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Reminders

e Homework 4
— deadline extended to Wed, Nov. 16th
— 10 extra points for submitting by Mon, Nov. 14th

* Poster Sessions
— two sessions on Fri, Dec. 2nd
— session 1: 8 - 11:30 am
—session2:2-6 pm



HIDDEN MARKOV MODEL (HMM)



Data:

Dataset for Supervised
Part-of-Speech (POS) Tagging
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Naive Bayes for Time Series Data

We could treat each word-tag pair (i.e. token) as independent. This
corresponds to a Naive Bayes model with a single feature (the word).

p(n, v, P, d, n, time, flies, like, an, arrow) — (.3 *8* 1% .5 * )
V| A1 Vv | .1
n|.8 n|.8
p| .2 p -2
d|.2 d|.2

Q. '0 |B <

> |5 ||| time

Q.0 B (<
5 W NN

S VIRV

ML | | flies
like
= |2 W N | time
N D | O | flies
like @




Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the
sentence/tags with an assumption of dependence between adjacent tags.
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From NB to HMM
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Hidden Markov Model

HMM Parameters:
Emission matrix, A, where P(X; = w|Yy =t) = Ay, Vk
Transition matrix, B, where P(Y;, = t|Yy_1 = s) = Bs 4, Vk

vinp d v n p d
V| 1]/6(3|4 V| 1]/6[3|4
n(8/4/2/01 |n|8|4|2|0.1
p|1/3/1]3 p/1/3/1]3
dlo18 0|0 d|o.18 0 0

: g : g
n 1E OO
vVi3|5]|3 Vi3[/5]3
n 4|52 n4/5|2
p [0.1/0.1] 3 p [0.1/0.1] 3
d 0.1/0.2/0.1 d |0.1/0.2/0.1




Hidden Markov Model

HMM Parameters:
Emission matrix, A, where P(X; = w|Yy =t) = Ay, Vk
Transition matrix, B, where P(Y;, = t|Yy_1 = s) = Bs 4, Vk

Assumption: yo = START
Generative Story:

Yr ~ Multinomial(Ay, ,) Vk
X ~ l\/\ultinomial(BYk) \s
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Hidden Markov Model

Joint Distribution:
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From static to dynamic mixture
models

Static mixture Dynamic mixture
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HMMs: History

« Markov chains: Andrey Markov (1906)
— Random walks and Brownian motion
« Used in Shannon’s work on information theory (1948)
« Baum-Welsh learning algorithm: late 60’s, early 70’s.
— Used mainly for speech in 60s-70s.

« Late 80’s and 90’s: David Haussler (major player in
learning theory in 80’s) began to use HMMs for
modeling biological sequences

« Mid-late 1990’s: Dayne Freitag/Andrew McCallum

— Freitag thesis with Tom Mitchell on IE from Web
using logic programs, grammar induction, etc.

— McCallum: multinomial Naive Bayes for text
— With McCallum, IE using HMMs on CORA

12

Slide from William Cohen



Higher-order HMMs

¢ 15t order HMM (i.e. bigram HMM)




SUPERVISED LEARNING FOR
BAYES NETS



Machine Learning
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Learning Fully Observed BNM

@ @ p(X17X27X37X47X5) —
2 p(X5|X3)p(Xa| X2, X3)

) (x) p(X3)p(X2| X1)p(X1)



Learning Fully Observed BNM
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Learning Fully Observed BNM

@ @ p(X17X27X37X47X5) —
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x) () p(X3)p(Xa| X1)p(X1)

How do we learn these conditional and
marginal distributions for a Bayes Net?



Learning Fully Observed BNM

Learning this fully observed
Bayesia% Networ}ll< IS p( X1, X2, X, Xy, X5) =
equivalent to learning five P(X5|X5)p(Xa]Xa, Xs)
(small / simple) independent p(X3)p(X2|X1)p(X1)
networks from the same data

___________




Learning Fully Observed BNs

How do we learn these

conditional and marginal
distributions for a Bayes Net? 0" = arginax log p(X1, XQ, Xg, X4, X5)
0
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SUPERVISED LEARNING FOR
HMMS



Hidden Markov Model

HMM Parameters:
Emission matrix, A, where P(X; = w|Yy =t) = Ay, Vk
Transition matrix, B, where P(Y;, = t|Yy_1 = s) = Bs 4, Vk
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Hidden Markov Model

HMM Parameters:
Emission matrix, A, where P(X; = w|Yy =t) = Ay, Vk
Transition matrix, B, where P(Y;, = t|Yy_1 = s) = Bs 4, Vk

Assumption: yo = START
Generative Story:

Yr ~ Multinomial(Ay, ,) Vk
X ~ l\/\ultinomial(BYk) \s
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Hidden Markov Model

Joint Distribution:
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Whiteboard

* MLEs for HMM



Representation of both directed and undirected graphical models

FACTOR GRAPHS
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Sampling from a Joint Distribution

This gives the proportion of samples that will equal x.

A joint distribution defines a probability p(x) for each assignment of values x to variables X.
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Sampling from a Joint Distribution

A joint distribution defines a probability p(x) for each assignment of values x to variables X.

This gives the proportion of samples that will equal x.
PN ./I
Sample 3: Sample 4:
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Sample 1: Sample 2:

Vi
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Sampling from a Joint Distribution

A joint distribution defines a probability p(x) for each assignment of values x to variables X.
This gives the proportion of samples that will equal x.

Sample 1

Sample 2:

Sample 3:

Sample 4:
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Factors have local opinions (= 0)

Each black box looks at some of the tags X; and words W,

Note: We chose to reuse
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ni8{4|(201 n 8 /4|2|0.1 sentence.
p[1{3[1[3] [P|1][3][1]3
doi18|0 0 do1 8|00
O= ()= )u()r=u{()>m(
_0; ; 1) Ol vl @
QN QN
VIi3|/5]3 Vi3|/5/3
n 4|52 n 4|52
p [0.1/0.1] 3 p [0.10.1] 3
d 0.1/0.2/0.1 d |0.1/0.2/0.1




Factors have local opinions (= 0)

Each black box looks at some of the tags X; and words W,
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Global probability = product of local opinions

Each black box looks at some of the tags X; and words W,

1
p(n, v, p, d, n, time, flies, like, an, arrow) = 7 (4 *8 * 5 * 3 * )
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Markov Random Field (MRF)

Joint distribution over tags X; and words W,
The individual factors aren’t necessarily probabilities.

1
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Bayesian Networks

Constrain each row of a factor to sum to one. Now Z = 1.

But sometimes we choose to make them probabilities.
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Markov Random Field (MRF)

Joint distribution over tags X; and words W,

1
p(n,v,p,d,n,time,ﬂies,like,an,arrow) = 7(4* 8 *5*3*...)
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Conditional Random Field (CRF)

Conditional distribution over tags X given words w..
The factors and Z are now specific to the sentence w.
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How General Are Factor Graphs?

* Factor graphs can be used to describe

— Markov Random Fields (undirected graphical models)
* i.e., log-linear models over a tuple of variables

— Conditional Random Fields
— Bayesian Networks (directed graphical models)

* Inference treats all of these interchangeably.
— Convert your model to a factor graph first.

— Pearl (1988) gave key strategies for exact inference:
* Belief propagation, for inference on acyclic graphs

* Junction tree algorithm, for making any graph acyclic
(by merging variables and factors: blows up the runtime)



Factor Graph Notation

e Variables:
X = {)(1,...,)(;,...

* Factors:

¢a»¢5»¢w I

where o, 3,7,... C{l,...n}

Joint Distribution

p(@) = [ vala)




Factors are Tensors

* Factors:

waﬂpﬁﬂ%a I

| ~ |-- |
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Converting to Factor Graphs

Each conditional and Each clique in an

marginal distributionin a undirected GM becomes a
directed GM becomes a factor

factor

by W
W W



Equivalence of directed and
undirected trees

Any undirected tree can be converted to a directed tree by choosing a root
node and directing all edges away from it

A directed tree and the corresponding undirected tree make the same
conditional independence assertions

Parameterizations are essentially the same.

— Undirected tree:
— Directed tree:

— Equivalence:



Factor Graph Examples

* Example 1

® =

o

P(X1) P(Xz) P(X3IX1?X2) P(X5|X17X3) P(X4IX2)X3)

14 3 1 !

fa(x1) fb(xz) fc(xg’xvxz) fd(x57X1’X3) fe(x4rxz’x3)

© Eric Xing @ CMU, 2005-2015
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Factor Graph Examples

* Example 2
lP(X1:X2;X3) = fa(X1’Xz)fb(xz:x3)fc(x3:x1) :
* Example 3 :

1P(X1’X2)X3) = fa(X1,X2,X3)
© Eric Xing @ CMU, 2005-2015 44



Tree-like Undirected GMs to Factor

]
o= =

© Eric Xing @ CMU, 2005-2015
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Poly-trees to Factor trees

. <.. /‘?-r”

© Eric Xing @ CMU, 2005-2015




Why factor graphs?

e Because FG turns tree-like
graphs to factor trees,

* Trees are a data-structure that

= guarantees correctness of BP !

© Eric Xing @ CMU, 2005-2015
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THE FORWARD-BACKWARD
ALGORITHM



Learning and Inference Summary

For discrete variables:

Learning Marginal MAP
Inference Inference
HMM Forward- Viterbi
backward
Linear-chain Forward- Viterbi

CRF backward




Forward-Backward Algorithm

find preferred tags



Forward-Backward Algorithm

Y, /’\ Y;

v /V'\ v
N\ P Z

SN 2ls | =
% AN ‘ - A/ B END

A NA S AN

a iai a

find preferred tags

* Show the possible values for each variable



Forward-Backward Algorithm

A\

AAN AR A
A{&'M'A-m
Lo {2
a / \ a

find preferred tags

* Let’s show the possible values for each variable
* One possible assignment
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Forward-Backward Algorithm

A #
- \‘ A =
fu B s

LD
. \\ A/
./

a

find preferred tags

* Let’s show the possible values for each variable
* One possible assignment
 And what the 7 factors think of it ...
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Viterbi Algorithm: Most Probable Assignment

l

/\ y y
QQ\ A /v\ v
SN oA

AT W A_— - A V5.4/(3,END) &

) e

\ /\\’ > \‘
. A AN A/ \
2(2)
find preferred tags

* Sop(van)=(1/Z)* product of 7 numbers
* Numbers associated with edges and nodes of path

* Most probable assienment = path with highest product



Viterbi Algorithm: Most Probable Assignment

m v 2
o A\
&%«?&d A0 = Z
Vi (V) ‘
A\ “< A\ . W3 4)(a,END)
B AR A riigm N
25" \‘
. Y, A A/ \
/()
find preferred tags

* Sop(van)=(1/2) * product weight of one path
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Forward-Backward Algorithm: Finds Marginals

find preferred tags

* Sop(van)=(1/2) * product weight of one path

* Marginal probability p(Y, = a)
= (1/Z) * total weight of A o



Forward-Backward Algorithm: Finds Marginals
A
NFCES SPANS SEO
\

%‘// ¥

find preferred tags

A

—
—

SEEN

" ——

Y3
v
a

—

* Sop(van)=(1/2) * product weight of one path

* Marginal probability p(Y, = a)
= (1/Z) * total weight of A 7



Forward-Backward Algorithm: Finds Marginals

SEEN

find preferred tags

* Sop(van)=(1/2) * product weight of one path

* Marginal probability p(Y, = a)
= (1/Z) * total weight of A o



Forward-Backward Algorithm: Finds Marginals
A
NFCES SPANS SEO
\

%‘// ¥

find preferred tags

A

—
—

SEEN

" ——

Y3
v
a

—

* Sop(van)=(1/2) * product weight of one path

* Marginal probability p(Y, = a)
= (1/Z) * total weight of A 59



Forward-Backward Algorithm: Finds Marginals
NANA
B A A
\f‘f ¥

find preferred tags

A

—
—

SEEN

" ——

Y3
v
a

—

0,(n) =total weight of these
path prej§xes

(found by dynamic programming: matrix-vector products)



Forward-Backward Algorithm: Finds Marginals
RPN

2

BN

ZEN
W
v

—
—

.

" —

Y3
v
a

—

find preferred tags
B,(n) =total weight of these
path suffixes

(found by dynamic programming: matrix-vector products)



Forward-Backward Algorithm: Finds Marginals

—
—

Vol NS A m R

" —

—

find preferred tags
a,(n) = total weight of these B,(n) = total weight of these
path prej§xes path suffixes

Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths



Forward-Backward Algorithm: Finds Marginals

>

Oops! The weight of a path
through a state also
includes a weight at that
state.

So a(n)-B(n) isn’t enough.

v

az(n) ﬁz(n)
The extra weight is the
opinion of the unigram 3
factor at this variable.
\If{z}(n)
preferred

total weight of
= wnp®m v,(® B,(n)

A\

“belief that ¥, =n"
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Forward-Backward Algorithm: Finds Marginals

ﬂ
II A\\ “belief that ¥, =v”’
T ’ ‘ /
~ -
l % ! “belief that ¥, =n"

\If{z}(V)

preferred

total weight of A

= (V) vy (V) B,(v)
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Forward-Backward Algorithm: Finds Marginals

“belief that ¥, =v”’

“belief that ¥, =n"

| b ﬁz(az
\ 1
\ / “belief that ¥, =a”
sum =2
Viy(a) (total probability
B of all paths)
preferred

total weight of A

= @) v B,(a)
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CRF Tagging Model

- n

e

find preferred tags




Whiteboard

* Forward-backward algorithm
* Viterbi algorithm



Conditional Random Fields (CRFs) for time series data

LINEAR-CHAIN CRFS
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Shortcomings of
Hidden Markov Models

HMM models capture dependences between each state and only its

corresponding observation

— NLP example: In a sentence segmentation task, each segmental state may depend
not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white

space, etc.
Mismatch between learning objective function and prediction objective
function

— HMM learns ajoint distribution of states and observations P(Y, X), but in a prediction
task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2005-2015 69



Conditional Random Field (CRF)

Conditional distribution over tags X given words w..
The factors and Z are now specific to the sentence w.

p(n,v,p,d,n time, flies, like, an, arrovv) = % (4* 8 * 5 *3 * )
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Conditional Random Field (CRF)

Recall: Shaded nodes in a graphical model are observed

0

v n p d

vi1[(6|3]|4

n 8 4|2 0.1
p|1/3/1]3

d|o.1 8|0

vinp d

v 1/6|3]|4
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pj1/3/1]3
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Conditional Random Field (CRF)

This linear-chain CRF is just like an HMM, except that its factors
are not necessarily probability distributions

Vem (Y Tk ) Ve (Yros Yr—1)

exp(0 - fem(yr, v1))exp(O - fir (i, Yr—1))

PUYTETS




Quiz

p(Y‘X) — T H wem@/k; xk)wtr(yky yk—l)
— ﬂ H exp(H ' fem(yka ajk))eXp(H ' ftr(yka yk—1)>

Multiple Choice: Which model does the above
distribution share the most in common with?

A. Hidden Markov Model
B. Bernoulli Naive Bayes

C. Gaussian Naive Bayes

D. Logistic Regression



Conditional Random Field (CRF)

This linear-chain CRF is just like an HMM, except that its factors
are not necessarily probability distributions

Vem (Y Tk ) Ve (Yros Yr—1)

exp(0 - fem(yr, v1))exp(O - fir (i, Yr—1))

PUYTETS




Conditional Random Field (CRF)

That is the vector X

Because it’s observed, we can condition on it for free
Conditioning is how we converted from the MRF to the CRF
(i.e. when taking a slice of the emission factors)

v n| p|d v n| p|d
116/3/4 V| i1]/6[3]4
84204 |n|8|4]|2]|01
113113 p 11313
018 0|0 dlo.1 8|00

oo B |<
S~ |w
/:>
Q.-"d::5<:/*
OU'1U'1
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;<>
-~




Conditional Random Field (CRF)

* This is the standard linear-chain CRF definition
* It permits rich, overlapping features of the vector X

p(ylx) = L1_[ m (Uks X) Ut (Yk, Y—1,X)

/\

K
H H fem ykv ))exp(@ ’ ftr(yk:?yk:—lax))

Y;
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Conditional Random Field (CRF)

* This is the standard linear-chain CRF definition
* It permits rich, overlapping features of the vector X

(Y‘X Hwem Yk, X )wtr(ykayk 1,X )

‘

K
H H fem ykv ))exp(@ ) ftr(ykivyk:—lax))
() ()

@I%I?I%I%I?

Visual Notation: Usually we
draw a CRF without showing
the variable corresponding to X




Whiteboard

* Forward-backward algorithm
for linear-chain CRF



General CRF

The topology of the
graphical model for a CRF
doesn’t have to be a chain




Standard CRF Parameterization

Po(y|x) = H% Yo X; 0)

Define each potentlal functlon in terms of a
fixed set of feature functions:

wa(YOMX; 9) — eXp(g ' fOé(YO{?X))

Predicted Observed
variables variables



Standard CRF Parameterization

Define each potential function in terms of a
fixed set of feature functions:

wa(YOmX; 9) — eXp(H ' fa(YomX))




Standard CRF Parameterization

Define each potential function in terms of a
fixed set of feature functions:

1%(}’0“ X, 9) — exp(H ' fa(Yom X))




Exact inference for tree-structured factor graphs

BELIEF PROPAGATION

83



Inference for HMMs

* Sum-product BP on an HMM is called the
forward-backward algorithm

* Max-product BP on an HMM is called the
Viterbi algorithm
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Inference for

* Sum-product BP on is called the
forward-backward algorithm
* Max-product BP on is called the

Viterbi algorithm



CRF Tagging by Belief Propagation

Forward algorithm =
message passing
(matrix-vector products)

Backward algorithm =
message passing
(matrix-vector products)

message message
o 0, p p
v 17 vn413,\}_‘/‘ 1V n a| 713
n |2 - Rl ] v ! : nl6l-
OF R O —Or
0 3 1 ~-F--""Talo 3 1
v|0.3
n|o
a|o0.1
find preferred tags

* Forward-backward is a message passing algorithm.

* It’s the simplest case of belief propagation.
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SUPERVISED LEARNING FOR CRFS



What is Training?

That’s easy:

Training = picking good model parameters!

But how do we know if the
model parameters are any “good’”?



Machine
Learning

Log-likelihood Training

Choose model

Choose objective:
Assign high probability to the
things we observe and low
probability to everything else

Compute

derivative by

hand using the 4L(6)
chain rule do;

faiWa) = Y 1o(Yn) fai(Yh)

y/




Machine
Learning

Log-likelihood Training

Choose model

1
Such that derivative in #3is easy 0 (y) — = H GXP(H - f

Choose objective:
Assign high probability to the
things we observe and low
probability to everything else

Compute
derivative by

hand using the L) _
chain rule do;
Compute the

Sy fa,j<ya>—jpe<y;>fa,j<y;>

yeD 0"

marginals by
exact inference

Note that these are factor marginals
which are just the (normalized)
factor beliefs from BP!




Recipe for Gradient-based Learning

. Write down the objective function

. Compute the partial derivatives of the
objective (i.e. gradient, and maybe Hessian)

. Feed objective function and derivatives into
black box

—)

—)

Optimization

. Retrieve optimal parameters from black
box



Optimization Algorithms

What is the black box? = E&=t
* Newton’s method

* Hessian-free /| Quasi-Newton methods
— Conjugate gradient
— L-BFGS

* Stochastic gradient methods

— Stochastic gradient descent (SGD)
— Stochastic meta-descent
— AdaGrad



Stochastic Gradient Descent

e Suppose we have N training examples s.t. f(z) = S0, fi(z).
e This implies that Vf(z) = zzjil V fi(x).

SGD Algorithm:
1. Choose a starting point x.
2. While not converged:
o Choose a step size t.
o Choose 7 so that it sweeps through the training set.
o Update
7D = gR) 419 £;(2)



Whiteboard

RF model
RF data log-likelihood

RF derivatives



Practical Considerations

for Gradient-based Methods
* Overfitting
— L2 regularization
— L1 regularization

— Regularization by early stopping
* For SGD: Sparse updates



“Empirical” Comparison of
Parameter Estimation Methods

Example NLP task: CRF dependency parsing
Suppose: Training time is dominated by inference
Dataset: One million tokens

Inference speed: 1,000 tokens [ sec

=» 0.27 hours per pass through dataset

# passes through - . # hours to
data to converge  converge

GIS 1000+ 270
L-BFGS 100+ 27
SGD 10 ~3




FEATURE ENGINEERING FOR CRFS



Slide adapted from 600.465 - Intro to NLP - J. Eisner

Features

General idea:
* Make a list of interesting substructures.

* The feature f,(x,y) counts tokens of kt"
substructure in (x,y).



Features for tagging ...

N V P D N
Time flies like an arrow

« Count of tag P as the tag for “like”

Weight of this feature is like
log of an emission probability
inan HMM




Features for tagging ...

N V P D N
Time flies like an arrow

« Count of tag P as the tag for “like”
« Count of tag P



Features for tagging ...

N V P D N
Time flies like an arrow
0 1 2 37 4

« Count of tag P as the tag for “like”
« Count of tag P
« Count of tag P in the middle third of the sentence



Features for tagging ...

N Vv

P D N

Time flies like an arrow

Count of tag P as the tag for “like”

Count of tag P
Count of tag P in the midd
Count of tag bigram V P

e third of the sentence

Weight of this feature is like
log of a transition probability
inan HMM




Features for tagging ...

N V P D N
Time flies like an arrow

Count of tag P as the tag for “like”
Count of tag P

Count of tag P in the middle third of the sentence
Count of tag bigram V P

Count of tag bigram V P followed by “an

b



Features for tagging ...

N Vv P D N

Time flies like an arrow

Count of tag P as the tag for “like”
Count of tag P
Count of tag P in the middle third of the sentence

Count of tag
Count of tag
Count of tag

pigram V P
bigram V P followed by “an

»

vigram V P where P is the tag for “like”



Features for tagging ...

N Vv P D N

Time flies like an arrow

Count of tag P as the tag for “like”
Count of tag P
Count of tag P in the middle third of the sentence

Count of tag
Count of tag
Count of tag
Count of tag

pigram V P
bigram V P followed by “an
vigram V P where P is the tag for “like”

»

nigram V P where both words are lowercase



Features for tagging ...

N V P D N
Time flies like an arrow

« Count of tag trigram N V P?

— A bigram tagger can only consider within-bigram features:
only look at 2 adjacent blue tags (plus arbitrary red context).

— So here we need a trigram tagger, which is slower.
— The forward-backward states would remember two previous tags.

@ P \

We take this arc once per N V P triple,
so its weight is the total weight of
the features that fire on that triple.




Features for tagging ...

N V P D N
Time flies like an arrow

« Count of tag trigram N V P?

— A bigram tagger can only consider within-bigram features:
only look at 2 adjacent blue tags (plus arbitrary red context).

— So here we need a trigram tagger, which is slower.

« Count of “post-verbal” nouns? ( “discontinuous bigram” V
N)

— An n-gram tagger can only look at a narrow window.

— Here we need a fancier model (finite state machine) whose states

rg/nember WhetherPthere was a verlbln theeftt conteﬁ.

N Vv V..P vV..D V... N

post-verbal post-verbal
DD hiaram N N hiaram



How might you come up with the features
that you will use to score (x,y)?

1. Think of some attributes ( “basic features” ) that you can
compute at each position in (Xx,y).

For position i in a tagging, these might include:
— Full name of tag i
—  First letter of tag i (will be “N” for both “NN” and “NNS” )
—  Full name of tag i-1 (possibly BOS); similarly tag i+1 (possibly EOS)
—  Full name of word i
—  Last 2 chars of word i (will be “ed” for most past-tense verbs)
—  First 4 chars of word i (why would this help?)
— “Shape” of word i (lowercase/capitalized/all caps/numeric/...)

—  Whether word i is part of a known city name listed in a
“gazetteer”

—  Whether word i appears in thesaurus entry e (one attribute per €)
—  Whether i is in the middle third of the sentence




How might you come up with the features
that you will use to score (x,y)?

1. Think of some attributes ( “basic features” ) that you can
compute at each position in (Xx,y).

2.  Now conjoin them into various “feature templates.”

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At each position of (x,y), exactly one of the many
template? features will fire:

N V P D N
Time flies like an arrow

At i=1, we see an instance of “template7=(BOS,N,-es)”
so we add one copy of that feature’ s weight to score(x,y)



How might you come up with the features
that you will use to score (x,y)?

1. Think of some attributes ( “basic features” ) that you can
compute at each position in (Xx,y).

2.  Now conjoin them into various “feature templates.”

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At each position of (x,y), exactly one of the many
template? features will fire:

N V P D N
Time flies like an arrow

At i=2, we see an instance of “template7=(N,V,ke)”
so we add one copy of that feature’ s weight to score(x,y)



How might you come up with the features
that you will use to score (x,y)?

1. Think of some attributes ( “basic features” ) that you can
compute at each position in (Xx,y).

2.  Now conjoin them into various “feature templates.”

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At each position of (x,y), exactly one of the many
template? features will fire:

N V P D N
Time flies like an arrow

At i=3, we see an instance of “template7=(N,V,-an)”
so we add one copy of that feature’ s weight to score(x,y)



How might you come up with the features
that you will use to score (x,y)?

1. Think of some attributes ( “basic features” ) that you can
compute at each position in (Xx,y).

2.  Now conjoin them into various “feature templates.”

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At each position of (x,y), exactly one of the many
template? features will fire:

N V P D N
Time flies like an arrow

At i=4, we see an instance of “template7=(P,D,-ow)”
so we add one copy of that feature’ s weight to score(x,y)



How might you come up with the features
that you will use to score (x,y)?

1. Think of some attributes ( “basic features” ) that you can
compute at each position in (Xx,y).

2.  Now conjoin them into various “feature templates.”

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At each position of (x,y), exactly one of the many
template? features will fire:

N V P D N
Time flies like an arrow

At i=5, we see an instance of “template7=(D,N,-)”
so we add one copy of that feature’ s weight to score(x,y)



How might you come up with the features
that you will use to score (x,y)?

1. Think of some attributes ( “basic features” ) that you can
compute at each position in (Xx,y).

2.  Now conjoin them into various “feature templates.”

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).
This template gives rise to many features, e.q.:

score(X,y) = ...

+ O “template7=(P,D,-ow)” ] * count( “template7=(P,D,-
OW)” )

+ O “template7=(D,D,-xx)” ] * count( “template7=(D,D,-
XX » )

+ ...

With a handful of feature templates and a large vocabulary, you
can easily end up with millions of features.



How might you come up with the features
that you will use to score (x,y)?

1. Think of some attributes ( “basic features” ) that you can
compute at each position in (x,Y).

2. Now conjoin them into various “feature templates.”

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

Note: Every template should mention at least some blue.

— Given an input x, a feature that only looks at red will contribute
the same weight to score(x,y.) and score(x,y-).

— Soitcan’ thelp you choose between outputs

4



HMMS VS CRFS



Generative vs. Discriminative

Liang & Jordan (ICML
2008) compares HMM
and CRF with identical
features

Dataset 1: (Real)

— WSJ Penn Treebank
(38K train, 5.5K test)

— 45 part-of-speech tags
Dataset 2: (Artificial)

— Synthetic data
generated from HMM
learned on Dataset 1
(1K train, 1K test)

Evaluation Metric:
Accuracy

98%
96%
94%
92%
90%
88%
86%
84%

95.60%
93.50%

Dataset 1

89.80%
87.90%

Dataset 2

HMM
CRF



CRFs: some empirical results

* Parts of Speech tagging

model | error  oov error
HMM | 5.69%  45.99%
MEMM | 6.37%  54.61%
CRF | 5.55%  48.05%
MEMMT™ | 481%  26.99%
CREFT | 427%  23.76%

T Using spelling features
— Using same set of features: HMM >=< CRF > MEMM

— HR}\T\% additional overlapping features: CRF* > MEMM* >>



MBR DECODING



Minimum Bayes Risk Decoding

* Suppose we given a loss function /(y’, y) and are
asked for a single tagging

* How should we choose just one from our probability
distribution p(y|x)?

* A minimum Bayes risk (MBR) decoder A(x) returns
the variable assignment with minimum expected loss
under the model’s distribution

A

he (.’,E) — argmin 43y~p9(-|:13) [f(y, y)]
Y

argmin Y pe(y | )((,y)
£ Yy



Minimum Bayes Risk Decoding
ho(w) = argmin By, o) (5 ¥)

Consider some example loss functions:




Minimum Bayes Risk Decoding

he(x) = argmin Eyp,(.x)[{(Y, Y)]
Yy

Consider some example loss functions:

The Hamming loss corresponds to accuracy and returns the number

of incorrect variable assignments:
v

Uy,y) = Z(l — I(9i, y:))

i=1
The MBR decoder is:

yi = he(x); = arginax pe(Yi | )
Yi

This decomposes across variables and requires the variable
marginals.



SUMMARY



Summary: Learning and Inference

For discrete variables:

Learning Marginal MAP
Inference Inference
HMM MLE by counting Forward- Viterbi
backward
Linear-chain | Gradient based - doesn’t | Forward- Viterbi
CRF decompose because of backward
Z(x) and requires
marginal inference
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Summary: Models

Discriminative

Classification

Logistic
Regression

Structured
Prediction

CRF
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