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What is Learning? 

l  Learning takes place as a result of interaction 
between an agent and the world, the idea 
behind learning is that 

l  Percepts received by an agent should be used not 
only for understanding/interpreting/prediction, as in the 
machine learning tasks we have addressed so far,  
 but also for acting, and further more for improving the 
agent’s ability to behave optimally in the future to 
achieve the goal. 
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Types of Learning  
l  Supervised Learning 

l  A situation in which sample (input, output) pairs of the function to be learned can 
be perceived or are given 

l  You can think it as if there is a kind teacher 
             - Training data: (X,Y). (features, label) 
             - Predict Y, minimizing some loss. 
             - Regression, Classification. 

l  Unsupervised Learning 

            - Training data: X. (features only) 
             - Find “similar” points in high-dim X-space. 
             - Clustering. 
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Example of Supervised Learning  
l  Predict the price of a stock in 6 months from now, based on 

economic data. (Regression) 
l  Predict whether a patient, hospitalized due to a heart attack, 

will have a second heart attack. The prediction is to be based 
on demographic, diet and clinical measurements for that 
patient. (Logistic Regression) 

l  Identify the numbers in a handwritten ZIP code, from a 
digitized image (pixels). (Classification) 
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Example of Unsupervised Learning 

l  From the DNA micro-array 
data, determine which 
genes are most “similar” 
in terms of their 
expression profiles. 
(Clustering) 
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Types of Learning (Cont’d)  

l  Reinforcement Learning 
l  in the case of the agent acts on its environment, it receives some 

evaluation of its action (reinforcement), but is not told of which 
action is the correct one to achieve its goal 

      - Training data: (S, A, R). (State-Action-Reward) 
       - Develop an optimal policy (sequence of   
          decision rules) for the learner so as to   
          maximize its long-term reward.     
      - Robotics, Board game playing programs. 
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RL is learning from interaction 
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Examples of Reinforcement Learning  

l  How should a robot behave so as  
 to optimize its “performance”? (Robotics) 

l  How to automate the motion of  
 a helicopter? (Control Theory) 

l  How to make a good chess-playing  
 program? (Artificial Intelligence) 
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Robot in a room 

l  what’s the strategy to achieve max reward? 
l  what if the actions were NOT deterministic? 
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Pole Balancing 
l  Task:  

l  Move car left/right to keep the pole balanced 

l  State representation 
l  Position and velocity of the car 
l  Angle and angular velocity of the pole 

13 © Eric Xing @ CMU, 2006-2011 



   Eric Xing 

History of Reinforcement 
Learning 

l  Roots in the psychology of animal learning (Thorndike,1911). 

l  Another independent thread was the problem of optimal 
control, and its solution using dynamic programming (Bellman, 
1957). 

l  Idea of temporal difference learning (on-line method), e.g., 
playing board games (Samuel, 1959). 

l  A major breakthrough was the discovery of Q-learning 
(Watkins, 1989). 
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What is special about RL? 
l  RL is learning how to map states to actions, so as to 

maximize a numerical reward over time. 

l  Unlike other forms of learning, it is a multistage decision-
making process (often Markovian). 

l  An RL agent must learn by trial-and-error. (Not entirely 
supervised, but interactive) 

l  Actions may affect not only the immediate reward but also 
subsequent rewards (Delayed effect).  
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Elements of RL 
l  A policy 
          - A map from state space to action space. 
          - May be stochastic. 
l  A reward function 
          - It maps each state (or, state-action pair) to 
            a real number, called reward.  
l  A value function 
          - Value of a state (or, state-action pair) is the 
            total expected reward, starting from that  
            state (or, state-action pair). 
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Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Maze Example

Start

Goal

Rewards: -1 per time-step

Actions: N, E, S, W

States: Agent’s location

Slide	
  from	
  David	
  Silver	
  (Intro	
  RL	
  lecture)	
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Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Maze Example: Policy

Start

Goal

Arrows represent policy ⇡(s) for each state s

Policy:	
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Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Maze Example: Value Function

-14 -13 -12 -11 -10 -9

-16 -15 -12 -8

-16 -17 -6 -7

-18 -19 -5

-24 -20 -4 -3

-23 -22 -21 -22 -2 -1

Start

Goal

Numbers represent value v⇡(s) of each state s

Value	
  Function:	
  (Expected	
  Future	
  Reward)	
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Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Maze Example: Model

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1

-1

-1 -1

-1 -1

Start

Goal

Agent may have an internal
model of the environment

Dynamics: how actions
change the state

Rewards: how much reward
from each state

The model may be imperfect

Grid layout represents transition model Pa

ss

0

Numbers represent immediate reward Ra

s

from each state s
(same for all a)

Model:	
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Policy 
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Reward for each step -2 
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Reward for each step: -0.1 
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Reward for each step: -0.04 
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The Precise Goal 
l  To find a policy that maximizes the Value function. 

l  transitions and rewards usually not available 

l  There are different approaches to achieve this goal in various 
situations. 

l  Value iteration and Policy iteration are two more classic 
approaches to this problem. But essentially both are dynamic 
programming. 

l  Q-learning is a more recent approaches to this problem. 
Essentially it is a temporal-difference method. 
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Markov Decision Processes 
 A Markov decision process is a tuple                             where: 
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The dynamics of an MDP 
l  We start in some state s0, and get to choose some action a0 ∈ 

A 
l  As a result of our choice, the state of the MDP randomly 

transitions to some successor state s1, drawn according to s1~  
Ps0a0 

l  Then, we get to pick another action a1 
l  … 

28 © Eric Xing @ CMU, 2006-2011 



   Eric Xing 

The dynamics of an MDP, 
(Cont’d) 

l  Upon visiting the sequence of states s0, s1, …, with actions a0, a1, …, 
our total payoff is given by 

l  Or, when we are writing rewards as a function of the states only, this 
becomes 

l  For most of our development, we will use the simpler state-rewards R(s), though 
the generalization to state-action rewards R(s; a) offers no special diffculties. 

l  Our goal in reinforcement learning is to choose actions over 
time so as to maximize the expected value of the total payoff: 
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Fixed	
  Point	
  Iteration	
  for	
  Optimization	
  
•  Fixed	
  point	
  iteration	
  is	
  a	
  general	
  tool	
  for	
  solving	
  systems	
  of	
  

equations	
  
•  It	
  can	
  also	
  be	
  applied	
  to	
  optimization.	
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1.  Given	
  objective	
  function:	
  
2.  Compute	
  derivative,	
  set	
  to	
  

zero	
  (call	
  this	
  function	
  f ).	
  
3.  Rearrange	
  the	
  equation	
  s.t.	
  

one	
  of	
  parameters	
  appears	
  on	
  
the	
  LHS.	
  

4.  Initialize	
  the	
  parameters.	
  
5.  For	
  i	
  in	
  {1,...,K},	
  update	
  each	
  

parameter	
  and	
  increment	
  t:	
  
6.  Repeat	
  #5	
  until	
  convergence	
  

J(✓)

dJ(✓)

d✓i
= 0 = f(✓)

0 = f(✓) ) ✓i = g(✓)

✓(t+1)
i = g(✓(t))
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1.  Given	
  objective	
  function:	
  
2.  Compute	
  derivative,	
  set	
  to	
  

zero	
  (call	
  this	
  function	
  f ).	
  
3.  Rearrange	
  the	
  equation	
  s.t.	
  

one	
  of	
  parameters	
  appears	
  on	
  
the	
  LHS.	
  

4.  Initialize	
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  parameters.	
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  {1,...,K},	
  update	
  each	
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  t:	
  
6.  Repeat	
  #5	
  until	
  convergence	
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We	
  can	
  implement	
  our	
  
example	
  in	
  a	
  few	
  lines	
  of	
  
python.	
  

33	
  

J(x) =
x

3

3
+

3

2
x

2 + 2x

dJ(x)

dx

= f(x) = x

2 � 3x+ 2 = 0

) x =
x

2 + 2

3
= g(x)

x x

2 + 2

3



Fixed	
  Point	
  Iteration	
  for	
  Optimization	
  

34	
  

$ python fixed-point-iteration.py 
i= 0 x=0.0000 f(x)=2.0000
i= 1 x=0.6667 f(x)=0.4444
i= 2 x=0.8148 f(x)=0.2195
i= 3 x=0.8880 f(x)=0.1246
i= 4 x=0.9295 f(x)=0.0755
i= 5 x=0.9547 f(x)=0.0474
i= 6 x=0.9705 f(x)=0.0304
i= 7 x=0.9806 f(x)=0.0198
i= 8 x=0.9872 f(x)=0.0130
i= 9 x=0.9915 f(x)=0.0086
i=10 x=0.9944 f(x)=0.0057
i=11 x=0.9963 f(x)=0.0038
i=12 x=0.9975 f(x)=0.0025
i=13 x=0.9983 f(x)=0.0017
i=14 x=0.9989 f(x)=0.0011
i=15 x=0.9993 f(x)=0.0007
i=16 x=0.9995 f(x)=0.0005
i=17 x=0.9997 f(x)=0.0003
i=18 x=0.9998 f(x)=0.0002
i=19 x=0.9999 f(x)=0.0001
i=20 x=0.9999 f(x)=0.0001
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x
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3
+

3
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Elements of RL 
l  A policy 
          - A map from state space to action space. 
          - May be stochastic. 
l  A reward function 
          - It maps each state (or, state-action pair) to 
            a real number, called reward.  
l  A value function 
          - Value of a state (or, state-action pair) is the 
            total expected reward, starting from that  
            state (or, state-action pair). 
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Policy 
l  A policy is any function                     mapping from the states 

to the actions. 

l  We say that we are executing some policy  if, whenever we 
are in state s, we take action a = π(s). 

l  We also define the value function for a policy π according to 

l  Vπ (s) is simply the expected sum of discounted rewards upon starting in state s, 
and taking actions according to π. 

37 © Eric Xing @ CMU, 2006-2011 
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Value Function 
l  Given a fixed policy π, its value function Vπ  satisfies the 

Bellman equations: 

l  Bellman's equations can be used to efficiently solve for Vπ  (see later) 

Immediate reward expected sum of 
future discounted rewards 
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M = 0.8 in direction you want to go 
                0.2 in perpendicular  0.1 left 

0.1 right 
Policy: mapping from states to actions 

3 

2 

1 

1 2 3 4 

+1 

-1 

0.705 

3 

2 

1 

1 2 3 4 

+1 

-1 

 0.812 

0.762 

 0.868  0.912 

 0.660 

 0.655  0.611  0.388 

An optimal 
policy for 
the 
stochastic 
environmen
t: 

utilities of states: 

Environment Observable (accessible): percept identifies the state 
Partially observable 

Markov property: Transition probabilities depend on state only, not on the path to the 
state. 
Markov decision problem (MDP). 
Partially observable MDP (POMDP): percepts does not have enough info to identify 
transition probabilities. 

The Grid world 
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Optimal value function 
l  We define the optimal value function according to 

l  In other words, this is the best possible expected sum of discounted rewards that 
can be attained using any policy 

l  There is a version of Bellman's equations for the optimal value 
function: 

l  Why?  

(1) 

(2) 

40 © Eric Xing @ CMU, 2006-2011 
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Optimal policy  
l  We also define a policy :                        as follows: 

l  Fact:  
l    

l  Policy π* has the interesting property that it is the optimal policy for all 
states s.  
l  It is not the case that if we were starting in some state s then there'd be some 

optimal policy for that state, and if we were starting in some other state s0 then 
there'd be some other policy that's optimal policy for s0.  

l  The same policy π* attains the maximum above for all states s. This means 
that we can use the same policy  no matter what the initial state of our MDP is. 

(3) 

41 © Eric Xing @ CMU, 2006-2011 
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The Basic Setting for Learning 

l  Training data: n  finite horizon trajectories, of the 
form 

l  Deterministic or stochastic policy:  A sequence of 
decision rules  

l  Each  π  maps from the observable history (states 
and actions) to the action space at that time point. 

}.,,,,...,,,{ 1000 +TTTT srasras

}.,...,,{ 10 Tπππ
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Algorithm 1: Value iteration 
l  Consider only MDPs with finite state and action spaces 

l  The value iteration algorithm: 

l  synchronous update 
l  asynchronous updates 

l  It can be shown that value iteration will cause V to converge to V *. Having 
found V* , we can then use Equation (3) to find the optimal policy. 

43 © Eric Xing @ CMU, 2006-2011 
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Algorithm 2: Policy iteration 
l  The policy iteration algorithm: 

l  The inner-loop repeatedly computes the value function for the current policy, and 
then updates the policy using the current value function. 

l  Greedy update 
l  After at most a finite number of iterations of this algorithm, V will converge to V* , 

and π will converge to π*. 

44 © Eric Xing @ CMU, 2006-2011 
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l  The utility values for selected states at each iteration step in the 
application of VALUE-ITERATION to the 4x3 world in our example 

Thrm:  As tà∞, value iteration converges to exact U even if updates are 
done asynchronously & i is picked randomly at every step. 

Convergence 

start 

3 

2 

1 

1 2 3 4 

+1 

-1 
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When to stop value iteration? 

Convergence 
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l  Define Q-value function 

l  Q-value function updating rule 
l  See subsequent slides 

l  Key idea of TD-Q learning 
l   Combined with temporal difference approach 

l  Rule to chose the action to take 

Q learning 

48 © Eric Xing @ CMU, 2006-2011 
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Algorithm 3: Q learning 
For each pair (s, a), initialize Q(s,a)  
Observe the current state s 
Loop forever 
{ 

Select an action a (optionally with ε-exploration) and execute it 
 
 
Receive immediate reward r and observe the new state s’ 
Update Q(s,a) 
 
 
s=s’   

} 
49 © Eric Xing @ CMU, 2006-2011 
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Exploration 
l  Tradeoff between exploitation (control) and exploration 

(identification)  

l  Extremes: greedy vs. random acting 
 (n-armed bandit models) 

Q-learning converges to optimal Q-values if 
l  Every state is visited infinitely often (due to exploration), 
l  The action selection becomes greedy as time approaches infinity, and 
l  The learning rate a is decreased fast enough but not too fast  (as we discussed in 

TD learning) 

50 © Eric Xing @ CMU, 2006-2011 
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A Success Story 
l  TD Gammon (Tesauro, G., 1992) 
        - A Backgammon playing program. 
        - Application of temporal difference learning. 
        - The basic learner is a neural network.  
        - It trained itself to the world class level by  playing against 

itself and learning from the outcome. So smart!! 
        - More information: http://www.research.ibm.com/massive/

tdl.html 

52 © Eric Xing @ CMU, 2006-2011 



Lecture 1: Introduction to Reinforcement Learning

Problems within RL

Atari Example: Reinforcement Learning

observation

reward

action

At

Rt

Ot
Rules of the game are
unknown

Learn directly from
interactive game-play

Pick actions on
joystick, see pixels
and scores

Playing	
  Atari	
  with	
  Deep	
  RL	
  
•  Setup:	
  	
  RL	
  
system	
  
observes	
  the	
  
pixels	
  on	
  the	
  
screen	
  

•  It	
  receives	
  
rewards	
  as	
  the	
  
game	
  score	
  

•  Actions	
  decide	
  
how	
  to	
  move	
  
the	
  joystick	
  /	
  
buttons	
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Playing	
  Atari	
  with	
  Deep	
  RL	
  

Videos:	
  
– Atari:	
  
https://www.youtube.com/watch?
v=V1eYniJ0Rnk	
  	
  

– Space	
  Invaders:	
  
https://www.youtube.com/watch?
v=ePv0Fs9cGgU	
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Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

an experience replay mechanism [13] which randomly samples previous transitions, and thereby
smooths the training distribution over many past behaviors.

We apply our approach to a range of Atari 2600 games implemented in The Arcade Learning Envi-
ronment (ALE) [3]. Atari 2600 is a challenging RL testbed that presents agents with a high dimen-
sional visual input (210 ⇥ 160 RGB video at 60Hz) and a diverse and interesting set of tasks that
were designed to be difficult for humans players. Our goal is to create a single neural network agent
that is able to successfully learn to play as many of the games as possible. The network was not pro-
vided with any game-specific information or hand-designed visual features, and was not privy to the
internal state of the emulator; it learned from nothing but the video input, the reward and terminal
signals, and the set of possible actions—just as a human player would. Furthermore the network ar-
chitecture and all hyperparameters used for training were kept constant across the games. So far the
network has outperformed all previous RL algorithms on six of the seven games we have attempted
and surpassed an expert human player on three of them. Figure 1 provides sample screenshots from
five of the games used for training.

2 Background

We consider tasks in which an agent interacts with an environment E , in this case the Atari emulator,
in a sequence of actions, observations and rewards. At each time-step the agent selects an action
at from the set of legal game actions, A = {1, . . . ,K}. The action is passed to the emulator and
modifies its internal state and the game score. In general E may be stochastic. The emulator’s
internal state is not observed by the agent; instead it observes an image xt 2 Rd from the emulator,
which is a vector of raw pixel values representing the current screen. In addition it receives a reward
rt representing the change in game score. Note that in general the game score may depend on the
whole prior sequence of actions and observations; feedback about an action may only be received
after many thousands of time-steps have elapsed.

Since the agent only observes images of the current screen, the task is partially observed and many
emulator states are perceptually aliased, i.e. it is impossible to fully understand the current situation
from only the current screen xt. We therefore consider sequences of actions and observations, st =
x1, a1, x2, ..., at�1, xt, and learn game strategies that depend upon these sequences. All sequences
in the emulator are assumed to terminate in a finite number of time-steps. This formalism gives
rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct state.
As a result, we can apply standard reinforcement learning methods for MDPs, simply by using the
complete sequence st as the state representation at time t.

The goal of the agent is to interact with the emulator by selecting actions in a way that maximises
future rewards. We make the standard assumption that future rewards are discounted by a factor of
� per time-step, and define the future discounted return at time t as Rt =

PT
t0=t �

t0�t
rt0 , where T

is the time-step at which the game terminates. We define the optimal action-value function Q

⇤
(s, a)

as the maximum expected return achievable by following any strategy, after seeing some sequence
s and then taking some action a, Q⇤

(s, a) = max⇡ E [Rt|st = s, at = a,⇡], where ⇡ is a policy
mapping sequences to actions (or distributions over actions).

The optimal action-value function obeys an important identity known as the Bellman equation. This
is based on the following intuition: if the optimal value Q

⇤
(s

0
, a

0
) of the sequence s

0 at the next
time-step was known for all possible actions a

0, then the optimal strategy is to select the action a

0

2

Figures	
  from	
  Mnih	
  et	
  al.	
  (2013)	
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B. Rider Breakout Enduro Pong Q*bert Seaquest S. Invaders
Random 354 1.2 0 �20.4 157 110 179

Sarsa [3] 996 5.2 129 �19 614 665 271

Contingency [4] 1743 6 159 �17 960 723 268

DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 �3 18900 28010 3690

HNeat Best [8] 3616 52 106 19 1800 920 1720
HNeat Pixel [8] 1332 4 91 �16 1325 800 1145

DQN Best 5184 225 661 21 4500 1740 1075

Table 1: The upper table compares average total reward for various learning methods by running
an ✏-greedy policy with ✏ = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an ✏-greedy policy with ✏ = 0.05.

types of objects on the Atari screen. The HNeat Pixel score is obtained by using the special 8 color
channel representation of the Atari emulator that represents an object label map at each channel.
This method relies heavily on finding a deterministic sequence of states that represents a successful
exploit. It is unlikely that strategies learnt in this way will generalize to random perturbations;
therefore the algorithm was only evaluated on the highest scoring single episode. In contrast, our
algorithm is evaluated on ✏-greedy control sequences, and must therefore generalize across a wide
variety of possible situations. Nevertheless, we show that on all the games, except Space Invaders,
not only our max evaluation results (row 8), but also our average results (row 4) achieve better
performance.

Finally, we show that our method achieves better performance than an expert human player on
Breakout, Enduro and Pong and it achieves close to human performance on Beam Rider. The games
Q*bert, Seaquest, Space Invaders, on which we are far from human performance, are more chal-
lenging because they require the network to find a strategy that extends over long time scales.

6 Conclusion
This paper introduced a new deep learning model for reinforcement learning, and demonstrated its
ability to master difficult control policies for Atari 2600 computer games, using only raw pixels
as input. We also presented a variant of online Q-learning that combines stochastic minibatch up-
dates with experience replay memory to ease the training of deep networks for RL. Our approach
gave state-of-the-art results in six of the seven games it was tested on, with no adjustment of the
architecture or hyperparameters.
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Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

an experience replay mechanism [13] which randomly samples previous transitions, and thereby
smooths the training distribution over many past behaviors.

We apply our approach to a range of Atari 2600 games implemented in The Arcade Learning Envi-
ronment (ALE) [3]. Atari 2600 is a challenging RL testbed that presents agents with a high dimen-
sional visual input (210 ⇥ 160 RGB video at 60Hz) and a diverse and interesting set of tasks that
were designed to be difficult for humans players. Our goal is to create a single neural network agent
that is able to successfully learn to play as many of the games as possible. The network was not pro-
vided with any game-specific information or hand-designed visual features, and was not privy to the
internal state of the emulator; it learned from nothing but the video input, the reward and terminal
signals, and the set of possible actions—just as a human player would. Furthermore the network ar-
chitecture and all hyperparameters used for training were kept constant across the games. So far the
network has outperformed all previous RL algorithms on six of the seven games we have attempted
and surpassed an expert human player on three of them. Figure 1 provides sample screenshots from
five of the games used for training.

2 Background

We consider tasks in which an agent interacts with an environment E , in this case the Atari emulator,
in a sequence of actions, observations and rewards. At each time-step the agent selects an action
at from the set of legal game actions, A = {1, . . . ,K}. The action is passed to the emulator and
modifies its internal state and the game score. In general E may be stochastic. The emulator’s
internal state is not observed by the agent; instead it observes an image xt 2 Rd from the emulator,
which is a vector of raw pixel values representing the current screen. In addition it receives a reward
rt representing the change in game score. Note that in general the game score may depend on the
whole prior sequence of actions and observations; feedback about an action may only be received
after many thousands of time-steps have elapsed.

Since the agent only observes images of the current screen, the task is partially observed and many
emulator states are perceptually aliased, i.e. it is impossible to fully understand the current situation
from only the current screen xt. We therefore consider sequences of actions and observations, st =
x1, a1, x2, ..., at�1, xt, and learn game strategies that depend upon these sequences. All sequences
in the emulator are assumed to terminate in a finite number of time-steps. This formalism gives
rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct state.
As a result, we can apply standard reinforcement learning methods for MDPs, simply by using the
complete sequence st as the state representation at time t.

The goal of the agent is to interact with the emulator by selecting actions in a way that maximises
future rewards. We make the standard assumption that future rewards are discounted by a factor of
� per time-step, and define the future discounted return at time t as Rt =

PT
t0=t �

t0�t
rt0 , where T

is the time-step at which the game terminates. We define the optimal action-value function Q

⇤
(s, a)

as the maximum expected return achievable by following any strategy, after seeing some sequence
s and then taking some action a, Q⇤

(s, a) = max⇡ E [Rt|st = s, at = a,⇡], where ⇡ is a policy
mapping sequences to actions (or distributions over actions).

The optimal action-value function obeys an important identity known as the Bellman equation. This
is based on the following intuition: if the optimal value Q

⇤
(s

0
, a

0
) of the sequence s

0 at the next
time-step was known for all possible actions a

0, then the optimal strategy is to select the action a

0
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on high-performance MCTS algorithms. In addition, we included the 
open source program GnuGo, a Go program using state-of-the-art 
search methods that preceded MCTS. All programs were allowed 5 s 
of computation time per move.

The results of the tournament (see Fig. 4a) suggest that single- 
machine AlphaGo is many dan ranks stronger than any previous  
Go program, winning 494 out of 495 games (99.8%) against other 
Go programs. To provide a greater challenge to AlphaGo, we also 
played games with four handicap stones (that is, free moves for the 
opponent); AlphaGo won 77%, 86%, and 99% of handicap games 
against Crazy Stone, Zen and Pachi, respectively. The distributed ver-
sion of AlphaGo was significantly stronger, winning 77% of games 
against single-machine AlphaGo and 100% of its games against other 
programs.

We also assessed variants of AlphaGo that evaluated positions 
using just the value network (λ = 0) or just rollouts (λ = 1) (see  
Fig. 4b). Even without rollouts AlphaGo exceeded the performance 
of all other Go programs, demonstrating that value networks provide 
a viable alternative to Monte Carlo evaluation in Go. However, the 
mixed evaluation (λ = 0.5) performed best, winning ≥95% of games 
against other variants. This suggests that the two position-evaluation 

mechanisms are complementary: the value network approximates the 
outcome of games played by the strong but impractically slow pρ, while 
the rollouts can precisely score and evaluate the outcome of games 
played by the weaker but faster rollout policy pπ. Figure 5 visualizes 
the evaluation of a real game position by AlphaGo.

Finally, we evaluated the distributed version of AlphaGo against Fan 
Hui, a professional 2 dan, and the winner of the 2013, 2014 and 2015 
European Go championships. Over 5–9 October 2015 AlphaGo and 
Fan Hui competed in a formal five-game match. AlphaGo won the 
match 5 games to 0 (Fig. 6 and Extended Data Table 1). This is the 
first time that a computer Go program has defeated a human profes-
sional player, without handicap, in the full game of Go—a feat that was  
previously believed to be at least a decade away3,7,31.

Discussion
In this work we have developed a Go program, based on a combina-
tion of deep neural networks and tree search, that plays at the level of 
the strongest human players, thereby achieving one of artificial intel-
ligence’s “grand challenges”31–33. We have developed, for the first time, 
effective move selection and position evaluation functions for Go, 
based on deep neural networks that are trained by a novel combination  

Figure 6 | Games from the match between AlphaGo and the European 
champion, Fan Hui. Moves are shown in a numbered sequence 
corresponding to the order in which they were played. Repeated moves  
on the same intersection are shown in pairs below the board. The first 

move number in each pair indicates when the repeat move was played, at 
an intersection identified by the second move number (see Supplementary 
Information).
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Game 1
Fan Hui (Black), AlphaGo (White)
AlphaGo wins by 2.5 points

Game 2
AlphaGo (Black), Fan Hui (White)
AlphaGo wins by resignation

Game 3
Fan Hui (Black), AlphaGo (White)
AlphaGo wins by resignation

Game 4
AlphaGo (Black), Fan Hui (White)
AlphaGo wins by resignation

Game 5
Fan Hui (Black), AlphaGo (White)
AlphaGo wins by resignation
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ ( | )
∂

σp a slog

We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ = σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: +1 for winning and −1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ ( | )

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game  
play, sampling each move ∼ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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better in AlphaGo than a value function ( )≈ ( )θ σv s v sp  derived from the 
SL policy network.

Evaluating policy and value networks requires several orders of 
magnitude more computation than traditional search heuristics. To 
efficiently combine MCTS with deep neural networks, AlphaGo uses 
an asynchronous multi-threaded search that executes simulations on 
CPUs, and computes policy and value networks in parallel on GPUs. 
The final version of AlphaGo used 40 search threads, 48 CPUs, and 
8 GPUs. We also implemented a distributed version of AlphaGo that 

exploited multiple machines, 40 search threads, 1,202 CPUs and  
176 GPUs. The Methods section provides full details of asynchronous 
and distributed MCTS.

Evaluating the playing strength of AlphaGo
To evaluate AlphaGo, we ran an internal tournament among variants 
of AlphaGo and several other Go programs, including the strongest 
commercial programs Crazy Stone13 and Zen, and the strongest open 
source programs Pachi14 and Fuego15. All of these programs are based 

Figure 4 | Tournament evaluation of AlphaGo. a, Results of a  
tournament between different Go programs (see Extended Data Tables 
6–11). Each program used approximately 5 s computation time per move.  
To provide a greater challenge to AlphaGo, some programs (pale upper 
bars) were given four handicap stones (that is, free moves at the start of 
every game) against all opponents. Programs were evaluated on an  
Elo scale37: a 230 point gap corresponds to a 79% probability of winning,  
which roughly corresponds to one amateur dan rank advantage on  
KGS38; an approximate correspondence to human ranks is also shown, 

horizontal lines show KGS ranks achieved online by that program. Games 
against the human European champion Fan Hui were also included;  
these games used longer time controls. 95% confidence intervals are 
shown. b, Performance of AlphaGo, on a single machine, for different 
combinations of components. The version solely using the policy network 
does not perform any search. c, Scalability study of MCTS in AlphaGo 
with search threads and GPUs, using asynchronous search (light blue) or 
distributed search (dark blue), for 2 s per move.
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Figure 5 | How AlphaGo (black, to play) selected its move in an 
informal game against Fan Hui. For each of the following statistics,  
the location of the maximum value is indicated by an orange circle.  
a, Evaluation of all successors s′ of the root position s, using the value 
network vθ(s′); estimated winning percentages are shown for the top 
evaluations. b, Action values Q(s, a) for each edge (s, a) in the tree from 
root position s; averaged over value network evaluations only (λ = 0).  
c, Action values Q(s, a), averaged over rollout evaluations only (λ = 1).  

d, Move probabilities directly from the SL policy network, ( | )σp a s ; 
reported as a percentage (if above 0.1%). e, Percentage frequency with 
which actions were selected from the root during simulations. f, The 
principal variation (path with maximum visit count) from AlphaGo’s 
search tree. The moves are presented in a numbered sequence. AlphaGo 
selected the move indicated by the red circle; Fan Hui responded with the 
move indicated by the white square; in his post-game commentary he 
preferred the move (labelled 1) predicted by AlphaGo.
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Summary 
l  Both value iteration and policy iteration are standard 

algorithms for solving MDPs, and there isn't currently 
universal agreement over which algorithm is better.  

l  For small MDPs, value iteration is often very fast and 
converges with very few iterations. However, for MDPs with 
large state spaces, solving for V explicitly would involve 
solving a large system of linear equations, and could be 
difficult.  

l  In these problems, policy iteration may be preferred. In 
practice value iteration seems to be used more often than 
policy iteration. 

l  Q-learning is model-free, and explore the temporal difference 
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Types of Learning  
l  Supervised Learning 

  - Training data: (X,Y). (features, label) 
             - Predict Y, minimizing some loss. 
             - Regression, Classification. 
 

l  Unsupervised Learning 
             - Training data: X. (features only) 
             - Find “similar” points in high-dim X-space. 
             - Clustering. 
 

l  Reinforcement Learning 
  - Training data: (S, A, R). (State-Action-Reward) 

       - Develop an optimal policy (sequence of   
          decision rules) for the learner so as to   
          maximize its long-term reward.     
       - Robotics, Board game playing programs 
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