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Reminders

• Quiz 1: Linear Algebra (today)
• Homework 3: Matrix Calculus + Probability

– Out: Wed, Oct. 3
– Due: Wed, Oct. 10 at 11:59pm

• Quiz 2: Matrix Calculus + Probability
– In-class, Wed, Oct. 10
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Q&A
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DIMENSIONALITY REDUCTION
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PCA Outline
• Dimensionality Reduction

– High-dimensional data
– Learning (low dimensional) representations

• Principal Component Analysis (PCA)
– Examples: 2D and 3D
– Data for PCA
– PCA Definition
– Objective functions for PCA
– PCA, Eigenvectors, and Eigenvalues
– Algorithms for finding Eigenvectors / 

Eigenvalues
• PCA Examples

– Face Recognition
– Image Compression
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High Dimension Data

Examples of high dimensional data:
– High resolution images (millions of pixels)
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High Dimension Data

Examples of high dimensional data:
– Multilingual News Stories 

(vocabulary of hundreds of thousands of words)
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High Dimension Data

Examples of high dimensional data:
– Brain Imaging Data (100s of MBs per scan)
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Image from https://pixabay.com/en/brain-mrt-magnetic-resonance-imaging-1728449/

Image from (Wehbe et al., 2014)



High Dimension Data

Examples of high dimensional data:
– Customer Purchase Data
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PCA, Kernel PCA, ICA: Powerful unsupervised learning techniques 
for extracting hidden (potentially lower dimensional) structure 
from high dimensional datasets.

Learning Representations

Useful for:

• Visualization 

• Further processing by machine learning algorithms

• More efficient use of resources 
(e.g., time, memory, communication)

• Statistical: fewer dimensions à better generalization

• Noise removal (improving data quality)

Slide from Nina Balcan



PRINCIPAL COMPONENT 
ANALYSIS (PCA)
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PCA Outline
• Dimensionality Reduction

– High-dimensional data
– Learning (low dimensional) representations

• Principal Component Analysis (PCA)
– Examples: 2D and 3D
– Data for PCA
– PCA Definition
– Objective functions for PCA
– PCA, Eigenvectors, and Eigenvalues
– Algorithms for finding Eigenvectors / Eigenvalues

• PCA Examples
– Face Recognition
– Image Compression
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Principal Component Analysis (PCA)

In case where data  lies on or near a low d-dimensional linear subspace, 
axes of this subspace are an effective representation of the data.

Identifying the axes is known as Principal Components Analysis, and can be 
obtained by using classic matrix computation tools (Eigen or Singular Value 
Decomposition).

Slide from Nina Balcan



2D Gaussian dataset

Slide from Barnabas Poczos



1st PCA axis

Slide from Barnabas Poczos



2nd PCA axis

Slide from Barnabas Poczos



Principal Component Analysis (PCA)

Whiteboard
– Data for PCA
– PCA Definition
– Objective functions for PCA
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Data for PCA

We assume the data is centered, and that each 
axis has sample variance equal to one.
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Sample Covariance Matrix

The sample covariance matrix is given by:
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Maximizing the Variance
Quiz: Consider the two projections below

1. Which maximizes the variance?
2. Which minimizes the reconstruction error?
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Option A Option B



PCA
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Equivalence of Maximizing Variance and Minimizing  Reconstruction Error



Principal Component Analysis (PCA)

Whiteboard
– PCA, Eigenvectors, and Eigenvalues
– Algorithms for finding Eigenvectors / 

Eigenvalues
– SVD: Relation of Singular Vectors to 

Eigenvectors
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SVD for PCA
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SVD for PCA
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Principal Component Analysis (PCA)
X	X# v = λv	, so v (the first PC) is the eigenvector of 

sample correlation/covariance matrix '	'(

Sample variance of projection v('	'(v = )v(v = )
Thus, the eigenvalue )	denotes the amount of variability 
captured along that dimension (aka amount of energy along that 
dimension).

Eigenvalues )* ≥ ), ≥ )- ≥ ⋯

• The 1st PC /* is the the eigenvector of the sample covariance matrix '	'(
associated with the largest eigenvalue 

• The 2nd PC /, is the the eigenvector of the sample covariance matrix 
'	'( associated with the second largest eigenvalue 

• And so on …

Slide from Nina Balcan



• For M original dimensions, sample covariance matrix is MxM, and has 
up to M eigenvectors. So M PCs.

• Where does dimensionality reduction come from?
Can ignore the components of lesser significance. 
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• You do lose some information, but if the eigenvalues are small, you don’t lose 
much

– M dimensions in original data 
– calculate M eigenvectors and eigenvalues
– choose only the first D eigenvectors, based on their eigenvalues
– final data set has only D dimensions



PCA EXAMPLES

Slides from Barnabas Poczos

Original sources include: 
• Karl Booksh Research group
• Tom Mitchell
• Ron Parr
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Face recognition

Slide from Barnabas Poczos



Challenge: Facial Recognition
• Want to identify specific person, based on facial image
• Robust to glasses, lighting,…
Þ Can’t just use the given 256 x 256 pixels

Slide from Barnabas Poczos



Applying PCA: Eigenfaces

• Example data set:  Images of faces 
– Famous Eigenface approach

[Turk & Pentland], [Sirovich & Kirby]
• Each face x is …

– 256 ´ 256 values (luminance at location)

– x in Â256´256    (view as 64K dim vector)

256 x 256 
real values

m faces

X =

x1, …, xm

Method: Build one PCA database for the whole dataset and 
then classify based on the weights.

Slide from Barnabas Poczos



Principle Components

Slide from Barnabas Poczos



Reconstructing…

• … faster if train with…
– only people w/out glasses
– same lighting conditions

Slide from Barnabas Poczos



Shortcomings
• Requires carefully controlled data:

– All faces centered in frame
– Same size
– Some sensitivity to angle

• Alternative:
– “Learn” one set of PCA vectors for each angle
– Use the one with lowest error

• Method is completely knowledge free
– (sometimes this is good!)
– Doesn’t know that faces are wrapped around 3D objects 

(heads)
– Makes no effort to preserve class distinctions

Slide from Barnabas Poczos



Image Compression

Slide from Barnabas Poczos



Original Image

• Divide the original 372x492 image into patches:
• Each patch is an instance that contains 12x12 pixels on a grid

• View each as a 144-D vector

Slide from Barnabas Poczos



L2 error and PCA dim

Slide from Barnabas Poczos



PCA compression: 144D à 60D

Slide from Barnabas Poczos



PCA compression: 144D à 16D

Slide from Barnabas Poczos



16 most important eigenvectors
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PCA compression: 144D à 6D

Slide from Barnabas Poczos



2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

6 most important eigenvectors
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PCA compression: 144D à 3D
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PCA compression: 144D à 1D
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60 most important eigenvectors

Looks like the discrete cosine bases of JPG!...
Slide from Barnabas Poczos



2D Discrete Cosine Basis

http://en.wikipedia.org/wiki/Discrete_cosine_transform

Slide from Barnabas Poczos


