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Reading: Chap. 6&7, C.B book, and listed papers
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What is a good Decision

Boundary?

Consider a binary classification
task with y = £1 labels (not 0/1 as
before).

»

When the training examples are
linearly separable, we can set the
parameters of a linear classifier
so that all the training examples
are classified correctly

Many decision boundaries!
e Generative classifiers /

e Logistic regressions ...

Are all decision boundaries
equally good?
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Not All Decision Boundaries Are 444
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e \Why we may have such boundaries?
e Irregular distribution
e Imbalanced training sizes
e outliners
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e Parameterzing decision boundary

e Letw denote a vector orthogonal to the decision boundary, and » denote a scalar
"offset" term, then we can write the decision boundary as:
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Classification and Margin o

e Parameterzing decision boundary

Let w denote a vector orthogonal to the decision boundary, and » denote a scalar
"offset" term, then we can write the decision boundary as:

w! b

»

N
Class 1

—TX-I-
|

=0

T
oH Margin

(wixAb)/||w|| > +c/||lw|| for all x; in class 2
(wix+b)/||w|| < —c/||w|| for all x; in class 1

Or more compactly:

(W D)y /vl >l

The marginmbetween any two points
m=d +d. VCX;»)(&)

(w(
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Maximum Margin Classification -

e The minimum permissible margin is:

e Here is our Maximum Margin Classification problem:

0 (WX

- D\ 0 \’L/m "
3]

\/ S.t b2
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Maximum Margin Classification, cece

con'd. :

e The optimization problem:

c
max M
i
/S.t Ly, (W' x, +b) > c,?i

e But note that the magnitude of ¢ merely scales w and b, and does
not change the classification boundary at all! (why?)

e So we instead work on this cleaner problem:

1
b
v
y.(w'x, +b) =21, Vi
e The solution to this leads to the famous -

-- believed by many to be the best "off-the-sheIB' supervised learning
algorithm <

max .

S.t
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T ot v gnpsge e
Support vector machine o die, f 12

e A convex quadratic programming problem H1 4 e .
ij..

with linear constrains: Iy ® °
1 d*
max
w,b
] _1
S.t -

y.(w'x, +b) =1,

e The attained margin is now given by

e Only a few of the classification constraints are relevant =» support vectors

e Constrained optimization

e We can directly solve this using commercial quadratic programming (QP) code

e But we want to take a more careful investigation of Lagrange duality, and the
solution of the above in its dual form.

-> g@t: support vectors, kernels ...

=>» more efficient algorithm
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Digression to Lagrangian Duality | :¢

S

e [he Primal Problem
{ mhe

Primal:

The generalized La

L(w,a,p)= f(W)+Zag,(W)+Zﬂlh,(W)

i=l

the o's (¢20) and ,H_s/are called the Lagarangian multipliers

Lemma:

max QW(W a, )=

re-written Primal: —
mln o %y LW, f)
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Lagrangian Duality, cont. o
e Recall the Primal Problem: ?l,v
min, max,, , o £(w,a,f) Qf‘* DL'“#')

| W
e [he Dual Problem:
Hﬁia,ﬂ,aizo minw ,L)(W,CZ, /B) Q\/W 6L’4* eﬂ>’{/‘“

e Theorem (weak duality):

A" =y o mip), £(w.at, f) @ Lova)Ep

e Theorem (strong duality):

Iff there exist a saddle point of £(w,a, ), we have

d =p
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A sketch of strong and weak 1
duality o

e Now, ignoring /(x) for simplicity, let's look at what's happening
graphically in the duality theorems.
d = max , g min  f(w)+a’ g(w) < min , max,, ., fwy+a'gw)=p
Solve tle dusd Jriphicelly
v qu Ntﬁj;m'l Ao
and pick gn 1eite{ Wo

Thé, L (We, o) ¥ §Von b
He mterst e, ‘l azu fw)'}j

(ftm), Giws) ) wits shye oo
Wik tle vertieal o,

J(wi

g(wz
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A sketch of strong and weak cece

duality -

e Now, ignoring /(x) for simplicity, let's look at what's happening
graphically in the duality theorems.

d” =max, omin  f(w)+a'g(w) < min, max ., f(W)+a g(w)=p

J(wi

1)
\ '

o p/(ré“
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The KKT conditions ot

o If there exists some saddle point of .£ then the saddle point
satisfies the following "Karush-Kuhn-Tucker" (KKT)

conditions:
—
0
—L(w,a,p)=0, i=1,...,k
ow, ——
0 :
a—ﬁ(w,a,ﬂ)zO, i=1,...,1
ﬂigl-(W) =0, i=1...,m Complementary slackness
\ g,-(W) <0, i=1,...,m Primal feasibility
\ .20 _i=1..m Dual feasibility

e Theorem: If w", ¢ and f satisfy the KKT condition, then it is also a
solution to the primal and the dual problems.
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Solving optimal margin classifier | ::

e Recall our opt problem:

e Thisis equivalent to
1 ; win QC}

min w.b EW w w
S (*)
1 .
’ (l—yi(wal.-l—b)SO,IY}l Hew) 20
e \Write the Lagrangian:

L’(W,b,a)zéwTW—idi[yi(wai-I—b)—l] r
=1

e Recall that (*) can be reformulated é@'ﬁ'nw’b max , .o £(w,b,a)
Now we solve its dual problem: max . ,min, , £(w,b,a
1= / >
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\ﬂw) 1w w— ) «a, [yl(w X, +b)— 1]

The Dual Problem ° -

—

~
@izo min ,, £(w,b,a)

e \We minimize .£ with respect to w and b first:

Vwﬂ(w,b,a):[lv—zm:aiyixi :Q (%)

V,£L(w.b,a)= Zaylv , (%)
i=1

Note that (*) implies: :):\ Z . yl . (***)

o Plug (***) back to £ , and using (**) we have:

&,L’(wba) Za ——Za .yl.yj(xiTxD

"‘ 1,]=1
©Erang@CMU 2006-2016
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The Dual problem, cont. -

e Now we have the following dual opt problem:
—— 1 B

N - 1 i T
ma 3&—;0@ Zi;IQiajyiyj@

—

> =
st. « >0, i=1,...k

ymia,.y,.:O. /j

e Thisis, (again,) a quadratic programming problem.
e A global maximum of o, can always be found.
e But what's the big deal??

e Note two things: -
. wcan be recovered by iw/:Z: a, yl,D See next ...
—

2. The "kernel" m j More later ...
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Support vectors 4

e Note the KKT condition --- only a few ¢;'s can be nonzero!!

\Tlé;i(w):(;)iZI,...,m A W

Call the training data points
whose ¢;'s are nonzero the
support vectors (SV)
n B)
- —
W 2oy
15
T S y
wx+b=1 - Z o({'X‘\:’
wix+b=0 \'&{s\/)

wlx —l—'b = -1
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Support vector machines °°

e Once we have the Lagrange multipliers {«;}, we can
reconstruct the parameter vector w as a weighted combination
of the training examples:

w = Z Otl.yl.x
ieSV

e For testing with a new da

e Compute @yayl(x‘/z) b

lESV

and classify z as class 1 if the sum is positive, and class 2 otherwise

e Note: w need not be formed explicitly
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Interpretation of support vector 434

machines oo
+

e The optimal W is a linear combination of a small number of
data points. This @ representation can be viewed as
data compression as In the construction of KNN classifier

e To compute the weights {«;}, and to use support vector
machines we need to specify only the inner products (or
kernel) between the examples x; X ;

e \We make decisions by comparing each new example Z with
only the support vectors:

y* = sign[ > ay, (XZ.TZ)-I— bj

ieSV
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Non-linearly Separable Problems |:¢

Class 2
C

AS \ O
\ o
m N

]
] wix+b=1

T _

Class 1 R XxX+b=0

wlx +'b = -1

e We allow “error” & in classification; it is based on the output of
the discriminant function w’x+5

e ¢ approximates the number of misclassified samples
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Soft Margin Hyperplane o

e Now we have a slightly different opt problem:

1 =

min. [ wE) e

e £ are “slack variables” in optimization

Note that £=0 if there is no error for x;
e & is an upper bound of the number of errors
e C :tradeoff parameter between error and margin
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NE:
The Optimization Problem"" ! o

—ﬁ#@j—bﬁ-‘ﬁﬂ—

e The dual of this new constrained optimization problem is

e This is very similar to the optimization problem in the linear
separable case, except that there is an upper bound C on ¢,
now

e Once again, a QP solver can be used to find o,

© Eric Xing @ CMU, 2006-2016 ) 23



The SMO algorithm o

e Consider solving the unconstrained opt problem:

mng(al,ag, ey Q)

e \We've already see three opt algorithms!
o« ?
o« ?
o« ?

e Coordinate ascend:
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Coordinate ascend °°

2.4 / T T
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Sequential minimal optimization | ¢

e Constrained optimization:

max , ](a)zzai_Ezaiajyiyj(xjxj)
i=1

i,j=1

st. 0<a,<C, i=1,....m

i a,;y, =0.
i=1

e Question: can we do coordinate along one direction at a time
(i.e., hold all i fixed, and update «;?)
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The SMO algorithm o°

Repeat till convergence

1. Select some pair ¢; and a; to update next (using a heuristic that tries
to pick the two that will allow us to make the biggest progress
towards the global maximum).

2. Re-optimize J(«) with respect to ¢; and ¢;, while holding all the other
o, 's (k # i, j) fixed.

Will this procedure converge?
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Convergence of SMO -

m 1 m
max , ](a)zzai_Ezaiajyiyj(xij)
i=1

i,j=1

s.t. 0<a,<C, i=1,...,k

in: oV, = 0.
i=1

KKT:

e Let'shold a;,..., @, fixed and reopt J w.rt. &, and «,
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Convergence of SMO -
e The constraints: c
a1y1 + agys = ¢
0<a; <C %H """"""""""""""""""" oy "+ oy =
0 S a9 S C
e The objective: L L
\.7(&1} a9, ... 3@-}%) — j((f — OL’Q?J‘Z)?JI: Dy v v vy O(’-'-?'n,)

e Constrained opt:
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Cross-validation error of SVM °°

e The leave-one-out cross-validation error does not depend on
the dimensionality of the feature space but only on the # of
support vectors!

# support vectors

Leave - one - out CV error= —
# of training examples
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Summary

e Max-margin decision boundary

e Constrained convex optimization

Duality

The KTT conditions and the support vectors

Non-separable case and slack variables

The SMO algorithm
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