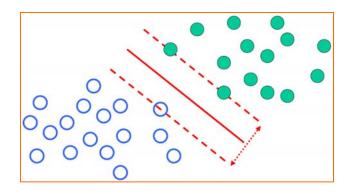
Machine Learning

10-701, Fall 2016

SVM.,?

Support Vector Machines

Eric Xing



Lecture 6, September 26, 2016

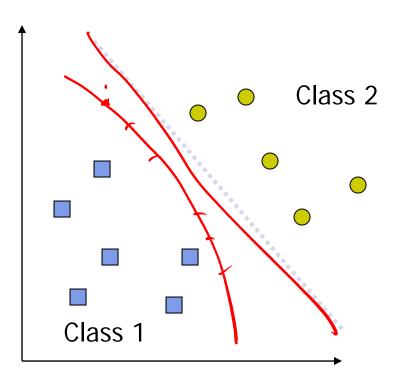
W

Reading: Chap. 6&7, C.B book, and listed papers

© Eric Xing @ CMU, 2006-2016

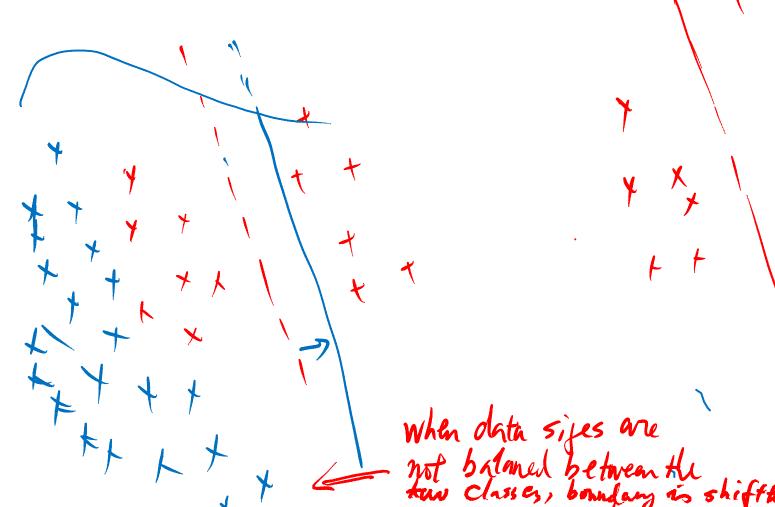
What is a good Decision Boundary?

- Consider a binary classification task with y = ±1 labels (not 0/1 as before).
- When the training examples are linearly separable, we can set the parameters of a linear classifier so that all the training examples are classified correctly
- Many decision boundaries!
 - Generative classifiers
 - Logistic regressions ...
- Are all decision boundaries equally good?



What is a good Decision **Boundary?**

MAID)

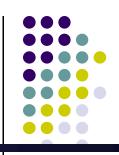


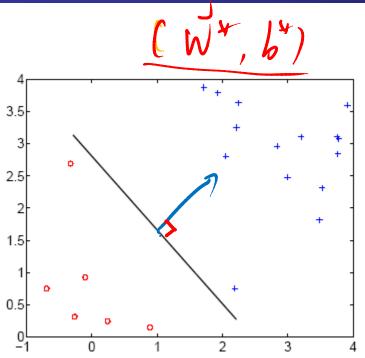
© Eric Xing @ CMU, 2006-2016 days Is this good?

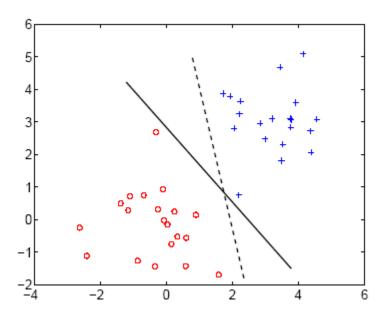
Not All Decision Boundaries Are

Equal!

analytic expression of a decision boundary:

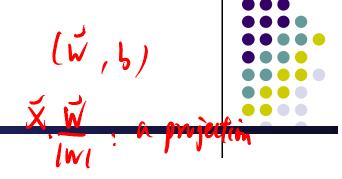




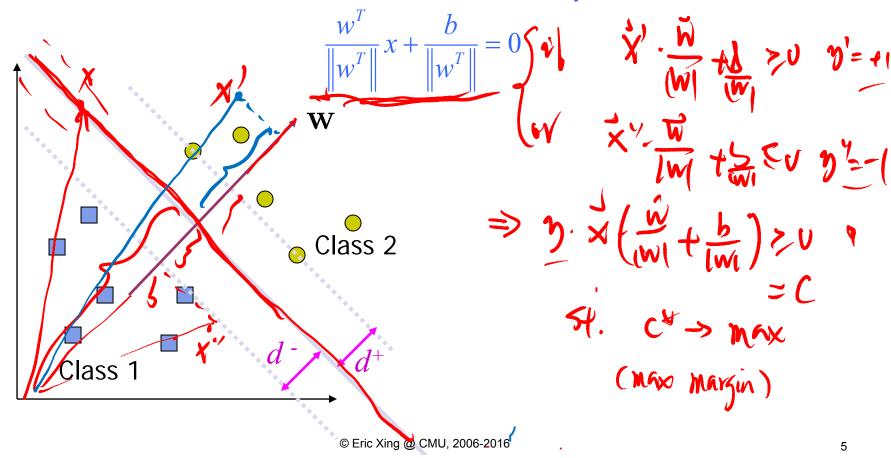


- Why we may have such boundaries?
 - Irregular distribution
 - Imbalanced training sizes
 - outliners

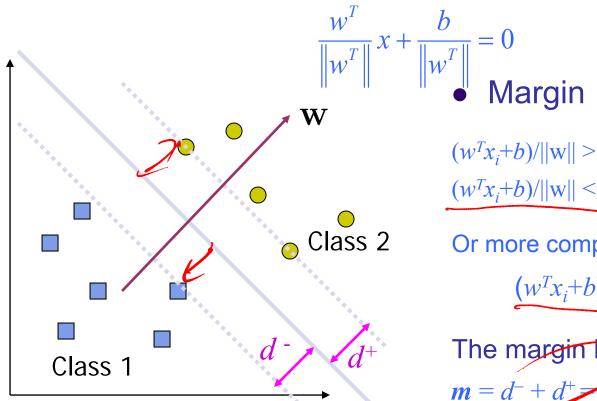
Classification and Margin



- Parameterzing decision boundary
 - Let w denote a vector orthogonal to the decision boundary, and b denote a scalar "offset" term, then we can write the decision boundary as:



- Parameterzing decision boundary
 - Let w denote a vector orthogonal to the decision boundary, and b denote a scalar "offset" term, then we can write the decision boundary as:



 $(w^T x_i + b)/||w|| > +c/||w||$ for all x_i in class 2 $(w^Tx_i+b)/||\mathbf{w}|| \le -c/||\mathbf{w}||$ for all x_i in class 1

Or more compactly:

$$(w^Tx_i+b)y_i/||w|| > c/||w||$$

The margin between any two points

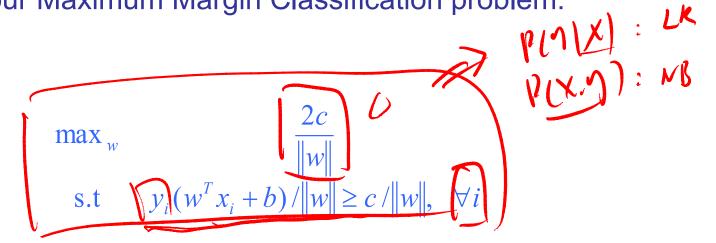
$$m = d^{-} + d^{+} \underbrace{W(\chi_{i} - \chi_{j})}$$

Maximum Margin Classification

• The minimum permissible margin is:

$$\underbrace{m} = \frac{w^T}{\|w\|} \left(x_{i^*} - x_{j^*} \right) = \underbrace{\frac{2c}{\|w\|}}$$

Here is our Maximum Margin Classification problem:



Maximum Margin Classification, con'd.

The optimization problem:

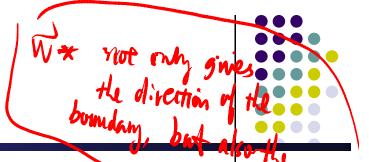
$$\max_{w,b} \frac{c}{\|w\|}$$
s.t
$$y_i(w^T x_i + b) \ge c, \forall i$$

- But note that the magnitude of c merely scales w and b, and does not change the classification boundary at all! (why?)
- So we instead work on this cleaner problem:

$$\max_{\boldsymbol{w},b} \frac{1}{\|\boldsymbol{w}\|}$$
s.t
$$y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b) \ge 1, \quad \forall i$$

The solution to this leads to the famous <u>Support Vector Machines</u>
 believed by many to be the best "off-the-shell" supervised learning algorithm

Support vector machine



A convex quadratic programming problem

with linear constrains:

$$\max_{w,b} \frac{1}{\|w\|}$$
s.t
$$y_i(w^T x_i + b) \ge 1, \forall i$$

The attained margin is now given by $\left(\frac{1}{\|w\|}\right)$

H1 $\mathbf{w} \cdot \mathbf{x} - b = +1$ $\mathbf{w} \cdot \mathbf{x} - b = 0$ $\mathbf{w} \cdot \mathbf{x} - b = -1$

- Only a few of the classification constraints are relevant → support vectors
- Constrained optimization
 - We can directly solve this using commercial quadratic programming (QP) code
 - But we want to take a more careful investigation of Lagrange duality, and the solution of the above in its dual form.
 - → deeper insight: support vectors, kernels ...
 - → more efficient algorithm

Digression to Lagrangian Duality

The Primal Problem

Primal:

$$\min_{w} \underbrace{f(w)}_{s.t.} | \underbrace{g_{i}(w) \leq 0, \quad i = 1, \dots, k}_{h_{i}(w) = 0, \quad i = 1, \dots, l}$$

$$\text{agrangian:}$$

The generalized Lagrangian

$$\mathcal{L}(w,\alpha,\beta) = \underbrace{f(w)}_{i=1} + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{i=1}^{l} \beta_i h_i(w)$$

the α 's ($\alpha \ge 0$) and β 's are called the Lagarangian multipliers

Lemma:

$$\max_{(\alpha,\beta,\alpha_i\geq 0)} \mathcal{L}(w,\alpha,\beta) = \begin{cases} f(w) & \text{if } w \text{ satisfies primal constraints} \\ \infty & \text{o/w} \end{cases}$$

Are-written Primal:

$$\min_{w} \left[\max_{\alpha, \beta, \alpha_i \ge 0} \mathcal{L}(w, \alpha, \beta) \right]$$
© Eric Xing @ CMU, 2006-2016

Lagrangian Duality, cont.

Recall the Primal Problem:

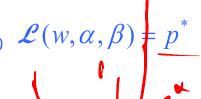
$$\min_{w} \max_{\alpha,\beta,\alpha_i \geq 0} \mathcal{L}(w,\underline{\alpha},\underline{\beta}) \qquad \text{w. } \mathcal{L}(w,\underline{\alpha},\underline{\beta})$$

The Dual Problem:

$$\max_{\alpha,\beta,\alpha_i\geq 0} \min_{w} \mathcal{L}(w,\alpha,\beta)$$

Theorem (weak duality):

$$\underline{d}^* = \max_{\alpha, \beta, \alpha, \ge 0} \min_{w} \mathcal{L}(w, \alpha, \beta) \le (\min_{w} \max_{\alpha, \beta, \alpha_i \ge 0} \mathcal{L}(w, \alpha, \beta) = \underline{p}^*$$



Theorem (strong duality):

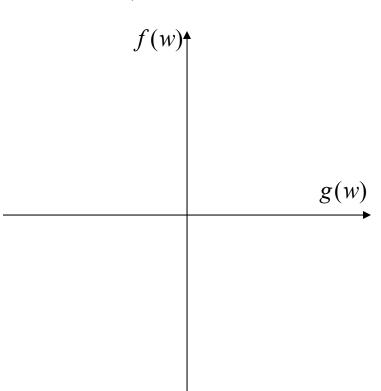
Iff there exist a saddle point of $\mathcal{L}(w,\alpha,\beta)$, we have

$$d^* = p^*$$

A sketch of strong and weak duality

• Now, ignoring h(x) for simplicity, let's look at what's happening graphically in the duality theorems.

 $d^* = \max_{\alpha_i \ge 0} \min_{w} f(w) + \alpha^T g(w) \le \min_{w} \max_{\alpha_i \ge 0} f(w) + \alpha^T g(w) = p^*$



Solve the dual graphically:

Ofix at a given do

and pick an initial we
then L(we, do) is given by
the intersection of a line prairie

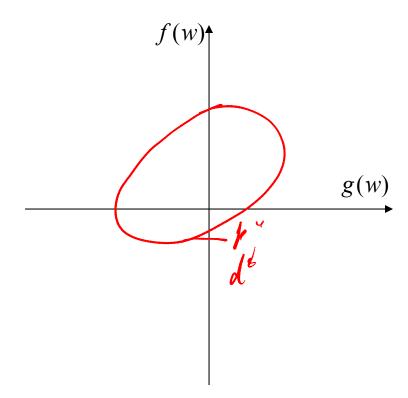
(f(we), g(we)), with slope do,

with the vertical axis.

A sketch of strong and weak duality

• Now, ignoring h(x) for simplicity, let's look at what's happening graphically in the duality theorems.

$$d^* = \max_{\alpha_i \ge 0} \min_{w} f(w) + \alpha^T g(w) \le \min_{w} \max_{\alpha_i \ge 0} f(w) + \alpha^T g(w) = p^*$$



The KKT conditions

 If there exists some saddle point of \(\mathcal{L} \), then the saddle point satisfies the following "Karush-Kuhn-Tucker" (KKT) conditions:

$$\frac{\partial}{\partial w_{i}} \mathcal{L}(w, \alpha, \beta) = 0, \quad i = 1, ..., k$$

$$\frac{\partial}{\partial \beta_{i}} \mathcal{L}(w, \alpha, \beta) = 0, \quad i = 1, ..., l$$

$$\alpha_{i} g_{i}(w) = 0, \quad i = 1, ..., m$$

$$\alpha_{i} (w) \leq 0, \quad i = 1, ..., m$$

$$\alpha_{i} \geq 0, \quad i = 1, ..., m$$

Complementary slackness
Primal feasibility

Dual feasibility

• **Theorem**: If w^* , α^* and β^* satisfy the KKT condition, then it is also a solution to the primal and the dual problems.

Solving optimal margin classifier

Recall our opt problem:

$$\max_{w,b} \frac{1}{\|w\|}$$
s.t
$$y_i(w^T x_i + b) \ge 1, \quad \forall i$$

This is equivalent to

$$\min_{w,b} \frac{1}{2} w^{T} w$$
s.t
$$\frac{1 - y_{i}(w^{T} x_{i} + b) \leq 0, \forall i}{\sqrt{y_{i}}}$$

$$\begin{cases}
(*) \\
(*) \\
(*)
\end{cases}$$

Write the Lagrangian:

$$\mathcal{L}(w,b,\alpha) = \frac{1}{2} w^T w - \sum_{i=1}^m \alpha_i \left[y_i (w^T x_i + b) - 1 \right]$$

• Recall that (*) can be reformulated as $\min_{w,b} \max_{\alpha_i \geq 0} \mathcal{L}(w,b,\alpha)$ Now we solve its **dual problem**: $\max_{\alpha_i \geq 0} \min_{w,b} \mathcal{L}(w,b,\alpha)$

The Dual Problem
$$\frac{\mathcal{L}(w,b,\alpha)}{2} = \frac{1}{2} w^T w - \sum_{i=1}^{m} \alpha_i \left[y_i (w^T x_i + b) - 1 \right]$$

$$\max_{\alpha_i \geq 0} \min_{w,b} \mathcal{L}(w,b,\alpha)$$

• We minimize \mathcal{L} with respect to w and b first:

$$\nabla_{w} \mathcal{L}(w,b,\alpha) = \underbrace{w - \sum_{i=1}^{m} \alpha_{i} y_{i} x_{i} = \mathbf{0}}_{\text{(*)}},$$

$$\nabla_b \mathcal{L}(w, b, \alpha) = \sum_{i=1}^m \alpha_i y_i = 0, \qquad (**)$$

Note that (*) implies:

$$w = \sum_{i=1}^{m} \alpha_i y_i x_i \tag{***}$$

Plug (***) back to £, and using (**), we have:

$$(\mathcal{L}(w,b,\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

The Dual problem, cont.

Now we have the following dual opt problem:

$$\max_{\alpha} \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$
s.t. $\alpha_i \ge 0$, $i = 1, ..., k$

$$\sum_{i=1}^{m} \alpha_i y_i = 0.$$

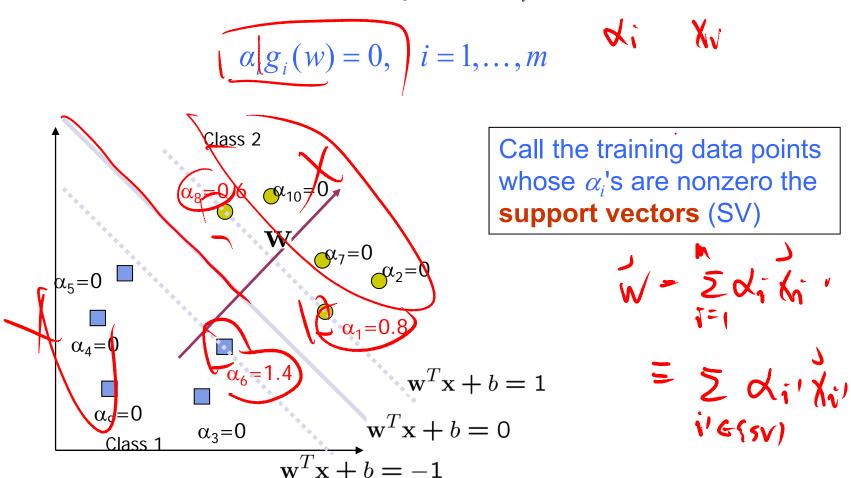
- This is, (again,) a quadratic programming problem.
 - A global maximum of α_i can always be found.
 - But what's the big deal??
 - Note two things:
 - w can be recovered by

$$w = \sum_{i=1}^{m} \alpha_i y_i \mathbf{X}_i$$
 See next ...
$$\mathbf{X}_i^T \mathbf{X}_j$$
 More later .

More later ...

Support vectors

• Note the KKT condition --- only a few α_i 's can be nonzero!!



Support vector machines

• Once we have the Lagrange multipliers $\{\alpha_i\}$, we can reconstruct the parameter vector w as a weighted combination of the training examples:

$$w = \sum_{i \in SV} \alpha_i y_i \mathbf{X}_i$$

- For testing with a new data z
 - Compute

$$w^{T}z + b \neq \sum_{i \in SV} \alpha_{i} y_{i} (\mathbf{x}_{i}^{T}z) + b$$

and classify z as class 1 if the sum is positive, and class 2 otherwise

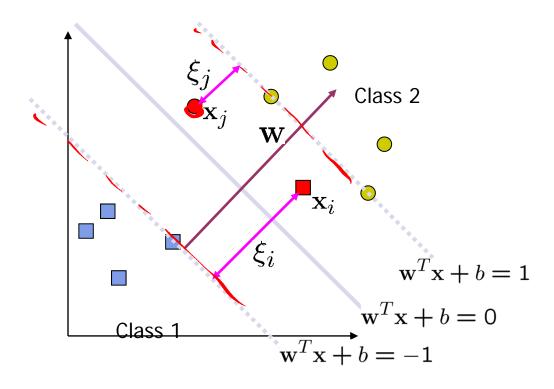
Note: w need not be formed explicitly

Interpretation of support vector machines

- The optimal w is a linear combination of a small number of data points. This "sparse" representation can be viewed as data compression as in the construction of kNN classifier
- To compute the weights $\{\alpha_i\}$, and to use support vector machines we need to specify only the inner products (or kernel) between the examples $\mathbf{x}_i^T \mathbf{x}_j$
- We make decisions by comparing each new example z with only the support vectors:

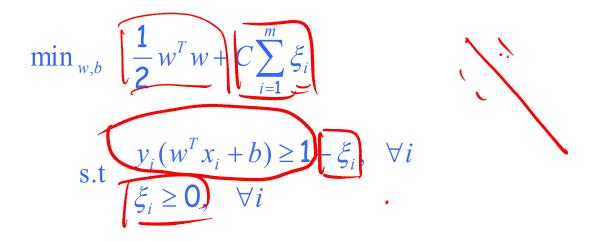
$$y^* = \operatorname{sign}\left(\sum_{i \in SV} \alpha_i y_i \left(\mathbf{x}_i^T z\right) + b\right)$$

Non-linearly Separable Problems



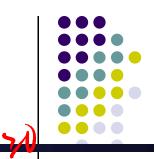
- We allow "error" ξ_i in classification; it is based on the output of the discriminant function w^Tx+b
- ξ_i approximates the number of misclassified samples

Now we have a slightly different opt problem:



- ξ_i are "slack variables" in optimization
- Note that ξ_i=0 if there is no error for x_i
- ξ_i is an upper bound of the number of errors
- C: tradeoff parameter between error and margin

The Optimization Problem **



The dual of this new constrained optimization problem is

$$\max_{\alpha} \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$
s.t. $0 \le \alpha_{i} \le C, \quad i = 1, ..., m$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0.$$

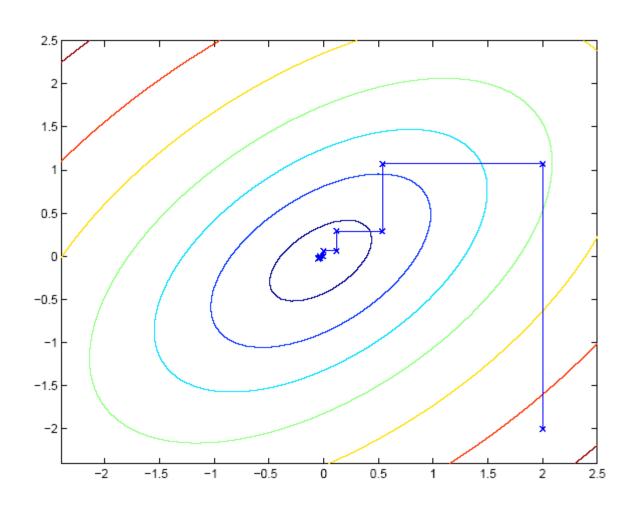
- This is very similar to the optimization problem in the linear separable case, except that there is an upper bound C on α_i now
- Once again, a QP solver can be used to find α_i

Consider solving the unconstrained opt problem:

$$\max_{\alpha} W(\alpha_1, \alpha_2, \dots, \alpha_m)$$

- We've already see three opt algorithms!
 - ?
 - ?
 - ?
- Coordinate ascend:

Coordinate ascend



Sequential minimal optimization

Constrained optimization:

$$\max_{\alpha} \quad \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$
s.t.
$$0 \le \alpha_{i} \le C, \quad i = 1, ..., m$$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0.$$

• Question: can we do coordinate along one direction at a time (i.e., hold all $\alpha_{[-i]}$ fixed, and update α_i ?)

The SMO algorithm

Repeat till convergence

- 1. Select some pair α_i and α_j to update next (using a heuristic that tries to pick the two that will allow us to make the biggest progress towards the global maximum).
- 2. Re-optimize $J(\alpha)$ with respect to α_i and α_j , while holding all the other α_k 's $(k \neq i; j)$ fixed.

Will this procedure converge?

Convergence of SMO

$$\max_{\alpha} \quad \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

• Let's hold α_3 ,..., α_m fixed and reopt J w.r.t. α_1 and α_2

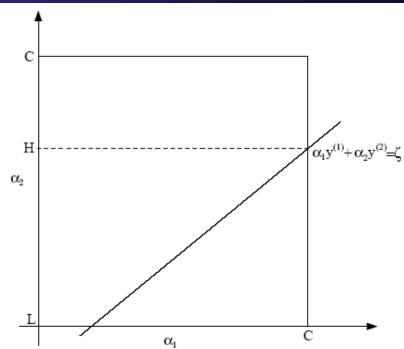
Convergence of SMO

• The constraints:

$$\alpha_1 y_1 + \alpha_2 y_2 = \xi$$

$$0 \le \alpha_1 \le C$$

$$0 \le \alpha_2 \le C$$



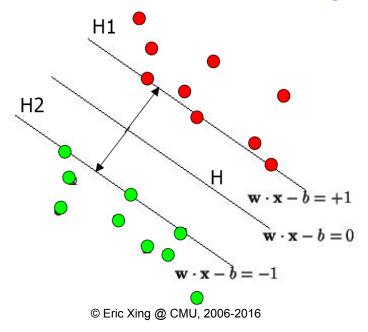
$$\mathcal{J}(\alpha_1, \alpha_2, \dots, \alpha_m) = \mathcal{J}((\xi - \alpha_2 y_2) y_1, \alpha_2, \dots, \alpha_m)$$

Constrained opt:

Cross-validation error of SVM

 The leave-one-out cross-validation error does not depend on the dimensionality of the feature space but only on the # of support vectors!

Leave - one - out CV error =
$$\frac{\text{# support vectors}}{\text{# of training examples}}$$



Summary

- Max-margin decision boundary
- Constrained convex optimization
 - Duality
 - The KTT conditions and the support vectors
 - Non-separable case and slack variables
 - The SMO algorithm