Machine Learning

10-701, Fall 2016

Advanced topics in Max-Margin
Learning

Reading: class handouts
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Recap: the SVM problem o

e \We solve the following constrained opt problem:

m 1 m
max,  J(@)=2 o= ) iy (xx;)
i=1

i) j=1

s.t. «,20, 1=1,....m
Zaiyi = 0.
i—1

e Thisis a quadratic programming problem.

e A global maximum of o, can always be found.

m
e The solution: W = Z oYX,
i=1
e How to predict: wlx + b <0
new
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The SMO algorithm o

e Consider solving the unconstrained opt problem:

mng(al,ag, ey Q)

e \We've already see three opt algorithms!
e Coordinate ascent
e Gradient ascent
e Newton-Raphson

e Coordinate ascend:
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Coordinate ascend °°
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Sequential minimal optimization | ¢

e Constrained optimization:

m 1 m
max,  J(@)=2 0= ) iy (%))
i=1

i,j=1

s.t. 0<¢,<C, I=1,...,m

Zm: oy, =0.
i—1

e Question: can we do coordinate along one direction at a time
(i.e., hold all o fixed, and update ¢;?)
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The SMO algorithm o°

Repeat till convergence

1. Select some pair ¢; and ¢; to update next (using a heuristic that tries
to pick the two that will allow us to make the biggest progress
towards the global maximum).

2. Re-optimize J(«) with respect to ¢; and ¢;, while holding all the other
o 's (k=1; ) fixed.

Will this procedure converge?
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Convergence of SMO -

max, JZ(a)= Za——Za Y (x(x

Ijl

st. 0<qa <C, i=1,...,k

KKT: ¢

e Let'shold ..., &, fixed and reopt J w.rt. ¢ and «,
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Convergence of SMO -
e The constraints: c
a1y1 + agys = ¢
0<a; <C %H """"""""""""""""""" oy "+ oy =
0 S a9 S C
e The objective: L L
\.7(&1} a9, ... 3@-}%) — j((f — OL’Q?J‘Z)?JI: Dy v v vy O(’-'-?'n,)

e Constrained opt:
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Advanced topics in Max-Margin cece

Learning -

m 1 m
max , j(a):Zai _Ezaiajyiyj(XiTXj)
i=1

i) j=1

W X, ow + b < 0

e Kernel
e Point rule or average rule

e (Can we predict vec(y)?
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Outline °°

e The Kernel trick

e Maximum entropy discrimination

e Structured SVM, aka, Maximum Margin Markov
Networks
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(1) Non-linear Decision Boundary | :

e So far, we have only considered large-margin classifier with a
linear decision boundary

e How to generalize it to become nonlinear?

e Key idea: transform x; to a higher dimensional space to “make
life easier”
e Input space: the space the point x; are located
e Feature space: the space of ¢(x;) after transformation

e \Why transform?

e Linear operation in the feature space is equivalent to non-linear operation in input
space

e Classification can become easier with a proper transformation. In the XOR
problem, for example, adding a new feature of x,x, make the problem linearly
separable (homework)
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Non-linear Decision Boundary o
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Transforming the Data

v

Input space
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The Kernel Trick ot

e Recall the SVM optimization problem
max, J(a)= Zai _%Zaiajyiyj(x-irxj)
i=1 i,j=1

s.t. 0<¢,<C, I=1,...,m

Zai y; =0.
=1
e The data points only appear as inner product

e As long as we can calculate the inner product in the feature
space, we do not need the mapping explicitly

e Many common geometric operations (angles, distances) can
be expressed by inner products

o Define the kernel function K by K(x;,x,)=¢(x;) ¢(x,)
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An Example for feature mapping | s

and kernels oo

e Consider an input x=[x,,X,]
e Suppose ¢ .) is given as follows

¢£|:X1 :|] — 1,\/§X1,\/§X2, Xlz, XZZ,\/§X1X2

X,

e An inner product in the feature space is

A )E)-

e S0, if we define the kernel function as follows, there is no
need to carry out ¢(.) explicitly

K(x,x') = (1 — XTX')2
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More examples of kernel 1
functions -

e Linear kernel (we've seen it)
K(x,x')=x"x'
e Polynomial kernel (we just saw an example)
K(x,x') = (1 + xTx')p

where p = 2, 3, ... To get the feature vectors we concatenate all pth order
polynomial terms of the components of x (weighted appropriately)
e Radial basis kernel

K(x,x')= exp(—;x—x' Zj

In this case the feature space consists of functions and results in a non-
parametric classifier.
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The essence of kernel :

e Feature mapping, but “without paying a cost”
e E.g., polynomial kernel
K(x,2) = (212 +¢)?
e How many dimensions we’ve got in the new space?
e How many operations it takes to compute K()?

e Kernel design, any principle?
e K(x,z) can be thought of as a similarity function between x and z
e This intuition can be well reflected in the following “Gaussian” function
(Similarly one can easily come up with other K() in the same spirit)

lo — =|1®
K(x,z) =exp | —
( ’ ) p ( 20.2 )
e Is this necessarily lead to a “legal” kernel?
(in the above particular case, K() is a legal one, do you know how many
dimension ¢(x) is?
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Kernel matrix -

e Suppose for now that K is indeed a valid kernel corresponding
to some feature mapping ¢, then for x,, ..., x,, we can
compute an mxm matrix K = {K; ;}, where ng = o) b(z;)

e This is called a kernel matrix!

e Now, if a kernel function is indeed a valid kernel, and its
elements are dot-product in the transformed feature space, it
must satisfy:

e Symmetry K=KT
proof K;; = ¢(x) T o(x;) = d(x;)  d(x;) = K,
e Positive —semidefinite yI'Ky>0 Wy
proof?
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Mercer kernel oo

Theorem (Mercer): Let K: R" x R” — R be given. Then for
K to be a valid (Mercer) kernel, it is necessary and sufficient that
for any {z;,...,xm}, (Mm < 00), the corresponding kernel matrix
1s symmetric positive semi-denite.
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SVM examples

I e ] 05 | 15 2 e ] 0.5 1 15 2

4" order polynomial 8 order polynomial
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Examples for Non Linear SVMs —
Gaussian Kernel o

Gaussian
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(2) Model averaging g

e Inputs x, classy = +1, -1
o data D = { (x.y)), ... (X,.Yrm)

e Point Rule:

e learn f°rf(x) discriminant function

from F = {f} family of discriminants

e classify y = sign fort(x)

e E.g., SVM
forY(x) = wlx ow+ b
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Model averaging oo

e There exist many f with near optimal performance

e Instead of choosing forT,
average over all fin F

Q(f) = weight of f
o - oo

= sign(f

e Howto spec:lfy:
F = { f } family of discriminant functions?

e How tolearn Q(f) distribution over F?
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Recall Bayesian Inference -

e Bayesian learning:

po(w)
3| Bayes Learner |—s> p(w|D)
D = {(xi,¥:) }ieq

Bayes Thrm : p(w|D) =

p(w)p(D|w)
p(D)

e Bayes Predictor (model averaging):

hi(x;p(w)) = arg max, / p(w) f(x,y; w)dw

Recall in SVM: /i (x;w) = arg max F(x.y:w)
| yey(x)
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How to score distributions? :

e Entropy
e Entropy H(X) of a random variable X

H(X)=- Z P(x = i)logy Pz = 1)

e H(X) is the expected number of bits needed to encode a randomly drawn
value of X (under most efficient code)

o Why?

Information theory:

Most efficient code assigns -log,P(X=i) bits to encode the message X=l,
So, expected number of bits to code one random X is:

— Z P(z =1)log, P(x = 1)

=1
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Maximum Entropy Discrimination | :¢

e Givendataset p = {(x;,y;)}Y, find

Qve = argmax  H(Q)

il 1

/
g\

§i

:_-r-
Sy
1\

{~r &= /s
\\A S'Z,) Vi

o\
/1 QumE

0 V2

n

Vv

e solution Q,,c correctly classifies D
e among all admissible Q, Q,,z has max entropy
e max entropy mmp "minimum assumption” about f
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000
o000
X XX J
: : o5
Introducing Priors :
e Prior Q,(f) O
e Minimum Relative Entropy D(Q, Qo) = KL(Ql|Qo)
Discrimination
s, YN g > & Vi
& >0 Vi

e Convex problem: Q,,re Unique solution
e MER "= "minimum additional assumption" over Q, about f
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Solution: Qe as a projection o

—
e Convex problem: Q,,z unique

a=0 uniform
e [heorem: Qo
N
@MRE X eXp{Z ;i f (@i w) }Qo(w)
i=1 admissible Q

o; > 0 Lagrange multipliers

e finding Q,, : start with ¢; = O and follow gradient of unsatisfied
constraints
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Solution to MED ot

e Theorem (Solution to MED):

Posterior Distribution:

Q(w) = TQO ) exp { Za yilf(xivw }

Dual Optimization Problem:
D1: max —logZ(a)—U*(a)

s.t. a;(y) >0, Vi,

U*(-) is the conjugate of the U(-), i.e., U*(a) = supg (3, , 0i(y)éi — U(E))

e Algorithm: to computer ¢, , t=1,..T

e start with ¢, = O (uniform distribution)

e iterative ascent on J(a) until convergence
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Examples: SVMs o

e Theorem

For f(x) =w!x + b, Q,(w) = Normal( 0, | ), Q,(b) = non-informative prior,
the Lagrange multipliers « are obtained by maximizing J(«) subject
to 0<o, <C and 2, oy, = 0, where

1
J(a) = Z [th + log(1 — @t/c)] 5 Z asatysytxgxt
s,t

t

e Separable D ==y SVM recovered exactly

e Inseparable D == S\VM recovered with different
misclassification penalty
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SVM extensions o

e Example: Leptograpsus Crabs (5 inputs, T,,,,=80, T,.=120)

—

/Eg/\[

Linear SVM

o
o

Max Likelihood Gaussian

\MRE Gaussian

o
-\J

1-false negatives

o
o

o
ey

01 02 03 04 05

falae nnsitives
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(3) Structured Prediction °°

S Unstructured prediction
’ y <7 X1l X192 s "
. = | X21 X22 ... y=| ¥

S Structured prediction
e Part of speech tagging

X — "“Doyou wantsugarinit?” = Y =verb pron verb noun prep pron>

e Image segmentation

X11 X12 ... Y11 Y12
X = X21 X292 ... y = Ya1 Y22
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OCR example
y

f.rF“EﬂE' = brace

Sequential structure

A OO
< Bl Il Gd [ 1=




o000
411
Classical Classification Models T
e |nputs:
e a set of training samples D = {( (6 y;) MY, , where
X = [;};f {,} and y; € C £ ley, 00,490 Jep )
e Outputs:
e a predictive function h(x): y* = h(x) = argmax F(x, y)

y
F(x,y) =w'f(x,y)
e Examples:
e SVM: max;w w—I-CZ&, s.t. wlAf(y) > 1 &, Vi, Vy.

w
¢ 1=1

e Logistic Regression: max £(D; w) Zlogp vilx;)

exp{wT£(x, )}

where ylx) =
p(ylx) >, exp{w T f(x,y/)}
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Structured Models °°

h(x) = argmax F(x,y)
yeY(x) X
0 discriminant function
space of feasible outputs

e Assumptions:

Fx,y) =w'f(xy) =Y w' f(xp, yp)
p

e Linear combination of features

e Sum of partial scores: index p represents a part in the structure

e Random fields or Markov network features:
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Discriminative Learning Strategies e

e Max Conditional Likelihood
e \We predict based on:

. 1
— pu— Wf 9
y |x arg max P, (¥]x) Z(w. %) exp{Ec, T (x yc)}

e And we learn based on:

Wy x f=argmax [ ] p, (v [x) =] : exp{ZWc fc(xi,yi)}

Z(W,X,)

e Max Margin:
e \We predict based on:

y | X =argmax ZWC f (x,y,)=argmaxw' f(x,y)
v = y

e And we learn based on:

wly,x = argmva}X( min w' (f (y;,x;)- f(ysxi))j

y#y',Vi
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E.g. Max-Margin Markov eecs
Networks -

e Convex Optimization Problem:
POMIN): i owl+ cia
s.b. Vi,Vy # y; : TAf(x y) > A ( ) —&i, & >0,
e Feasible subspace of weights:

Fo={w:w' Afi(x,y) > Al(y) — &; Vi,Vy # y;}

e Predictive Function:

ho(x; w) = arg max F(x,y;w)
yeY(x)
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OCR Example

e \We want:
argmax,,..q W' f(Ffadad . word) = “brace”

e Equivalently:
wT f( “brace”) > w' f(Lifd€d ,“aaaaa”)
wT f( “brace”) > w' f( ,“aaaab”)

w f( “brace”)>w' f( IEIdd zzzzz”

© Eric Xing @ CMU, 2006-2016
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Min-max Formulation o2

e Brute force enumeration of constraints:
min 1| w|?
2
w f(x,y*) > w'f(x,y) +((y*y), Vy
e The constraints are exponential in the size of the structure

e Alternative: min-max formulation
e add only the most violated constraint

y' = arg max[w ' f(x;,y) + £(y,¥)]
YEY*

add to QP : w ' f(x;,y;) > w' £(x;,5) + €(yi,¥)
e Handles more general loss functions

e Only polynomial # of constraints needed
e Several algorithms exist ...
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Results: Handwriting Recognition

Length: ~8 chars B 30 - raw ® quadratic LI cubic
° == pixels kernel kernel
Letter: 16x8 pixels ©
: & 25
10-fold Train/Test S l better
5000/50000 letters 9 50
600/6000 words o
©
5 15
>
Models: 8 ]
Multiclass-S error reduction over multiclass SVMs

M3 nets

MC- SVMs MA3 nets

*Crammer & Singer 01
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Discriminative Learning Paradigms °
SVM b 5 @& - M3N — — — — —
O y = arg max_ F(x, y,w)
y = sign(w x +b) yeV(x)
min ||w||2—|—Ci£Z min —||w||2+C§:$z
w. i=1 w.g i=1
y(wix' +b)>1-¢, Vi ﬂ WT[f(XQ—f(X V= Uy y) —&, ViVy#y'

y = sigr{(im

.
.,
.,
"
- ™
T
o
o
o

\\\\\\\
e

min  KL(QI[Qo)
V' (f(xD))g > &, Vi

MED-MN
= SMED + Bayesian M3N

See [Zhu and Xing, 2008]
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Summary

e Maximum margin nonlinear separator
e Kernel trick
e Project into linearly separatable space (possibly high or infinite dimensional)
e No need to know the explicit projection function

e Max-entropy discrimination
e Average rule for prediction,

e Average taken over a posterior distribution of w who defines the separation
hyperplane

e P(w)is obtained by max-entropy or min-KL principle, subject to expected
marginal constraints on the training examples

e Max-margin Markov network
e Multi-variate, rather than uni-variate output Y
e Variable in the outputs are not independent of each other (structured input/output)
e Margin constraint over every possible configuration of Y (exponentially many!)
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