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Machine Learning

10-701, Fall 2016

Advanced topics in Max-Margin 
Learning

Eric Xing

Lecture 7, September 28, 2016
Reading: class handouts



© Eric Xing @ CMU, 2006-2016 22

Recap: the SVM problem
 We solve the following constrained opt problem:

 This is a quadratic programming problem.
 A global maximum of i can always be found.

 The solution:

 How to predict: 
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The SMO algorithm
 Consider solving the unconstrained opt problem:

 We’ve already see three opt algorithms! 
 Coordinate ascent 
 Gradient ascent 
 Newton-Raphson

 Coordinate ascend:
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Coordinate ascend
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Sequential minimal optimization
 Constrained optimization:

 Question: can we do coordinate along one direction at a time 
(i.e., hold all [-i] fixed, and update i?)
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The SMO algorithm

Repeat till convergence

1. Select some pair i and j to update next (using a heuristic that tries 
to pick the two that will allow us to make the biggest progress 
towards the global maximum).

2. Re-optimize J() with respect to i and j, while holding all the other 
k 's (k i; j) fixed.

Will this procedure converge?
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Convergence of SMO

 Let’s hold 3 ,…, m fixed and reopt J w.r.t. 1 and 2
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Convergence of SMO
 The constraints:

 The objective:

 Constrained opt:
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Advanced topics in Max-Margin 
Learning

 Kernel

 Point rule or average rule

 Can we predict vec(y)?
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Outline

 The Kernel trick

 Maximum entropy discrimination

 Structured SVM, aka, Maximum Margin Markov 
Networks 
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(1) Non-linear Decision Boundary
 So far, we have only considered large-margin classifier with a 

linear decision boundary
 How to generalize it to become nonlinear?
 Key idea: transform xi to a higher dimensional space to “make 

life easier”
 Input space: the space the point xi are located
 Feature space: the space of (xi) after transformation

 Why transform?
 Linear operation in the feature space is equivalent to non-linear operation in input 

space
 Classification can become easier with a proper transformation. In the XOR 

problem, for example, adding a new feature of x1x2 make the problem linearly 
separable (homework)
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Non-linear Decision Boundary

12
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Transforming the Data
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The Kernel Trick
 Recall the SVM optimization problem

 The data points only appear as inner product
 As long as we can calculate the inner product in the feature 

space, we do not need the mapping explicitly
 Many common geometric operations (angles, distances) can 

be expressed by inner products
 Define the kernel function K by
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An Example for feature mapping 
and kernels
 Consider an input x=[x1,x2]
 Suppose (.) is given as follows

 An inner product in the feature space is

 So, if we define the kernel function as follows, there is no 
need to carry out (.) explicitly
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More examples of kernel 
functions
 Linear kernel (we've seen it)

 Polynomial kernel (we just saw an example)

where p = 2, 3, … To get the feature vectors we concatenate all pth order 
polynomial terms of the components of x (weighted appropriately)

 Radial basis kernel

In this case the feature space consists of functions and results in a non-
parametric classifier.
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The essence of kernel
 Feature mapping, but “without paying a cost”

 E.g., polynomial kernel

 How many dimensions we’ve got in the new space?
 How many operations it takes to compute K()?

 Kernel design, any principle?
 K(x,z) can be thought of as a similarity function between x and z
 This intuition can be well reflected in the following “Gaussian” function

(Similarly one can easily come up with other K() in the same spirit)

 Is this necessarily lead to a “legal” kernel?
(in the above particular case, K() is a legal one, do you know how many 
dimension (x) is?
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Kernel matrix
 Suppose for now that K is indeed a valid kernel corresponding 

to some feature mapping , then for x1, …, xm, we can 
compute an mm matrix               , where

 This is called a kernel matrix!

 Now, if a kernel function is indeed a valid kernel, and its 
elements are dot-product in the transformed feature space, it 
must satisfy:
 Symmetry K=KT

proof

 Positive –semidefinite
proof? 
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Mercer kernel 
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SVM examples
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Examples for Non Linear SVMs –
Gaussian Kernel



© Eric Xing @ CMU, 2006-2016 2222

(2) Model averaging
 Inputs x, class y = +1, -1
 data D = { (x1,y1), …. (xm,ym) }

 Point Rule:

 learn  fopt(x) discriminant function
from F = {f} family of discriminants

 classify   y = sign fopt(x)

 E.g., SVM
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Model averaging
 There exist many f with near optimal performance

 Instead of choosing fopt, 
average over all f in F

Q(f) = weight of  f

 How to specify:
F = { f } family of discriminant functions?

 How to learn  Q(f) distribution over F?
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 Bayesian learning:

 Bayes Predictor (model averaging):

 What p0?

Recall Bayesian Inference

Bayes Learner

Recall in SVM: 
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How to score distributions?

 Entropy
 Entropy H(X) of a random variable X

 H(X) is the expected number of bits needed to encode a randomly drawn 
value of X (under most efficient code)

 Why?

Information theory:
Most efficient code assigns -log2P(X=i) bits to encode the message X=I, 
So, expected number of bits to code one random X is:
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 Given data set                            , find

 solution QME correctly classifies D
 among all admissible Q, QME has max entropy
 max entropy             "minimum assumption" about f

Maximum Entropy Discrimination
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Introducing Priors
 Prior Q0( f )

 Minimum Relative Entropy 
Discrimination

 Convex problem: QMRE unique solution
 MER             "minimum additional assumption" over Q0 about f

p
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 Convex problem: QME unique 

 Theorem: 

i  0 Lagrange multipliers

 finding QM : start with i  0 and follow gradient of unsatisfied 
constraints

Solution: Q ME  as a projection

uniform
Q0

QME

admissible Q

=0

ME
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Solution to MED
 Theorem (Solution to MED):

– Posterior Distribution:

– Dual Optimization Problem:

 Algorithm: to computer t , t = 1,...T

 start with t = 0 (uniform distribution)

 iterative ascent on J() until convergence
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Examples: SVMs
 Theorem

For f(x) =wTx + b, Q0(w) = Normal( 0, I ), Q0(b) = non-informative prior,
the Lagrange multipliers  are obtained by maximizing J() subject 
to 0t C and t tyt = 0, where

 Separable D SVM recovered exactly
 Inseparable D SVM recovered with different 

misclassification penalty
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SVM extensions

MRE Gaussian

Linear SVM

Max Likelihood Gaussian

 Example: Leptograpsus Crabs (5 inputs, Ttrain=80, Ttest=120)
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(3) Structured Prediction

“Do you want sugar in it?”     <verb pron verb noun prep pron>

 Unstructured prediction

 Structured prediction
 Part of speech tagging

 Image segmentation
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OCR example

brace
Sequential structure

x y

a-z a-z a-z a-z a-zy

x
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 Inputs: 
 a set of training samples                           , where 

and 

 Outputs:
 a predictive function        :   

 Examples:
 SVM:

 Logistic Regression:

where 

Classical Classification Models
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 Assumptions:

 Linear combination of features

 Sum of partial scores: index p represents a part in the structure

 Random fields or Markov network features:

Structured Models

space of feasible outputs
discriminant function
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Discriminative Learning Strategies
 Max Conditional Likelihood

 We predict based on:

 And we learn based on:

 Max Margin:
 We predict based on:

 And we learn based on:
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E.g. Max-Margin Markov 
Networks
 Convex Optimization Problem:

 Feasible subspace of weights: 

 Predictive Function:
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OCR Example

 We want:
argmaxword wT f( , word) = “brace”

 Equivalently:
wT f( ,“brace”) > wT f(             ,“aaaaa”)
wT f( ,“brace”) > wT f(             ,“aaaab”)
…
wT f( ,“brace”) > wT f(              ,“zzzzz”)

a lot!
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 Brute force enumeration of constraints:

 The constraints are exponential in the size of the structure

 Alternative: min-max formulation 
 add only the most violated constraint

 Handles more general loss functions
 Only polynomial # of constraints needed
 Several algorithms exist …

Min-max Formulation
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Results: Handwriting Recognition

Length: ~8 chars
Letter: 16x8 pixels 
10-fold Train/Test
5000/50000 letters
600/6000 words 

Models:
Multiclass-SVMs*
M3 nets 

*Crammer & Singer 01
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Discriminative Learning Paradigms

?                       

SVM                      SVM                      
b r a c e

M3N                      

MED                      MED                      

M3N                      

MED-MN
= SMED + Bayesian M3N

See [Zhu and Xing, 2008]
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Summary
 Maximum margin nonlinear separator

 Kernel trick
 Project into linearly separatable space (possibly high or infinite dimensional)
 No need to know the explicit projection function

 Max-entropy discrimination
 Average rule for prediction, 
 Average taken over a posterior distribution of w who defines the separation 

hyperplane
 P(w) is obtained by max-entropy or min-KL principle, subject to expected 

marginal constraints on the training examples

 Max-margin Markov network
 Multi-variate, rather than uni-variate output Y
 Variable in the outputs are not independent of each other (structured input/output)
 Margin constraint over every possible configuration of Y (exponentially many!)


