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Reminders

e Homework 1:
— due 9/26/16

* Project Proposal:
— due 10/3/16
— start early!



Outline

Background:
— Maximum likelihood estimation (MLE)
— Maximum a posteriori (MAP) estimation
— Example: Exponential distribution
Generative Models
Model 0: Not-so-naive Model
Naive Bayes
— Naive Bayes Assumption
— Model 1: Bernoulli Naive Bayes
— Model 2: Multinomial Naive Bayes
— Model 3: Gaussian Naive Bayes
— Model 4: Multiclass Naive Bayes

Smoothing
— Add-1 Smoothing
— Add-A Smoothing
— MAP Estimation (Beta Prior)



MLE vs. MAP

Suppose we have data D = {z(V1N

Maximum Likelihood
Estimate (MLE)

N
Ot = argmax | | p x(V)|6
; 1;[1 (x*]6)



Background: MLE

Example: MLE of Exponential Distribution

pdf of Exponential(\): f(z) = Ae™

Suppose X; ~ Exponential(\) for1 <¢ < N.
Find MLE for data D = {z(V} ¥V,

First write down log-likelihood of sample.
Compute first derivative, set to zero, solve for .
Compute second derivative and check that it is
concave down at AME,



Background: MLE

Example: MLE of Exponential Distribution

e First write down log-likelihood of sample.

(x) = ) _log f(a'") (1)

N
= log(Aexp(=Az"))  (2)

i=1

N
Z log(A) + =z (3)
i=1

= Nlog(A) — A ) 2 (4)



Background: MLE

Example: MLE of Exponential Distribution

e Compute first derivative, set to zero, solve for \.

() d Sl
% = —~Nlog(}) — A oz (1)
1=1
N
N :
:X—Zx@:o (2)
1=1
N
= AV (3)




Background: MLE

Example: MLE of Exponential Distribution

pdf of Exponential(\): f(z) = Ae™

Suppose X; ~ Exponential(\) for1 <¢ < N.
Find MLE for data D = {z(V} ¥V,

First write down log-likelihood of sample.
Compute first derivative, set to zero, solve for .
Compute second derivative and check that it is
concave down at AME,



MLE vs. MAP

Suppose we have data D = {z(V1N




Generative Models

* Specify a generative story for how the data
was created

* Given parameters
for the model, we can generate new

data
* Typical learning approach is MLE



Features

* Suppose we want to represent a document
(M words) as a vector (vocabulary size V)

* How should we do it?
Option 1: Integer vector (word IDs)

X = |r1,T3,..., x| Wherez,,, € {1,..., K} awordid.
Option 2: Binary vector (word indicators)
X = |x1,%2,...,Tx| where zy € {0,1} is a boolean.
Option 3: Integer vector (word counts)

X = [r1,%2,...,Tx]| Where x;, € Z7 is a positive integer.



Today’s Goal

To define a generative model
of emails of two different
classes

(e.g. spam vs. not spam)



Spam News

The Economist

The Onion

La paralizacion

Spain may be heading for its
third election in a year

All latest updates

Stubborn Socialists are blocking Mariano Rajoy from forming a centre-right government

(%) T/}/lt'kn'/u'r |ﬁ Like 80

Sep 5th 2016 | MADRID | Europe

BACK in June, after Spain’s second indecisive election in six months, the general
expectation was that Mariano Rajoy, the prime minister, would swiftly form a new
government. Although his conservative People’s Party (PP) did not win back the absolute
majority it had lost in December, it remained easily the largest party, with 137 of the 350
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* ELECTION 2016 * MORE ELECTION COVERAGE »

Tim Kaine Found Riding Conveyor

NEWS IN BRIEF
August 23, 2016
VOL 52 ISSUE 33

Politics - Politicians -
Election 2016 - Tim Kaine

AIKEN, SC—Noting that he disappeared for over an hour during a campaign stop meet-

and-greet with workers at a Bridgestone tire manufacturing plant, sources confirmed
Tuesday that Democratic vice presidential candidate Tim Kaine was finally discovered
riding on one of the factory’s conveyor belts. “Shortly after we arrived, Tim managed to
get out of our sight, but after an extensive search of the facilities, one of our interns
found him moving down the assembly line between several radial tires,” said senior

campaign advisor Mike Henry, adding that Kaine could be seen smiling and laughing as
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Model 0: Not-so-naive Model?

Generative Story:
1. Flip a weighted coin (Y)

2. If heads, roll the red many sided die to sample
a document vector (X) from the Spam
distribution

3. If tails, roll the blue many sided die to sample a
document vector (X) from the Not-Spam
distribution

P(X17°°°7XK7Y) :P(XlaaXKD/)P(Y)

This model is
computationally naive!




Model 0: Not-so-naive Model?

Generative Story:
1. Flip a weighted coin (Y)

2. If heads, sample a document ID (X) from
the Spam distribution

3. If tails, sample a document ID (X) from the
Not-Spam distribution

P(X,Y) = P(X|Y)P(Y)

This model is
computationally naive!




Model 0: Not-so-naive Model?

Flip weighted coin

If HEADS, roll If TAILS, roll
red die blue die
Yoo X Xy X3 XK
o 1 0 1 1
1 0 1 o 1
1 1 1 1 1
o o) 0 1 1
0o 1 0) 1 0)
1 1 0) 1 0)
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— Maximum likelihood estimation (MLE)
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Naive Bayes
— Naive Bayes Assumption
— Model 1: Bernoulli Naive Bayes
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— Model 3: Gaussian Naive Bayes
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— Add-A Smoothing
— MAP Estimation (Beta Prior)



Naive Bayes Assumption

Conditional independence of features:

P(Xy,..

L XK,Y) =

P(Xy,..., Xg|Y)P(Y)

(H P(Xk|Y)

k=1

) PY)




Estimating a joint from

0 0.33

I s conditional probabilities

P(A,BIC)=P(AIC)*P(BIC)
u VYa,bc:P(A=anB=blC=c)=P(A=alC=c¢c)*P(B=bIC =c¢)

— A B c____IPABO

O 1 0.5
0 0 0

1 o 0.8
0 0 1

1 1 0.5
0 1 0
B | C | P(BC) 0 1 1
O 0 0.1 1 0 0
O 1 0.9 1 0 1
1 0 0.9 1 1 0
1 1 041 1 1 1



Estimating a joint from

0 0.33

I s conditional probabilities
A_c [P(alc)

A B o [c  |PABDO
O 1 0.5
0 (0] (0] (0]
1 O 0.8
Wl e N —
(0] 1 (0] (0]
O O 0.1
(0] 1 1 (0]
o 1 0.9
1 (0] (0] (0]
1 0 0.9
R 0 (¢ [rolc) S S L
C P(D|C) 1 1 o .
O O 0.1
1 1 1 (0]
O 1 0.1
(0] (0] (0] 1
1 0 0.9
(0] (0] 1 (0]
1 1 0.



Assuming conditional independence, the conditional
probabilities encode the same information as the joint
table.

They are very convenient for estimating
P(X,-..,.X [Y)=P( X |Y)*...*P( X_|Y)

They are almost as good for computing

P(X,...X,|Y)P(Y)

PYIX,,..X, )= )
X

P(X,...X,=xIY)P(Y =)

Vx,v:PY =yIX,,...X =X)=
y PO =y, X, = %) P(X,,..X. =x)



Generic Naive Bayes Model

Support: Depends on the choice of event model, P(X,|Y)

Model: Product of prior and the event model
K
P(X,Y)=P(Y) ][ P(Xx|Y)
k=1

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each P(X,|
Y) we condition on the data with the corresponding class.

Classification: Find the class that maximizes the posterior

y = argmax p(y|x)
Y



Generic Naive Bayes Model

Classification:

y = argmax p(y|x) (posterior)

 rema POP0)

y p()

= argmax p(x|y)p(y)
Y

(by Bayes’ rule)




Model 1: Bernoulli Naive Bayes

Support: Binary vectors of length K
x € {0,1}*

Generative Story:

Y ~ Bernoulli(¢)
X ~ Bernoulli(@k,y) Vk € {1, Ce ey K}

MOdeI: p¢’9($,y) =p¢,9(3317 I axKay)

) H po,. (zk|y)
= (¢)Y(1 — ¢)t=Y) H (Or.y)

F(1 = g y) )



Model 0: Not-so-naive Model?

Flip weighted coin

Q

If HEADS, flip If TAILS, flip
each red coin each blue coin
‘ . Y Xy Xy X3 Xk
‘ ‘ o||1]o0o]1 1 . ‘ ‘ ‘
1 o|1]|o0 1
1 101 ] 1 1
0 o 0|1 1
0 1 10| 1 0
1 1 10| 1 0




Model 1: Bernoulli Naive Bayes

Support: Binary vectors of length K
x € {0,1}*
Generative Story:

Y ~ Bernoulli(¢)
X ~ BGFHOUIli(9k7y) Vk € {1, . L

Same as Generic

1

Model: p, o(z,y) = (¢)Y(1 — )19 £ Naive Ba!yes

Classification: Find the class that maximizes the posterior

y = argmax p(y|x)
Y



Generic Naive Bayes Model %

Classification:

y = argmax p(y|x) (posterior)

 rema POP0)

y p()

= argmax p(x|y)p(y)
Y

(by Bayes’ rule)




Model 1: Bernoulli Naive Bayes

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each P(X,|
Y) we condition on the data with the corresponding class.

Zi\le H(y(z’) = 1)

¢ = N
0 SN I(y® =0az =1)
k0~ N 1(0,(8) =
Zi:1 (?/ — O)
Or1 = Z;N:JL I(y'") =1 A a;‘g&) =1)

Zé\; I(y® = 1)
Vke{l,...,K}



Model 1: Bernoulli Naive Bayes

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each P(X,|
Y) we condition on the data with the corresponding class.

— 27]/\;1 H(y(i) =1) Data:
¢ - N Y X Xy X3 .. Xg
0 fo\il H(y(i) =0 A CE](:) = 1) O || 1|0 ]| 1 .| 1
k,0 — . 1 o| 1] 0 |..]1
- 1 1T 1 ] 1 || 1
Ok1 = S Iy = 1A ac,(;’) =1) oflo o] 1|1
: Z]i H(y@) =1) o|ll1]lo]1]...]0
1 1 0) 1 0

Vk e {l,...,K}
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Smoothing

1. Add-1 Smoothing
2. Add-A Smoothing
3. MAP Estimation (Beta Prior)




MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability
mass (i.e. sum-to-one constraint)

* MLE tries to allocate as much probability
mass as possible to the things we have
observed...

... at the expense of the things we have not
observed



MLE

For Naive Bayes, suppose we never observe
the word “serious” in an Onion article.
In this case, what is the MLE of p(x, | y)?
SN Iy =0 Azl = 1)
fo\;l I(y") = 0)
Now suppose we observe the word “serious’

at test time. What is the posterior probability
that the article was an Onion article?

o - Pxly)p(y)

Or.0 =

)




1. Add-1 Smoothing

The simplest setting for smoothing simply adds a single
pseudo-observation to the data. This converts the true
observations D into a new dataset D’ from we derive
the MLEs.

D = {(x",y")}Y, (1)
D’ :DU{(070)7(071)7(170)7(171)} (2)

where 0 is the vector of all zeros and 1 is the vector of
all ones.

This has the effect of pretending that we observed
each feature z;, with each class .



1. Add-1 Smoothing

What if we write the MLEs in terms of the original
dataset D?

fo\; H(y(i) = 1)

¢ = N
Or,0 = L+ 1@ =0aay) = 1)
| 2+, Iy = 0)
5 1+ 500 I(y® =1 A m,(:) = 1)
k.1 =

2+, Iy =1)
Vk e {l,..., K}




2. Add-A Smoothing

For the Categorical Distribution

Suppose we have a dataset obtained by repeatedly
rolling a K-sided (weighted) die. Given data D =
{zWYN  where () ¢ {1,..., K}, we have the fol-
lowing MLE:

fo\il H(x(i) = k)
N

Pk =

With add-\ smoothing, we add pseudo-observations as
before to obtain a smoothed estimate:




MLE vs. MAP %

Suppose we have data D = {z(V} V|

Maximum Likelihood

N . Estimate (MLE)
""" = argmax Hp(x(z) 0)
o =
N | ARy estimate.
O™ = argmax Hp(x(z) 0)p(0)
9 =

Prior



3. MAP Estimation (Beta Prior)

Generative Story: Training: Find the class-conditional
The parametersare  MAP parameters

drayvn once for the e SN 1@ =1)

entire dataset. N

fork e {1,...,K}: - N o) o
(a—=1)+> Iy =0Az.’ =1)

fory € {0,1}: Oo = - |
0k, ~ Beta(a, ) (CV — 1) + (5 — 1) T 21:1 H(y(z) — 0)
fori e {1,...,N}:
y() ~ Bernoulli(¢) . (a—1)+ vazl I(y® =1 A xéi) =1)

ng) ~ Bernoulli(@k,yu))

Vk e {1,...,.K}
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Model 2: Multinomial Naive Bayes

Support: Option 1: Integer vector (word IDs)

X = |r1,%2,...,Tp | Wherez,, € {1,..., K} awordid.

Generative Story:
fori e {1,...,N}:

y(9 ~ Bernoulli(¢)
forj e {1,..., M;}:

:1:§-7’) ~ l\/\ultinomial(Hy(i), 1)

Model:
Pg.0(T,Y) Hpek (k|y)

= (¢)¥(1 — ¢)*~¥) H Oy .
j=1



Gaussian Discriminative Analysis | -

-

e learning f: X — Y, where
e Xis a vector of real-valued features, X =< X !

n >

. MX'nm >
e Y is an indicator vector

e \What does that imply about the form of P(Y|X)?

e The joint probability of a datum and its label is:
p(x,,y, =1 p,0) = p(y, =Dx p(x, |y, =1,u,%)

1 . _ .
=TT, Wexp{-%(xn -, 27(x, 'ﬂk)}

e Given a datum x, we predict its label using the conditional probability of the label
given the datum:

p(y, =1|x,,1,%) =
Z”k' (ZJI‘ZDMGXP -5 (X, - ) 2T(X, - )

© Eric Xing @ CMU, 2006-2011 41



Model 3: Gaussian Naive Bayes

Support: = RK

Model: Product of prior and the event model

Gaussian Naive Bayes assumes that p(x|y) is given by
a Normal distribution.



Gaussian Naive Bayes Classifier

e When X is multivariate-Gaussian vector:
The joint probability of a datum and it label is:

p(x,,yr =111,2) = p(ys =Dx p(x, | Vi =1, 4,%)

1

=, (ZE‘ZPW

The naive Bayes simpli

exptL(x, - ) =7 (x, - fi,)|

ication

p(x,.y, =1l1,0)=p(y, =Dx[ | p(x] 1y, =L /.00
J

More generally:

Where p(. | .) is anﬁr@;z

rar
no

. .2

1 x) -yl

=TT - X -1 n—k
o p{( o] )}

ST B T T A 13

© Eric Xing @ CMU, 2006-2011
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VISUALIZING NAIVE BAYES

Slides in this section from William Cohen (10-601B, Spring 2016)
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Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by
Anderson (1936)

Sepal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

0

0 4.9
0 5.3
1 4.9
1 5.7
1 6.3
1 6.7

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_set

3.6
3.7
2.4
2.8
3-3
3.0

1.4
1.5
3.3
4.1
4.7
5.0

0.1
0.2
1.0

1.3
1.6

1.7
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%% Import the IRIS data

load fisheriris;

X = meas;

pos = strcmp(species,'setosa');
Y =2%*pos -1

%% Visualize the data
imagesc([X,Y]);
title('Iris data');




%% Visualize by scatter plotting the the first two dimensions

figure;

scatter(X(Y<0,1),X(Y<0,2),'r*");

hold on;

scatter(X(Y>0,1),X(Y>0,2),'bo");

title('Iris data');

4.5

35

2.5

o 0 O O O

* ¥ ¥ ¥

* ¥ ¥ ¥

Iris data

4.5

-

5.5



%% Compute the mean and SD of each class
PosMean = mean(X(Y>0,:));

PosSD = std(X(Y>0,:));

NegMean = mean(X(Y<o,:));

NegSD = std(X(Y<o,:));

%% Compute the NB probabilities for each class for each grid element
[G1,G2]=meshgrid(3:0.1:8, 2:0.1:5);

Z1 = gaussmf(G1,[ PosSD(1),PosMean(1)]);

Z2 = gaussmf(G2,[PosSD(2),PosMean(2)]);

Z=171.*%172;

V1 = gaussmf(G1,[NegSD(1),NegMean(1)]);
V2 = gaussmf(G2,[NegSD(2),NegMean(2)]);
V=V1.*V2;



% Add them to the scatter plot
figure;
scatter(X(Y<0,1),X(Y<0,2),'r*");
hold on;
scatter(X(Y>0,1),X(Y>0,2),'bo");
contour(G1,G2,2);
contour(G1,G2,V);

35

25




4.5

%% Now plot the difference of the probabilities

figure;
scatter(X(Y<0,1),X(Y<0,2),'r*");
hold on;
scatter(X(Y>0,1),X(Y>0,2),'bo");
contour(G1,G2,Z-V);
mesh(G1,G2,Z-V);

alpha(0.4)
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NAIVE BAYES IS LINEAR

Slides in this section from William Cohen (10-601B, Spring 2016)



Question: what does the boundary between positive and
negative look like for Naive Bayes?

e e
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argmax HP(XZ. =x Y=y )PX¥ =y)

= argmax zlogP(Xi =x, Y=y )+logP(Y=y)

= afgmdX e,y 1y Elog P(x; 1y )+logP(y ) |twodlassesonly ‘

= sign(ElogP(xi |y+1)—210gp(xi ly_)+1log P(y,,)—log P(y_,)

= sign Elog P(x;1y,,) +log P(y,,) rearrange terms
i P(x;1y) P(y_))



argmax HP(XZ. =x; Y=y )PY =y)

= sign Elog P 1y.) +log PO
i P(xi l)’-1) P(y_,)

if x. =10ro0....

P(x, =1|y+1)_lOgP(xl. =01y,,)
P(x,=1ly_) P(x,=01y_)

sign| S 1ng(xl.=1|y+1)_10g10(x,.=0|y+1))+2 logP(xl.=O|y+1))+10gP(y+1)
S\ TP =1y TP =01y L TP =01y)) T POL)

l l

U =2(10gp(’xi =O|y+1))+logp(y+l)
0
= Sign(zxiul. +MO) i P('xi =0|y_1) P(y—l)

= Sign(zxiu,- XUy | = Sign(x ° u)

x, =1 for every x (bias term)
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dimenzion 3




\ ...... ......... i ....................... ...... - Why don’t we drop the
T s generative model and

5\ .................... .................... .......... try to learn this
-~ | hyperplane directly?

dimenzion 3




Model 4: Multiclass Naive Bayes

Model:
The only change is that we permit y to range over C
classes.

p(may) :p(ilfl,...,Q?K,y)

k
Now, y ~ Multinomial(¢,1) and we have a sepa-
rate conditional distribution p(x|y) for each of the C
classes.



P(Xy,..

Naive Bayes Assumption %

Conditional independence of features:

L XK,Y) =

P(X1,..., Xg|Y)P(Y)

(H P(X|Y)

k=1

) PY)




rexrm \What’s wrong with the
"'Naive Bayes Assumption?

The features might not be independent!!

* Example 1:

Trump Spends Entire Classified National
Security Briefing Asking About Egyptian

— If a document contains the word = —
“Donald”, it’s extremely likely to =
contain the word “Trump”

— These are not independent!

* Example 2:

— If the petal width is very high,
the petal length is also likely to
be very high
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Summary

1. Naive Bayes provides a framework for
generative modeling

2. Choose an event model appropriate to the
data

3. Train by MLE or MAP
4. Classify by maximizing the posterior



