)
- Readings: required, online, recommended for after lecture
- Technologies: Piazza (discussion), Gradescope (homework), Canvas (gradebook only)
- Academic Integrity:
- Collaboration encouraged, but must be documented
- Solutions must always be written independently
- No re-use of found code / past assignments
- Severe penalties (i.e. failure)
- Office Hours: posted on Google Calendar on "People" page

606/607 Syllabus Highlights

- Grading: 55\% homework, 10% inclass quizzes, 30% final exam, 5% participation
- Final Exam:
- 606: Mini-I final exam week, date TBD
- 607: Mini-II final exam week, date TBD
- In-Class Quizzes: always announced ahead of time
- Homework: 4 assignments with written / programming portions
- 2 grace days for the unexpected
- Late submissions: 80% day $1,60 \%$ day $2,40 \%$ day $3,20 \%$ day 4
- No submissions accepted after 4 days w/o extension
- Extension requests: see syllabus
- Recitations: Fridays, same time/place as lecture (optional, interactive sessions)
- Readings: required, online, recommended for after lecture
- Technologies: Piazza (discussion), Gradescope (homework), Canvas (gradebook only)
- Academic Integrity:
- Collaboration encouraged, but must be documented
- Solutions must always be written independently
- No re-use of found code / past assignments
- Severe penalties (i.e. failure)
- Office Hours: posted on Google Calendar on "People" page

Lectures

- You should ask lots of questions
- Interrupting (by raising a hand) to ask your question is strongly encouraged
- Asking questions later on Piazza is also great
- When I ask a question...
- I want you to answer
- Even if you don't answer, think it through as though I'm about to call on you
- Interaction improves learning (both in-class and at my office hours)

Textbooks

These are optional, but highly recommended as an alternate presentation of the material

Expected Background

10-606 (Math Background 4 ML)

You should be familiar with some of the following...

- Calculus:
- can take scalar derivatives
- can solve scalar integrals
- Linear Algebra:
- know basic vector operations
- seen matrix multiplication
- Probability:
- seen the basics: conditioning, Bayes Rule, etc.
- Programming:
- know some Python

OR
have sufficient programming background to pick up the basics of Python

But we'll offer practice to make sure you can catch up on your weaker areas

10-607 (CS Background 4 ML)

You should...

- be comfortable with all the topics listed for 10-606
- ideally, have the mathematical maturity of someone who completed 10-606 because it will aide in understanding the motivating examples from machine learning

That said, the content of $10-607$ is designed stand alone

Q\&A

Q: Is this course right for me?

A: - If you're a Master's or PhD and you lack some of the prerequisite material for $10-601 / 701$, this is definitely the right course for you!

- If you're a Master's or PhD and you studied the prerequisite material for 10-601/701... but it was a long time ago, this is certainly the right course for you.
- If you're an undergrad, I would recommend the usual prereq sequence required for 10-601/701.
- For ugrad/MS/PhD: If you tried taken an Intro ML course here and felt a bit lost in all the math/CS, this is a great place to start.

Q: What calculus textbook would you recommend?

A: Good question... I'm still working on that one.

Q\&A

Q: What do I do if I'm feeling a bit lost in the math and CS in 10-606/607?

A: Let me know ASAP! (Do so in office hours, Piazza note, the middle of class, etc.) Our goal is to provide you with a learning environment in which you thrive. We'll certainly make adjustments if we need to.

MOTIVATION: SETS \& TYPES

$$
\begin{gathered}
\text { Sets, Types, and } \\
\text { Functions show up } \\
\text { everywhere in Machine } \\
\text { Learning }
\end{gathered}
$$

(Negative) Gradients

These are the negative gradients that Gradient Descent would follow.

Convexity

Suppose we wish to define convexity of a function...
We could draw a picture.
... but that's a bit informal.
So instead, we could offer a mathematical definition.

$$
\begin{aligned}
& \text { Function } f: \mathbb{R}^{M} \rightarrow \mathbb{R} \text { is convex } \\
& \text { if } \forall \mathbf{x}_{1} \in \mathbb{R}^{M}, \mathbf{x}_{2} \in \mathbb{R}^{M}, 0 \leq t \leq 1 \text { : } \\
& \qquad f\left(t \mathbf{x}_{1}+(1-t) \mathbf{x}_{2}\right) \leq t f\left(\mathbf{x}_{1}\right)+(1-t) f\left(\mathbf{x}_{2}\right)
\end{aligned}
$$

...but even this definition requires some carefully defined objects (the vectors, a function, the set of reals, the set of real-valued vectors of length M, etc.)

Data for ML

What is the object we talk

 about more in MachineLearning than anything else?

Our data!

$$
D=\left\{\left(\mathbf{x}^{(n)}, y^{(n)}\right)\right\}^{N} N=1
$$

The data consists of a set of tuples

$$
\mathcal{D}=\left\{\left(\mathbf{x}^{(1)}, y^{(1)}\right),\left(\mathbf{x}^{(\overline{2})}, y^{(2)}\right), \ldots,\left(\mathbf{x}^{(N)}, y^{(N)}\right)\right\}
$$

The importance of sets...

- Gaussian Discriminant Analysis and Gaussian Mixture Models are almost identical
- There's really only one practical difference
- Can you spot it?

See next two slides...

Gaussian Discriminant Analysis

Data: $\mathcal{D}=\left\{\left(\mathbf{x}^{(i)}, \mathbf{z}^{(i)}\right)\right\}_{i=1}^{N}$ where $\mathbf{x}^{(i)} \in \mathbb{R}^{M}$ and $z^{(i)} \in\{1, \ldots, K\}$
Generative Story: $z \sim$ Categorical (ϕ)

$$
\mathbf{x} \sim \operatorname{Gaussian}\left(\boldsymbol{\mu}_{z}, \boldsymbol{\Sigma}_{z}\right)
$$

Model: \quad Joint: $\quad p(\mathbf{x}, z ; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})=p(\mathbf{x} \mid z ; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z ; \boldsymbol{\phi})$

Log-likelihood:

$$
\begin{aligned}
\ell(\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) & =\log \prod_{i=1}^{N} p\left(\mathbf{x}^{(i)}, z^{(i)} ; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\right) \\
& =\sum_{i=1}^{N} \log p\left(\mathbf{x}^{(i)} \mid z^{(i)} ; \boldsymbol{\mu}, \boldsymbol{\Sigma}\right)+\log p\left(z^{(i)} ; \boldsymbol{\phi}\right)
\end{aligned}
$$

Gaussian Mixture-Model

Data: $\quad \mathcal{D}=\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{N}$ where $\mathbf{x}^{(i)} \in \mathbb{R}^{M}$
Generative Story: $\quad z \sim$ Categorical (ϕ)

$$
\mathbf{x} \sim \operatorname{Gaussian}\left(\boldsymbol{\mu}_{z}, \boldsymbol{\Sigma}_{z}\right)
$$

Model: \quad Joint: $\quad p(\mathbf{x}, z ; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})=p(\mathbf{x} \mid z ; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z ; \boldsymbol{\phi})$

$$
\text { Marginal: } p(\mathbf{x} ; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{z=1}^{K} p(\mathbf{x} \mid z ; \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z ; \boldsymbol{\phi})
$$

(Marginal) Log-likelihood:

$$
\begin{aligned}
\ell(\boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) & =\log \prod_{i=1}^{N} p\left(\mathbf{x}^{(i)} ; \boldsymbol{\phi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\right) \\
& =\sum_{i=1}^{N} \log \sum_{z=1}^{K} p\left(\mathbf{x}^{(i)} \mid z ; \boldsymbol{\mu}, \boldsymbol{\Sigma}\right) p(z ; \boldsymbol{\phi})
\end{aligned}
$$

Notation for ML

Machine Learning is notorious for requiring lots of notation... and not always being terribly consistent about it!

PRELIMINARIES: SETS AND TYPES

Sets

Chalkboard

- Definitions: Set, element of, equality, subset
- Example: Sets of sets
- Set builder notation
- Python list/set comprehentions
- Exercise: Set builder notation
- Definitions: Union, intersection, difference, complement
- Exercise: Set complement
- Tuples and set product
- Exercise: Set product

Data Types and Functions

Chalkboard

- Data types, structs, unions
- Tagged unions
- Exercise: Tagged unions
- Functions
- Anonymous functions
- Exercises: Functions

