School of Computer Science
Carnegie Mellon

10-701 Introduction to Machine Learning

Reinforcement Learning

Readings: Matt Gormley
Mitchell Ch. 13 Lecture 22
November 30, 2016

Reminders

* Poster Session

— Fri, Dec 2: 2:30pm - 5:30 pm
* Final Report

— due Fri, Dec 9

REINFORCEMENT LEARNING

What is Learning? &

e Learning takes place as a result of interaction
between an agent and the world, the idea
behind learning is that

Eric Xing

Percepts received by an agent should be used not
only for understanding/interpreting/prediction, as in the
machine learning tasks we have addressed so far,

but also for acting, and further more for improving the
agent’s ability to behave optimally in the future to
achieve the goal.

© Eric Xing @ CMU, 2006-2011 4

Types of Learning :

e Supervised Learning

e A situation in which sample (input, output) pairs of the function to be learned can
be perceived or are given

e You can think it as if there is a kind teacher
- Training data: (X,Y). (features, label)
- Predict Y, minimizing some loss.
- Regression, Classification.

e Unsupervised Learning

- Training data: X. (features only)
- Find “similar” points in high-dim X-space.
- Clustering.

Eric Xing © Eric Xing @ CMU, 2006-2011 5

Example of Supervised Learning

e Predict the price of a stock in 6 months from now, based on
economic data. (Regression)

e Predict whether a patient, hospitalized due to a heart attack,
will have a second heart attack. The prediction is to be based
on demographic, diet and clinical measurements for that
patient. (Logistic Regression)

e Identify the numbers in a handwritten ZIP code, from a
digitized image (pixels). (Classification)

O|ILDI¥5LT%9
01 23957% 7
013234156757
012345657
0| AD245&7%7
) 13&56739

Example of Unsupervised Learning

e From the DNA micro-arra
data, determine which
genes are most “similar”

Eric Xing

in terms of their
expression profiles.
Clustering

© Eric Xing @ CMU, 2006-2011

SIDW299104
SIDW380102
73161

H.sapiensmANA
8ID325394
RASGTPASE
8ID207172

s
SIDW377402
HumanmBNA
SIDW469884
Ts
SID471915
MYBPROTO

SID377451
DNAPOLYMER
SID375812
SIDW31489
SID167117
SIDWAT0459
SIDW487261
Homosapiens
SIDW376586

3
MITOCHONDRIALBO
SID47116

ESTsChr.6
SIDW296310
5ID488017

SID289414
PTPRC
SIDW298203
SIDW310141
SIDW376928

ES

SID297905
[2

s
SIDWAB6740
SMALLNUC

STs

SIDW366311

siowas7te7
T

s

1D43609

SIDWA16621
RLUMEN

SID301902
SID31984
SID42354

Types of Learning (Cont’d)

e Reinforcement Learning

e in the case of the agent acts on its environment, it receives some
evaluation of its action (reinforcement), but is not told of which
action is the correct one to achieve its goal

- Training data: (S, A, R). (State-Action-Reward)

- Develop an optimal policy (sequence of
decision rules) for the learner so as to
maximize its long-term reward.

- Robotics, Board game playing programs.

Eric Xing © Eric Xing @ CMU, 2006-2011 8

RL is learning from interaction

o T T T T T e T T T T T T T e T T T T e T T T I
T I L e Lt e T L T L T Te T T D e Lt T Tt e e e e
e T e et e T L T L T T T T L e L T T e e e e
e e R et e e e e L T T e T D e L e e e e e e
e e e e e e e e e e e e D e e e e e e e
e e
T P e T T T T O T, O, T O, O P O, T, O, O P, O T O, T
I T T T T T Tre L T L T Tt L Tw e e Lt T Tt D Ia e e
e T L T Lt T T L T L T Te T Tw D e Lt T Tt D e e e
e T L T Lt e T L T L T Tt T T D e P T Tt e e e
e T et e T L T L T T T T e e L e T e e e e
e e et e e e e L e T e e D e e e e e e e
e e e e e e e e e e e e D et e e e e e e
e e e e e e e e e e e e D e e e e e e e e
T T T e T T T T e T O T P O P O, T, O, O, P O T O, T,
L T P T T o Thw L T L e Tt L Te L T Lt T Tt D e e e
e T L T Lt e T L T L T Tt T T D e L T Tt D e e e
e e L T Lt e T L T L T T T T D e P T Tt e e e e
e T R Tt e T e e L T T e e e e L e T e e e e
e e R e e e e e e e T e e D e e e e e e e
e e e e e e e e b e e e e e e e e e e e e
e e e e e e e e e e e e D e e e e e e e e
g T T T T T T P P T T P O P O, T, O, T, P O T, O, T,
L T P T T T Tre L T L e Tt L T e e Lt T Tt e e e e
e T L T Lt e T L T L e Tt e T D e P T Tt D e e e
e e e Tt e T L T L T T T T e e P e T e e e e
e T e Tt e T L e L T T e e e e P e T e e e e
e e R et e e e e L e e e e D e e e e e e e e
e e e e e e e e e e e e D e e e e e e e e
e e e e e e e e e e e e D e e e e e e e e
T T T T T T T P Pl P T P O 0 O, T, O, T, P O, T O, TP
I T L T T T Tt L T L e Tt L T D T L T Tt e e e e
e T L T Lt e T L T L e Tt T Tw D e P T Tt e e e e
e T e et e T L T L T T T T e e P T T e e e e
e e R et e e e T L T T e e D e e T e e e e
e e e e e e e e e e e e D e e e e e e e
e e e e e e e e e e e e D et e e e e e e
e e e e e e e e e e e e e D e e e e e e e e
L T T T T T T T e P T T P O 0 T, T, O, T, P, O, T O, T
I T L T T T Tt L T L e Tt e T D e Lt T Tt e e e e
e T L T Lt T Tt L T L e Tt e T D e P T Tt e e e e
e T e Tt e T L e L T T T T e e L e T e e e e
e e R et e e e e L T T e e e e e e e e e e
e e e e e e e e i e e e e D e e e e e e e
e e e e e e e e D e e e e D e e e e e e e e
T P e T T O T O, T O, O P, O R O, T, O, O, P, O T O, T
L T P T T o T N T L I Tt L T a D T Lt T Lt D e e T
I T L T Lt T T L T L e Te e Tw D e Lt T Tt D e e e
T T L Tt e T L T L T Tt e T D e Lo T Tt e e e e
T T L Tr i L T T D TE L TE i L T T L TE i Lo T Lo T Th e L IT

© Eric Xing @ CMU, 2006-2011

Eric Xing

Examples of Reinforcement Learning

e How should a robot behave so as @Jé

to optimize its “performance”? (Robotics)

*\)‘
dyes

e How to automate the motion of
a helicopter? (Control Theory)

e How to make a good chess-playing
program? (Artificial Intelligence)

Eric Xing © Eric Xing @ CMU, 2006-2011

Autonomous Helicopter

Video:

https://[www.youtube.com/watch?v=VCdxgnofcnE

Robot in a room

upP

807%
10%
10%

START

 reward +1 at [4,3], -1 at [4,2]
e reward -0.04 for each step

actions: UP, DOWN, LEFT, RIGHT

move UP '
move LEFT

move RIGHT

e what's the strategy to achieve max reward?

e what if the actions were NOT deterministic?

Eric Xing © Eric Xing @ CMU, 2006-2011

12

Pole Balancing

e TJask:

Move car left/right to keep the pole balanced

e State representation

Eric Xing

Position and velocity of the car
Angle and angular velocity of the pole

Figure 20.14 Setup for the problem of balancing a long pole on top of a moving cart. The carnt
can be jerked left or right by a controller that observes x, #, x, and ¢.

© Eric Xing @ CMU, 2006-2011

13

History of Reinforcement
Learning 4

e Roots in the psychology of animal learning (Thorndike,1911).

e Another independent thread was the problem of optimal

control, and its solution using dynamic programming (Bellman,
1957).

e Idea of temporal difference learning (on-line method), e.g.,
playing board games (Samuel, 1959).

e A major breakthrough was the discovery of Q-learning
(Watkins, 1989).

Eric Xing © Eric Xing @ CMU, 2006-2011 14

What is special about RL? =

e RL is learning how to map states to actions, so as to
maximize a numerical reward over time.

e Unlike other forms of learning, it is a multistage decision-
making process (often Markovian).

e An RL agent must learn by trial-and-error. (Not entirely
supervised, but interactive)

e Actions may affect not only the immediate reward but also
subsequent rewards (Delayed effect).

Eric Xing © Eric Xing @ CMU, 2006-2011 15

Elements of RL e

e A policy
- A map from state space to action space.
- May be stochastic.
e A reward function
- It maps each state (or, state-action pair) to
a real number, called reward.
e A value function
- Value of a state (or, state-action pair) is the
total expected reward, starting from that
state (or, state-action pair).

Eric Xing © Eric Xing @ CMU, 2006-2011 16

Maze Example

Start
m Rewards: -1 per time-step

m Actions: N, E, S, W

m States: Agent’s location

Goal

Slide from David Silver (Intro RL lecture)

Maze Example

m Arrows represent policy 7(s) for each state s

Slide from David Silver (Intro RL lecture)

Maze Example
Value Function: (Expected Future Reward)

H
n

Start -15

..
.

m Numbers represent value v, (s) of each state s

Slide from David Silver (Intro RL lecture)

Maze Example
Model:

m Agent may have an internal
Start | -1 | -1 model of the environment
m Dynamics: how actions

change the state

m Rewards: how much reward
from each state

m [he model may be imperfect

a

m Grid layout represents transition model P2,

m Numbers represent immediate reward R2 from each state s
(same for all a)

Slide from David Silver (Intro RL lecture)

Policy

Reward for each step -2

-

- =

Reward for each step: -0.1

=)

-
1
L}

-)

=)
1)
t

Reward for each step: -0.04

The Precise Goal oo

e To find a policy that maximizes the Value function.
e transitions and rewards usually not available

e There are different approaches to achieve this goal in various
situations.

e \alue iteration and Policy iteration are two more classic

approaches to this problem. But essentially both are dynamic
programming.

e Q-learning is a more recent approaches to this problem.
Essentially it is a temporal-difference method.

Eric Xing © Eric Xing @ CMU, 2006-2011 25

MARKOV DECISION PROCESSES

Markov Decision Processes

A

A Markov decision process is a tuple (S, A, { Ps.}, 7, R) where:

Eric Xing

S is a set of states. (For example, in autonomous helicopter flight,
S might be the set of all possible positions and orientations of the
helicopter.)

Ais aset of actions. (For example, the set of all possible directions
in which you can push the helicopter’s control sticks.)

P, are the state transition probabilities. For each state s € S and
action a € A, P,, is a distribution over the state space. We'll say
more about this later, but briely, P, gives the distribution over
what states we will transition to if we take action a n state s.

v € [0,1) is called the discount factor.

R: SxAwr Ris the reward function. (Rewards are sometimes
also written as a function of a state S only, in which case we would
have R : S — R).

© Eric Xing @ CMU, 2006-2011

27

The dynamics of an MDP .

e \We start in some state s,, and get to choose some action a, €
A

e As a result of our choice, the state of the MDP randomly
transitions to some successor state s,, drawn according to s,~
}anO

e Then, we get to pick another action g,

o ...

ag ai a as
S0 > S1 > SO —» 83 — ...

Eric Xing © Eric Xing @ CMU, 2006-2011 28

The dynamics of an MDP, i+
(Cont’d) os

e Upon visiting the sequence of states s, s, ..., with actions «,, a,, ...,
our total payoff is given by

R(so,a0) + vR(51,a1) +v*R(s2,az) + . ..

e Or, when we are writing rewards as a function of the states only, this

becomes
R(s0) +vR(s1) + v°R(s2) + ...

e For most of our development, we will use the simpler state-rewards R(s), though
the generalization to state-action rewards R(s; a) offers no special diffculties.

e Qur goal in reinforcement learning is to choose actions over
time so as to maximize the expected value of the total payoff:

E[R(so) + vR(s1) + v’ R(s2) + ...

Eric Xing © Eric Xing @ CMU, 2006-2011 29

FIXED POINT ITERATION

Fixed Point Iteration for Optimization

* Fixed point iteration is a general tool for solving systems of
equations

* It canalso be applied to optimization.

J(H) Given objective function:
Compute derivative, set to
dJ(H) zero (call this function f').
3 =0 = f(0) Rearrange the equation s.t.
)

0= f(0) = 0; =g(0)
9§t+1) _ g(e(t))

Initialize the parameters.

Foriin{l,..., K}, update each
parameter and increment ¢

Repeat #5 until convergence

1
2
/3.
one of parameters appears on
the LHS.
4
5
/
6

Fixed Point Iteration for Optimization

Fixed point iteration is a general tool for solving systems of

equations

It can also be applied to optimization.

3 5332 —+ 2x

dJ(x)

dx

= f(z)=2"-32+2=0

=z =

x2 + 92
3 = g(x)

1.
2.

/

\

Given objective function:

Compute derivative, set to
zero (call this function f').

Rearrange the equation s.t.

one of parameters appears on
the LHS.

Initialize the parameters.

Foriin{l,..., K}, update each
parameter and increment ¢

Repeat #5 until convergence

32

Fixed Point Iteration for Optimization

x2 4 2
=a=—a—=g()
x2 + 92
T <

We can implement our
example in a few lines of
python.

def

def

def

if _

fF1(x):
TTTE(X) = xA2 - 3x + 2"
return xX**2 - 3.*x + 2.

gl(x):
"Trg(x) = \frac{xAZ + 2}{3}'""

AT

return (x**2 + 2.) / 3.

fpi(g, x@, n, f):
""'Optimizes the 1D function g by fixed point iteration
starting at x@ and stopping after n iterations. Also
includes an auxiliary function f to test at each value.'"’
X = X0
for 1 in range(n):
print("i=%2d x=%.4f fOO=%.4f" ¥ (1, x, f(x)))
x = g(x)
1+=1
print("i=%2d x=%.4f f()=%.4f" ¥ (1, x, f(x)))
return X

_name__ == "__main__":
x = fpi(gl, 0, 20, f1)

33

Fixed Point Iteration for Optimization

$ python

e
RPOWONOUIAWNRES
XXX X X X X X X X X X X X X X X X X X

o pede pde pde pde pde pde pde pde pde pde pde

xX=0.
.6667
.8148
.8880
.9295
.9547
.9705
.98006
.9872
.9915
.9944
.9963
.9975
.9983
.9989
.9993
.9995
.9997
.9998
.9999
.9999

(SSRGS RS RO O OO RO RO RO RO RO RO RO OO O G O O

fixed-point-iteration.py
.0000
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.

0000

f(x)=2

4444
2195
1246
0755
0474
0304
0198
0130
0086
0057
0038
0025
0017
0011
0007
0005
0003
0002
0001
0001

34

VALUE ITERATION

Elements of RL e

e A policy
- A map from state space to action space.
- May be stochastic.
e A reward function
- It maps each state (or, state-action pair) to
a real number, called reward.
e A value function
- Value of a state (or, state-action pair) is the
total expected reward, starting from that
state (or, state-action pair).

Eric Xing © Eric Xing @ CMU, 2006-2011 36

Policy :'

e A policy is any function # : S — A mapping from the states
to the actions.

e \We say that we are executing some policy if, whenever we
are in state s, we take action a = a(s).

e \We also define the value function for a policy 7 according to

V™(s) = E[R(so) + YR(s1) + Y R(s2) + ... | so = s, 7]

e)7 (s)is simply the expected sum of discounted rewards upon starting in state s,
and taking actions according to 7.

Eric Xing © Eric Xing @ CMU, 2006-2011 37

Value Function

e

e Given a fixed policy r, its value function ' satisfies the
Bellman equations:

Immediate reward expected sum of
future discounted rewards

e Bellman's equations can be used to efficiently solve for ' (see later)

Eric Xing © Eric Xing @ CMU, 2006-2011 38

The Grid world oo

M = 0.8 in direction you want to go
0.2 in perpendicular < 0.1 left
' 0.1 right

Policy: mapping from states to actions

utilities of states:

3| —|— |— | 77 3| 0812 | o868 | 0912 | g
An optimal

policy for

the 2 T T 1 2 | 0762 0.660 | [-1
stochastic

environmen 0.705 | 0.655 | 0.611 | 0.388
t 1 2 3 4 1 2 3 4

: Observable (accessible): percept identifies the state
Environment < Partially observable

Markov property: Transition probabilities depend on state only, not on the path to the
state.

Markov decision problem (MDP).

Partially observable MDP (POMDP): percepts does not have enough info to identify

Eﬂ?,,),(!,nﬂ. LR TUR 7t STE © Eric Xing @ CMU, 2006-2011 39

000
0000
T
Optimal value function oo
e \We define the optimal value function according to
V*(s) = max V7™(s) (1)

e In other words, this is the best possible expected sum of discounted rewards that
can be attained using any policy

e There is a version of Bellman's equations for the optimal value
function:

L;*(S) - R(S) + max A Z RHEL(SF)FF*('EIJ (2)

Eric Xing © Eric Xing @ CMU, 2006-2011 40

Optimal policy &

e We also define a policy : #* : S+— A as follows:

7 (s) = argmax Yy Pe,(s)V*(s') (3)
neA s'es
e Fact:
. VH(s)=VT™ (s) > V7™(s)

e Policy 7 has the interesting property that it is the optimal policy for all
states s.

It is not the case that if we were starting in some state s then there'd be some
optimal policy for that state, and if we were starting in some other state s, then
there'd be some other policy that's optimal policy for s,.

The same policy 7 attains the maximum above for all states s. This means
that we can use the same policy no matter what the initial state of our MDP is.

Eric Xing © Eric Xing @ CMU, 2006-2011 41

The Basic Setting for Learning -

e Training data: n finite horizon trajectories, of the
form {s,,a,,7ysSrsQr ¥, 8, }.

e Deterministic or stochastic policy: A sequence of
decision rules {z,,7,,...,7;}.

e Each 7 maps from the observable history (states
and actions) to the action space at that time point.

Eric Xing © Eric Xing @ CMU, 2006-2011 42

Algorithm 1: Value iteration e

e Consider only MDPs with finite state and action spaces
(IS < 00, |A| <)

e The value iteration algorithm:

1. For each state s, initialize V' (s) := 0.
2. Repeat until convergence {

e ['or every state, update

V(s) := R(s) + max,ea v Y ges Poals)V(s').

;

e synchronous update
e asynchronous updates

e It can be shown that value iteration will cause 7 to converge to ' *. Having
found V'* , we can then use Equation (3) to find the optimal policy.

Eric Xing © Eric Xing @ CMU, 2006-2011 43

Algorithm 2: Policy iteration &

<5

e The policy iteration algorithm:

Eric Xing

1. Initialize 7 randomly.
2. Repeat until convergence {

o et Vi =VT

e For each state s, let m(s) := max,cq4 g Poals)VF(s).

The inner-loop repeatedly computes the value function for the current policy, and
then updates the policy using the current value function.

Greedy update

After at most a finite number of iterations of this algorithm, 7" will converge to I'*,
and st will converge to 7.

© Eric Xing @ CMU, 2006-2011 44

Convergence

e The utility values for selected states at each iteration step in the

application of VALUE-ITERATION to the 4x3 world in our example

43) -

- (33)

273

(L)

@)

- (@4,1)
1)
-3
E
3
>
-

LS -
B | e e e (42)
0 5 10 s 20 25 30

+1
-1
start
| 4

Thrm: As t->o, value iteration converges to exact U even if updates are

done asynchronously & i 1s picked randomly at every step.

Eric Xing © Eric Xing @ CMU, 2006-2011

45

Convergence

l v l v
0.8 0.8 r 1
g 0.6 g 06
Y
2 0.4 S 04 1
0.2 0.2
0 : : : 0 - : :
0 5 10 15 20 0 - 10 15 20
Nurmber of iterations Number of itefationis
(d) (b)
~ Figure 17.6 (a) The RMS (root mean square) error of the utility estimates compared to the
correct values, as a function of iteration number during value iteration, (b) The expected policy
loss compared to the optimal policy.

Eric Xing

When to stop value iteration?

© Eric Xing @ CMU, 2006-2011

46

Q-LEARNING

Q learning

e Define Q-value function
V(s) = maxQ(s,a)

e Q-value function updating rule
e See subsequent slides

e Key idea of TD-Q learning

e Combined with temporal difference approach

e Rule to chose the action to take

a = arg max (s, a)
s

Eric Xing © Eric Xing @ CMU, 2006-2011

48

Algorithm 3: Q learning

For each pair (s, a), initialize Q(s,a)
Observe the current state s
Loop forever

{

Select an action a (optionally with e-exploration) and execute it
a = arg max Q(s, a)
s

Receive immediate reward r and observe the new state s’
Update Q(s,a)

Q(s,a) < Q(s,a) + afreyr +ymaxQ(s',a') — Q(s. a)]

s=s’

Eric Xing © Eric Xing @ CMU, 2006-2011 49

Exploration 5

e Tradeoff between exploitation (control) and exploration
(identification)

e Extremes: greedy vs. random acting

(n-

armed bandit models)

Q-learning converges to optimal Q-values if

Eric Xing

Every state is visited infinitely often (due to exploration),
The action selection becomes greedy as time approaches infinity, and

The learning rate a is decreased fast enough but not too fast (as we discussed in
TD learning)

© Eric Xing @ CMU, 2006-2011 50

RL EXAMPLES

od|-
o8

A Success Story &

e TD Gammon (Tesauro, G., 1992) L o J—'-'é

- A Backgammon playing program.

- Application of temporal difference learning.
- The basic learner is a neural network.

- It trained itself to the world class level by playing against
itself and learning from the outcome. So smart!!

- More information: http://www.research.ibm.com/massive/
tdl.html

Eric Xing © Eric Xing @ CMU, 2006-2011 52

Playing Atari with Deep RL

* Setup: RL P =
system /AT T N

observation IR WA /, action
) g, “e K g L o T

observes the
pixels on the
screen

e |treceives
rewards as the
game score

* Actions decide
how to move
the joystick/
buttons

53
Figures from David Silver (Intro RL lecture)

Playing Atari with Deep RL
L I |
Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

Videos:
— Atari:

— Space Invaders:

Figures from Mnih et al. (2013)

54

Playing Atari with Deep RL

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

B. Rider | Breakout | Enduro | Pong | Q%*bert | Seaquest | S.Invaders
Random 354 1.2 0 —20.4 157 110 179
Sarsa [3] 996 5.2 129 —19 614 665 271
Contingency [4] 1743 6 159 —17 960 723 268
DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 -3 18900 28010 3690
HNeat Best [8] 3616 52 106 19 1800 920 1720
HNeat Pixel [8] 1332 4 91 —16 1325 800 1145
DQN Best 5184 225 661 21 4500 1740 1075

Table 1: The upper table compares average total reward for various learning methods by running
an e-greedy policy with e = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an e-greedy policy with € = 0.05.

Figures from Mnih et al. (2013)

Alpha Go

Y N~
o g N~
=/ \i=

™~ V&S

2 &

.1 -

— [52) 5.8
o I © o) N ~
A ™ ™ =

Q**'+* ©\ [

=

165

40

+

B OE
ey o 4

o

56

[s9) (3] — (o]
wn — -~ wn
1.1.1.1
Y

ot ICIGERC SO Bt L
65000 e300 e
9 - £ 00O E DO &
000) 000:-0 €
D008 6 8866 ¢

Sl Rt e

606"
006"

0

()]
Ye]
Al
<
o

- to ettt -1

26608 ¢

(50)

Al
[sp) <

q*

[ce)

(o))

Te) Te) <

- — @ -
(o)) o
Yle
QA (V)

Fan Hui (Black), AlphaGo (White)

AlphaGo wins by 2.5 points
203

Game 1

194

©

> ._&.m
= S op O
il o yrb
i cS =2
(..m ncW Ue._lm

"> -
O M — X o+ C

MM U
O 2 . + @ O
b~ S a g LU C
O9nW:yMI.WO
£ 5 RES o2
nu A wan nV- nUl CJ _ru Qb | -
G. o o

o4% 20: 7805488 "

D6 . s m*@*mf¢1*1 ®)

28080 08080 $as
VA — m*iﬂm‘ﬁ =

<o)
o
QY

—
bl Ao2)]
o a2 O

O\ /A
O H ©
B)(E
PR
<

-
[50)
©
=

t)a @ a2 60t @

—

extremely complex

* Simple rules, but
game play

Figure from Silver et al. (2016)

Alpha Go

* State spaceis too large to represent explicitly since
of sequences of moves is O(b?)

— Go: b=250and d=150
— Chess: b=35 and d=80
* Keyidea:
— Define a neural network to approximate the value function
— Train by policy gradient

Rollout policy SL policy network RL policy network Value network Policy network Value network
Z 4
pn pa 'op VO 8 pg/p (a |S) V@ (S)
) -
>3
Q
2
Policy gradient Q
X
S
49
Q (7 'S4
Q 2 &
O\ 2
> S S2Y > lw)
QL
Q

Human expert positions Self-play positions

57
Figure from Silver et al. (2016)

e Results of a
tournament

* From Silver et
al. (2016): “a
230 point gap
corresponds to
a79%
probability of
winning”’

Figure from Silver et al. (2016)

Alpha Go

Elo Rating

3,500

3,000

2,500

2,000

1,500

1,000

500

oneyd|y
oneyd|y

painquisip

INH ueq

auo01g Azeln

usz

Iyoed

obanyg
oHnuL)

58

SUMMARY

Summary

e Both value iteration and policy iteration are standard
algorithms for solving MDPs, and there isn't currently
universal agreement over which algorithm is better.

e For small MDPs, value iteration is often very fast and
converges with very few iterations. However, for MDPs with
large state spaces, solving for V explicitly would involve
solving a large system of linear equations, and could be
difficult.

e In these problems, policy iteration may be preferred. In
practice value iteration seems to be used more often than
policy iteration.

e Q-learning is model-free, and explore the temporal difference

Eric Xing © Eric Xing @ CMU, 2006-2011 60

Types of Learning

e
i

e Supervised Learning
- Training data: (X,Y). (features, label)
- Predict Y, minimizing some loss.
- Regression, Classification.

e Unsupervised Learning
- Training data: X. (features only)
- Find “similar” points in high-dim X-space.
- Clustering.

e Reinforcement Learning
- Training data: (S, A, R). (State-Action-Reward)
- Develop an optimal policy (sequence of
decision rules) for the learner so as to
maximize its long-term reward.
- Robotics, Board game playing programs

Eric Xing © Eric Xing @ CMU, 2006-2011

61

