Machine Learning

10-701, Fall 2016

Support Vector Machines

Reading: Chap. 6&7, C.B book, and listed papers
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What is a good Decision
Boundary? o

e Consider a binary classification
task with y = £1 labels (not 0/1 as
before).

»

e \When the training examples are O
linearly separable, we can set the
parameters of a linear classifier O
so that all the training examples
are classified correctly O O

e Many decision boundaries! B O

e Generative classifiers Class 1

v

e Logistic regressions ...

e Are all decision boundaries
equally good?
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What is a good Decision

Boundary?
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Not All Decision Boundaries Are

Equal!

e \Why we may have such boundaries?

Irregular distribution
Imbalanced training sizes
outliners
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Classification and Margin o

e Parameterzing decision boundary

e Letw denote a vector orthogonal to the decision boundary, and » denote a scalar
"offset" term, then we can write the decision boundary as:

»
»

. -
Class 1 . d/ ‘/d'+
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Classification and Margin o

e Parameterzing decision boundary

e Letw denote a vector orthogonal to the decision boundary, and » denote a scalar
"offset" term, then we can write the decision boundary as:
w' b
TR + T
I
e Margin

=0

»
»

(wixAb)/||w|| > +c/||lw|| for all x; in class 2
(wix+b)/||w|| < —c/||w|| for all x; in class 1

@,
o Class 2 Or more compactly:
(W'x+b)y,;/||wl| >c/||w
[]
Class 1 = d/ ./d'+ The crlnariin between any two points
— m=d +dt=

© Eric Xing @ CMU, 2006-2016 6



Maximum Margin Classification -

e The minimum permissible margin is:

e Here is our Maximum Margin Classification problem:

max =
w1

st y,(w'x, +b) /HWH > c/Hw

, Vi
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Maximum Margin Classification, cece

o000
con'd. oo
e The optimization problem:
C
max, , M
S.t

y.(w'x, +b)>c, Vi
e But note that the magnitude of ¢ merely scales w and b, and does
not change the classification boundary at all! (why?)
e So we instead work on this cleaner problem:

1
,b
v
y.(w'x, +b) =21, Vi
e The solution to this leads to the famous -

-- believed by many to be the best "off-the-shelf" supervised learning
algorithm

max

S.t
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Support vector machine °°

e A convex quadratic programming problem
with linear constrains:

1

,bM
yxwfxf+b)21,;Vi

e The attained margin is now given by M

max

S.t

e Only a few of the classification constraints are relevant =» support vectors

e Constrained optimization

e We can directly solve this using commercial quadratic programming (QP) code

e But we want to take a more careful investigation of Lagrange duality, and the
solution of the above in its dual form.

=>» deeper insight: support vectors, kernels ...

=>» more efficient algorithm
© Eric Xing @ CMU, 2006-2016 9



Digression to Lagrangian Duality | :¢

e The Primal Problem
min, £ (w)
s.1. g.(w)<0, i=1,...,k
h(w)=0, i=1,...,1

The generalized Lagrangian:

L(w,a,f)=f(w)+ Zaigi(w) + Zﬂihi(w)
i=1 i=1

the o's (¢,20) and f's are called the Lagarangian multipliers

Primal:

Lemma: _ _ _ .
f(w) 1f wsatisfies primal constraints

MaXx , p.a,>0 ’L)(Waaaﬂ):{ .

o/wW
A re-written Primal:

min max , ;. 5o L(w,a,p)
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Lagrangian Duality, cont. %

e Recall the Primal Problem:

min max , 5, 5o L(w,a,p)

e [he Dual Problem:

max , ; , 5o min  L(w,a, )

e Theorem (weak duality):

a’*:maxa,ﬂ,a,-zominwl’(w,a,ﬂ) < Ininwmaxa,ﬂ,a,»zo ’g(W:a’lB):p*

e Theorem (strong duality):
Iff there exist a saddle point of £(w,a, ), we have
d* _ p*
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A sketch of strong and weak cece

duality -

e Now, ignoring /(x) for simplicity, let's look at what's happening
graphically in the duality theorems.

d” =max, omin  f(w)+a'g(w) < min, max ., f(W)+a g(w)=p

J(wi

g(wz
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A sketch of strong and weak cece

duality -

e Now, ignoring /(x) for simplicity, let's look at what's happening
graphically in the duality theorems.

d” =max, omin  f(w)+a'g(w) < min, max ., f(W)+a g(w)=p

£l JS(wi

g(wz

g(wz
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The KKT conditions oo

e If there exists some saddle point of .£ then the saddle point
satisfies the following "Karush-Kuhn-Tucker" (KKT)
conditions:

iL’(w,oz,,ﬁ’):O, i=1,...,k
ow,

ﬁl’(waﬂ)—O i=1,...,1
aﬁl 9 M 9 29°°°*)9

aigi(w) =0, i=1L...,m Complementary slackness
gi(W) <0, i=1,...,m Primal feasibility

a, 20, i=1,...,m Dual feasibility

e Theorem: If w*, " and f* satisfy the KKT condition, then it is also a
solution to the primal and the dual problems.

© Eric Xing @ CMU, 2006-2016 15



Solving optimal margin classifier | ::

e Recall our opt problem:

e This is equivalent to
1

mn, , —ww
ol (*)
S.t T .
1-y.wx +b)<0, Vi
e Write the Lagrangian:

%WTW — Zm: a [yl.(wal. +b) - 1]
i1

e Recall that (*) can be reformulated as min, , max , ., £(w,b,2)

Now we solve its dual problem: max , ., min  , £(w,b,2)

L(w,b,a) =
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L0vb.a)=owiw-Yaly s +b)-1] | 3358
The Dual Problem - T

max , .o min, , £(w,b,a)

e \We minimize .£ with respect to w and b first:

V,L(wb,a)=w-)Y ayx =0, (%)
i=1
V,L(w,b,a)=) a,y,=0, (%)
i=1
Note that (*) implies: W = i a, VX, (***)
i=1

e Plug (***) back to .£ , and using (**), we have:

m 1 m
L(w,b,a) = ;ai 2 Zaiajyiyj(XiTXj)

i,j=1
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HE
The Dual problem, cont. oo
e Now we have the following dual opt problem:
max , j(a):iai_%iaiajyiyj(xzrxj)
i=1 i,j=1

s.t. .20, i=1,...k
Zaiyi =0.
i=1

e Thisis, (again,) a quadratic programming problem.
e A global maximum of o, can always be found.
e But what's the big deal??

e Note two things: "
1. wcanberecovered by = Z a.yX, See next ...
i=1

2. The "kernel" X; X, More later ...
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Support vectors oo

e Note the KKT condition --- only a few ¢;'s can be nonzero!!

oa.g(w)=0, i=1,...,m

Class 2 Call the training data points
0,=0.6 @9t20=0 whose ¢;'s are nonzero the
O / support vectors (SV)
=0
0,:=0 [ oxl
= © =08
o,=0 ]
= - (16:1.4 WTX+ b= 1
0y=0 B T .
Class 1 a0 WX +b6=0

wlx —l—'b = -1
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Support vector machines °°

e Once we have the Lagrange multipliers {«;}, we can
reconstruct the parameter vector w as a weighted combination
of the training examples:

e For testing with a new data z

e Compute . .
wz+b= Zaiyl.(xl. Z)-I—b

ieSV

and classify z as class 1 if the sum is positive, and class 2 otherwise

e Note: w need not be formed explicitly
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Interpretation of support vector 434

machines oo

e The optimal W is a linear combination of a small number of
data points. This “sparse” representation can be viewed as
data compression as in the construction of KNN classifier

e To compute the weights {«;}, and to use support vector
machines we need to specify only the inner products (or
kernel) between the examples x; X ;

e \We make decisions by comparing each new example Z with
only the support vectors:

y* = sign[ > ay, (XZ.TZ)-I— bj

ieSV
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Non-linearly Separable Problems |:¢

5. @
J
@) Class 2
Xj
\)/ O
O X ©
O o 5
O ’ wix+b=1
T _
Class 1 R XxX+b=0

wlx +'b = -1

e We allow “error” & in classification; it is based on the output of
the discriminant function w’x+5

e ¢ approximates the number of misclassified samples
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Soft Margin Hyperplane

e Now we have a slightly different opt problem:

min %WTW-I- Cz ¢,
i—1

y.(w'x, +b)>1-¢&,, Vi
>0, Vi

S.t

&; are “slack variables” in optimization

Note that £=0 if there is no error for x;

&; is an upper bound of the number of errors

C : tradeoff parameter between error and margin

© Eric Xing @ CMU, 2006-2016

23



The Optimization Problem °°

e The dual of this new constrained optimization problem is

max , j(a)zzai_Ezaiajyiyj(xzrxj)
i=1

i,j=1

st. 0<a,<C, i=1,....m

i a,;y, =0.
i=1

e This is very similar to the optimization problem in the linear
separable case, except that there is an upper bound C on ¢,
now

e Once again, a QP solver can be used to find o,
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The SMO algorithm o

e Consider solving the unconstrained opt problem:

mng(al,ag, ey Q)

e \We've already see three opt algorithms!
o« ?
o« ?
o« ?

e Coordinate ascend:
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Coordinate ascend °°

2.4 / T T

2L
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Sequential minimal optimization | ¢

e Constrained optimization:

max , ](a)zzai_Ezaiajyiyj(xjxj)
i=1

i,j=1

st. 0<a,<C, i=1,....m

i a,;y, =0.
i=1

e Question: can we do coordinate along one direction at a time
(i.e., hold all i fixed, and update «;?)
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The SMO algorithm o°

Repeat till convergence

1. Select some pair ¢; and a; to update next (using a heuristic that tries
to pick the two that will allow us to make the biggest progress
towards the global maximum).

2. Re-optimize J(«) with respect to ¢; and ¢;, while holding all the other
o, 's (k # i, j) fixed.

Will this procedure converge?
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Convergence of SMO -

m 1 m
max , ](a)zzai_Ezaiajyiyj(xij)
i=1

i,j=1

s.t. 0<a,<C, i=1,...,k

in: oV, = 0.
i=1

KKT:

e Let'shold a;,..., @, fixed and reopt J w.rt. &, and «,
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Convergence of SMO -
e The constraints: c
a1y1 + agys = ¢
0<a; <C %H """"""""""""""""""" oy "+ oy =
0 S a9 S C
e The objective: L L
\.7(&1} a9, ... 3@-}%) — j((f — OL’Q?J‘Z)?JI: Dy v v vy O(’-'-?'n,)

e Constrained opt:
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Cross-validation error of SVM °°

e The leave-one-out cross-validation error does not depend on
the dimensionality of the feature space but only on the # of
support vectors!

# support vectors

Leave - one - out CV error= —
# of training examples
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Summary

e Max-margin decision boundary

e Constrained convex optimization

Duality

The KTT conditions and the support vectors

Non-separable case and slack variables

The SMO algorithm
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