Machine Learning

10-701, Fall 2016

Inference and Learning in
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Reading: Chap. 8, C.B book
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Inference and Learning - -
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We now have compact representations of probability
distributions: BN P(¥. -~x) = i PO (X g, )
NS,

A BN M describes a unique probability distribution P

Typical tasks: K‘Aj l Kiti )
Task 1: How do we answer queries about P? PCIC{ =« )

We use inference as a name for the process of computing answers to such
queries

Task 2: How do we estimate a plausible model M from data D?
—_—

I.  We use learning as a name for the process of obtaining point estimate of M.
ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of M
need to do inference to impute the missing data.
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Approaches to inference SR
—_

e Exact inference algorithms \3]

e The elimination algorithm
e Belief propagation
e The junction tree algorithms  (but will not cover in detail here)

e Approximate inference techniques / (KTUQ)
Y
e Variational algorithms V,“'
e Stochastic simulation / sampling methods —

e Markov chain Monte Carlo methods
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PCA (1) —PA.) seee

- - - - - . "(H EE:.
Marginalization and Elimination =

What is the probability that hawks are leaving given that the grass condition is poor?

Query: P(h)  P()=333 > > > > P@b.cd.ef.g.h

- o a naive summation needs to
V enumerate over an exponential
- number of terms
e By BN decomposition, we get

- ZZZZZZZB(/MP(C!@P@ la)P(e|c.d)P(f Ia)P(g®

—g—Ff e d ¢ b
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Variable Elimination :

. . v (n --- H
Query.\P(A m) ) (B A

e Need to eliminate: B,C,D,E,F.6,H Lé

e Initial factors: e 0

P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(ge)

e Choose an elimination order:(H,G,F,E,D,C,B

o Step 1:

e Conditioning (fix the evidence node (i.e., h) on its observed value (i.e., h)):
'\,\

mye.fy=ph=hlef)

e This\step is isomorphi

0 a marginalization step:

=2 nhle. foh=h)

h
—_\—-
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Example: Variable Elimination 4+
e Query: P(A|h)
e Need to eliminate: B,C,D,E.F,G 0 o
e |nitial factors: / Q 0
2= P(a)P(b)P(c|b)P(d d)P(f hie, f
LU(// (@)P(D)P(c|b)P(d[a)P(e|c,d)P(T [a)P(g|e)P(hle, T) e e
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P ym, (e, f)
& D
e Step 2: Eliminate &
e compute
m,(e)=> p(gle)=1
— g - B
= P(@)P(b)P(c|b)P(d |a)P(e|c,d)P(f [a)m,(e)m, (e, T) ) Q)
=P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m,(e, T) (EJ £
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Example: Variable Elimination .
e Query: P(A |h)
e Need to eliminate: B,C,D,@ o o
e |nitial factors: Q 0
P(@)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, ) e e

= P(@P(()P(c|b)P(d|a)P(elc.d)P(f |a)P(g]|e)m,(e, f)
= P(a)P(b)P(c|b)P(d | a)P(e| C,Zp(f e ), &
e Step 3: Eliminate F

e compute
’ mf\(e,a):Zp(f la)m, (e, f)
f

= P(a)P(b)P(c|b)P(d |a)P(e|c,d)m,(a,e)
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Example: Variable Elimination .
e Query: P(A |h)
e Need to eliminate: B,C, 0 o
e Initial factors: e 0
P(@)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) e 6
= P(@)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e, f)
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, f) &
= P(a)P(b)P(c|b)P(d |a)Pé| c,d)m, (@)
e Step 4: Eliminate E
° t
PP m@c,d)=Y pelc,d)m, (a.e)
e ® @
= P(a)P(b)P(c|b)P(d | &m, (a,c,d G.y
(E
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Example: Variable Elimination :
e Query: P(A |h)
e Need to eliminate: B,C,D o o
e Initial factors: e 0
P@)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h|e, f) e 0
= P(@)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e, f)
= P(@)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, f) e 0
= P(@)P(b)P(c|b)P(d |a)P(e|c,d)m,(a,e)
= P(@)P(b)P(c|b)P(d |a)m,(a,c,d)
e Step 5: Eliminate D (B) (3

e compute md (a, C) — Z p(d | a)me (a, C, d) ()
d

= P(a)P(b)P(c|d)m,(a,c)

© Eric Xing @ CMU, 2006-2016 9



(YY)
0000
'YXX
| [ | [ | | ::.
Example: Variable Elimination .
e Query: P(A |h)
e Need to eliminate: B,C 0 o
e Initial factors: e 0
P(@)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h|e, f) e 6
= P(@)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)P(g|e)m,(e, f)
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)m,(e, T) (&) CH)
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)m, (a,e)
= P(a)P(b)P(c|d)P(d|a)m,(a,c,d)
= P(a)P(b)P(c|d)m,(a,c)
e Step 6: Eliminate C

e compute m. (a, b) — Z p(C ‘ b)md (a, C)

= P(a)P(b)P(c|d)m,(a,c)

© Eric Xing @ CMU, 2006-2016 10



Example: Variable Elimination -
e Query: P(A |h)
e Need to eliminate: B o o
<« W

e Initialfaetors:
P@)P(b)P(c|d)P(d |a)P(e|c,d)P(f|a)P(g|e)P(h|e, f (E) (F

= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f|a)P(g|e)m,(e, f)
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f|a)m,(e, f) e m
= P(a)P(b)P(c|d)P(d la)P(elc 8im. (a.e
= P@POYP(C | d)pe Q@ c
— P(a)P(b)P(c| dgiuaycy
— P(a)P(b)f,(a.by

e Step 7: Eliminate B @

e compute m, (a) — Z p(b)mc (a, b)
- b
Lp@my (@
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Example: Variable Elimination :
e Query: P(A |h) : @/@ w\. Le
e Need to eliminate: B v, \\)& C ) (B> (A0
O '
e Initial factors: V () ©
P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h]e, ) G
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e, f)
= P(2)P(b)P(c| d)P(d |a)P(e|c,d)P(f |a)m, (e, f) (&) (A

= P(@)P(b)P(c|d)P(d|a)P(e|c,d)m, (a,e)
= P(a)P(b)P(c|d)P(d |a)m (a,c,d)

= P(@)P(b)P(c|d)m,(a,c)

= P(a)P(b)m_(a,b)

= P(@m,(a)

e Step 8: Wrap-up p(a, h)= @ p(h) = Z p(aym,(a)
. paliy P@m@>
> p(@m,(a)

© Eric Xing @ CMU, 2006-2016
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Complexity of variable 1
elimination -

e Suppose in one elimination step we compute

m (yla 9yk Zm (X yla ayk)

m (X yl» 9yk) Hm(X9YC)
This requires '
o ko\Val(X)\o:j[Val(Yci)\ multiplications

— For each value of x, yj, ..., y,, we do k multiplications
Val()| e [ T|Val(¥.,)| additions

—  For each value of@ve do [Val(X)| additions

Complexity- onential in number of variables in the
intwm:@,tﬂactb

© Eric Xing @ CMU, 2006-2016 13



Elimination Clique 8

e |nduced dependency during marginalization is captured in
elimination cliques

e Summation <-> elimination
e Intermediate term <-> elimination clique

d)P(f|a) P(gle) P(hle, 1
el d)P(fla) P( glew)

DP(fla)ouelen

D) dela.e

IS
o

R 2
ae,

e Can this lead to an generic CED
inference algorithm? @

© Eric Xing @ CMU, 2006-2016
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From Elimination to Message
Passing -

e Elimination = message passing on a clique tree

e Messages can be reused

© Eric Xing @ CMU, 2006-2016 15



From Elimination to Message
Passing -

e Elimination = message passing on a clique tree
e Another query ...

e Messages m.and m, are reused, others need to be recomputed

© Eric Xing @ CMU, 2006-2016 16



From elimination to message
passing

e Recall ELIMINATION algorithm:

e Choose an ordering £ in which query node f is the final node
e Place all potentials on an active list

e Eliminate node i by removing all potentials containing i, take sum/product over x;.
e Place the resultant factor back on the list

e Fora TREE graph:

Choose query node f as the root of the tree
e View tree as a directed tree with edges pointing towards from f
e Elimination ordering based on depth-first traversal
e Elimination of each node can be considered as
message-passing (or Belief Propagation) directly
along tree branches, rather than on some transformed graphs
- thus, we can use the tree itself as a data-structure to do general inference!!

© Eric Xing @ CMU, 2006-2016




Message passing for trees o

Let m;(x;) denote the factor resulting
from ellmlnatlng varlables from bellow

This is reminiscent of a message sent
from j toi.

Z Y(x;)Y(zi, z5) H mi;(x;)

T keEN(j)\i

p(xy) o P(xy) H mf,f )

eeN(f
m;;(X;) represents a "belief” of x; from x;!

© Eric Xing @ CMU, 2006-2016 18



e Elimination on trees is equivalent to message passing along
tree branches!

ﬁmﬂ(xi) = Z(TP(%’W(%%) 11 mkj(%))

© Eric Xing @ CMU, 2006-2016 19



The message passing protocol:

Sk K

e A two-pass algorithm:

M1 (X 1)@ @ m12(X2)

mo3(X3)

© Eric Xing @ CMU, 2006-2016 20



Belief Propagation (SP-algorithm): | 382:
Sequential implementation -

Sum-Propuct(T, F)

EVIDENCE(E)

f = CHOOSEROOT(V)

for e € N(f)
CoLLECT(f, €)

for e € N(f)
DISTRIBUTE(f, €)

forieV
COMPUTEMARGINAL(%)

EVIDENCE(E)
fori e E
YE (z;) = Y(z;)6(zi, Ti)
fori ¢ E
¥E (z;) = ¥(x;)
COLLECT(%, j)
for k € N(j)\i
C()LLECT(} k)
SENDMESSAGE(7, ¢)

DISTRIBUTE(%, j)
SENDMESSAGE(1, j)
for k € N(j)\i
DISTRIBUTE(7, k)

SENDMESSAGE(J, 1)

Trbji(;ﬂi)ZZ(’lZ)E(:ﬂj)ﬂ’(:ﬂ@,;ﬂj) H myj(xj))
j keN()\i

T

COMPLTEMARGINAL( /)
p(x;) om/) H mi(x;)
JEN(3) © Eric Xing @ CMU, 2006-2016 21




Inference on general GM > o

e Now, what if the GM is not a tree-like graph?

e Can we still directly run message é C/

message-passing protocol along its edges? (

e For non-trees, we do not have the guarantee that message-passing
will be consistent! Z)

e Then what?

e Construct a graph data-structure from P that has a tree structure, and run message-passing
on it!

—> Junction tree algorithm

© Eric Xing @ CMU, 2006-2016 22



Summary: Exact Inference -

e The simple Eliminate algorithm captures the key algorithmic
Operation underlying probabilistic inference:

--- That of taking a sum over product of potential functions

e The computational complexity of the Eliminate algorithm can be
reduced to purely graph-theoretic considerations.

e This graph interpretation will also provide hints about how to design
improved inference algorithms

e \What can we say about the overall computational complexity of the
algorithm? In particular, how can we control the "size" of the
summands that appear in the sequence of summation operation.

© Eric Xing @ CMU, 2006-2016 23



Approaches to inference

e Exact inference algorithms

e The elimination algorithm
e Belief propagation
e The junction tree algorithms  (but will not cover in detail here)

e Approximate inference techniques

e Variational algorithms
e Stochastic simulation / sampling methods
e Markov chain Monte Carlo methods

© Eric Xing @ CMU, 2006-2016
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Ising/Potts model

© Eric Xing @ CMU, 2006-2016

25



Monte Carlo methods

Draw random samples from the desired distribution

Yield a stochastic representation of a complex distribution

marginals and other expections can be approximated using sample-based
averages

1 N .
E[f(X)]=NZf(x( )
t=1

Asymptotically exact and easy to apply to arbitrary models

Challenges:

how to draw samples from a given dist. (not all distributions can be trivially
sampled)?

how to make better use of the samples (not all sample are useful, or eqally
useful, see an example later)?

how to know we've sampled enough?

© Eric Xing @ CMU, 2006-2016
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Example: naive sampling S
e Construct samples according to probabilities given in a BN.
Eartiauake) EO | BO | A0 | MO | Jo
EO BO A0 MO Jo
B EO | BO | A0 MO J1
Fl M
F| o EO BO A0 MO Jo
EO BO A0 MO Jo
T a—— = BO A0 MO Jo
L Pl o E1 BO A1 M1 J1
Alarm example: (Choose the right sampling EO BO AO MO Jo
sequence)
1) Sampling:P(B)=<0.001, 0.999> suppose it is false, EO BO AO MO JO
B0. Same for E0. P(A|B0, E0)=<0.001, 0.999>
suppose it is false... EO BO A0 MO JO

2) Frequency counting: In the samples right,
P(J|A0)=P(J,A0)/P(A0)=<1/9, 8/9>

© Eric Xing @ CMU, 2006-2016




Example: naive sampling

e Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling
sequence)

3) what if we want to compute P(J|A1) ?

4) what if we want to compute P(J|B1) ?
P(J|A1)=P(J,B1)/P(B1) can not be defined.

For a model with hundreds or more
variables, rare events will be very hard to
garner evough samples even after a long
time or sampling ...

© Eric Xing @ CMU, 2006-2016
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EO BO AO MO JO
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EO BO AO MO JO




Markov chain Monte Carlo 44
(MCMC) oo

e Construct a Markov chain whose stationary distribution is the
target density = P(X]e).

e Run for T samples (burn-in time) until the chain
converges/mixes/reaches stationary distribution.

e Then collect M (correlated) samples x,, .
e Key issues:

e Designing proposals so that the chain mixes rapidly.
e Diagnosing convergence.

© Eric Xing @ CMU, 2006-2016



Markov Chains oo

e Definition:
e Given an n-dimensional state space
e Random vector X = (x,...,X,)
e x®=x attime-stept
e x® transitions to x(*") with prob
P(x®D | xO,, . xM) = T(x®) | x) = T(xO 2> xt1)
e Homogenous: chain determined by state x©, fixed transition
kernel Q (rows sum to 1)

e Equilibrium: z(x) is a stationary (equilibrium) distribution if
(x') = Z _2(x) Q(x>x").

i.e., is a left eigenvector of the transition matrix 7' = 7'Q.

025 0 075
(0.2 05 03)=(02 05 03] 0 07 03
05 05 O
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Gibbs sampling o

e The transition matrix updates each node one at a time using
the following proposal:

Q(x;,x;) = (x:',x;))= p(x:'|x_;)

e ltis efficient since p(X; |x_;) only depends on the values in X’s Markov
blanket

© Eric Xing @ CMU, 2006-2016



Gibbs sampling

e Gibbs sampling is an MCMC algorithm that is especially
appropriate for inference in graphical models.

e The procedue

e we have variable set X={x;, x,, X3,... X} for a GM

] oo

e at each step one of the variables X; is selected (at random or according
to some fixed sequences), denote the remaining variables as X ;, and its
current value as x_{t1)

Using the "alarm network" as an example, say at time t we choose X, and we
denote the current value assignments of the remaining variables, X ¢,

i i -1 -1 -1 -1 -1
obtained from previous samples, as x L™ = {x,f Lox S x D x >}

e the conditonal distribution p(X;| x (1) is computed
e avalue x{® is sampled from this distribution

e the sample x?) replaces the previous sampled value of X;in X.

e x® = xED U x®
© Eric Xing @ CMU, 2006-2016



Markov Blanket oo

—
e Markov Blanket in BN

e A variable is independent from
others, given its parents, children
and children‘s parents (d-
separation).

e MB in MRF
e A variable is independent all its pie it '/‘»
non-neighbors, given all its direct
neighbors.

= p(Xil X)= p(Xil MB(X}))

e Gibbs sampling

e Every step, choose one variable
and sample it by P(X|MB(X)) based
on previous sample.

© Eric Xing @ CMU, 2006-2016



Gibbs sampling of the alarm T
network .

e To calculate P(J|B1,M1)

e start
e Evidences are B1, M1, variables
T are A, E, J.
11:' gi e Choose next variable as A
Fl e Sample A by

P(A|MB(A))=P(A|B1, EO0, M1, J1)
suppose to be false.

e (B1, EO, A, M1, J1)
T T] 70 e Choose next random variable
i as E, sample E~P(E|B1,A0)

MB(A)={B, E, J, M} .
MB(E)={A, B}

n

© Eric Xing @ CMU, 2006-2016



Example

First 100 iterations of sample3

0.2

1
0 10 20 30 40 A0 &0 70
lteration
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Example:

Fi1 | BT, M1
1
0.9 b@?ﬁ% = —
0ar
0.7+
06F-
05-
0.4+
03k
07 - samplel
sample2
01k- sampled
|:| 1 1 1 1 1 1 1
1] 0.5 1 1.5 2 25 3 3.5
[teration . 1EI4
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Example

0.9
0.
ar

0B

0ar

0.4k

0.3

0.z

0.1

a

samplel
samplel
sample3

e e e e e

P ET, MO
1 1 1 1 1 1
] 1 2 3 4 g 5
[teration
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253
Example .
P(J1 | B1 ,M1) - 090 Sibbs sampling of alarm network
P(J1| E1,M0) = 0.14
D.B'W"\AHM .
PE1]J1) =001 [
P(E1|M1) =0.04 ol
P(E1|M1,J1)=017  ost ——FutEnn
05k E— F'I:E'IIJ“Ij;
— P{E1M1)
04 - PETIMT J1)
0.2 rl‘l
Ty s —

© Eric Xing @ CMU, 2006-2016
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The of simulation -
e Run several chains e Re-parameterize (to get
e Start at over-dispersed approx. indep.)
points e Re-block (Gibbs)

e Monitor the log lik.

e Monitor the serial
correlations

e Monitor acceptance ratios

e Collapse (int. over other
pars.)

e Run with troubled pars.
fixed at reasonable vals.

© Eric Xing @ CMU, 2006-2016
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Learning Graphical Models o
The goal:
Given set of independent samples (assignments of
random variables), find the best (the most likely?)
Bayesian Network (both DAG and CPDs)
O 4 R (_J_
D D SR
(B,E,A,C,R)=(T,F,F,T,F) 5 5 g(: lg'f)
(B,E,A,C,R)=(T,F,T,T,F) —| = '
e b|lo2 o038
"""" _ e b|os o1
(B.EACREELLLF) . |2 Bloo1 o099

© Eric Xing @ CMU, 2006-2016 20



Learning Graphical Models T
(cont.) os

e Scenarios:

e completely observed GMs
directed
undirected

e partially observed GMs
directed
undirected (an open research topic)

e Estimation principles:
e Maximal likelihood estimation (MLE)
e Bayesian estimation
e Maximal conditional likelihood
e Maximal "Margin"

e We use learning as a name for the process of estimating the
parameters, and in some cases, the topology of the network, from
data.

© Eric Xing @ CMU, 2006-2016 41



MLE for general BN parameters :

e If we assume the parameters for each CPD are globally
independent, and all nodes are fully observed, then the log-
likelihood function decomposes into a sum of local terms, one
per node:

/(‘9: D) - lOg p(D | 9) - IOgH H p(Xn,i ‘ Xn,;zi aei) Z[ log p(Xn,i ‘ Xn,;zi 99i)

RG]
0 1

0
0 1 | ) ' \
0 Xs | 7-

X2
| (X °
0
X
(x2 |
0 1
0 .

X3 1

W X,=1,X;=0
D XZ=O,X5=1
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Example: decomposable T
likelihood of a directed model e

e Consider the distribution defined by the directed acyclic GM:

KO p(x\9>=p(xl\Hl)p(lexl,é’z)p(xgle,é’g)p(x4|xz,X®

= D by tte)t blletg) -

e This is exactly like learning four separate small BNs, each of
which consists of a node and its paretits:

i

© Eric Xing @ CMU, 2006-2016 43



E.g.: MLE for BNs with tabular i+
CPDs os

e Assume each CPD is represented as a table (multinomial)

where def _ S
Oi = P(X; =] X, =k) Lo
1
Note that in case of multiple parents, X _will have a composite “ff] ——
state, and the CPD will be a high-dimensional table xﬁ?

The sufficient statistics are counts of family configurations
def
_ Joyk
nijk - Zn Xn,ixn,ﬁi

e The log-likelihood is £(6:D)=log [ ;i = > ny logb,
i,j.k

i,j.k
e Using a Lagrange multiplier " n.
— 1)
to enforce ) . 6., =1 we get: ik —
2% ® T 2
1]k

© Eric Xing @ CMU, 2006-2016 44



Definition of HMM ot

e Transition probabilities between 1 {l/Z—\)
Y1 >\3/2 Y3 e Y7
any two states ] 4]

A Y

p(yt_1|yt1:1) Q; | / X1 X5 X3 @

p(yt|yt1—1)~ ultinomial a,l,alz, ,M)‘v’lel

e Start probabilities

p(y,) ~ ultmomlal 721,%2, )

e Emission probabilities associated with each state

p(x |y, =D~ Multinomial(biﬂl,bijz,...,bi’K ),Vi el.

or in general: p(x |y =) ~f(-|6),Viel
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Supervised ML estimation .

o Given x = x,...xy for which the true state path y = y,...yyis

Known,
£(0;x,y) =log p(x,y) = IOgH(p(yn 1)1_[ P(Yor | Y- 1)1_[ P(Xp | Xnt)j
e Define:
Ajj = # times state transition i—j occurs in'y
B, = # times state i in y emits kin x

e We can show that the maximum likelihood parameters @ are:

aM — #(U—J) _ Zn ZI:z Yr:,t—l)/nj,t _ A'J
i . T i
RS 35 3D W3

b/iML:#(I _)k)zznzrﬂyr:,txnk,t _ Bik
| #(’ _).) Zn 2-:1Yrj,t Zkaik'

e Ifyis continuous, we can treat {( ML,ynt) t=1.T,n=1: N}as NxT
observations of, e.g., a Gaussian, and apply Iearnlng rules for Gaussian .
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What if some nodes are not T
observed? ot

e Consider the distribution defined by the directed acyclic GM:

P(X[0) = p(X; | 6)P(X; | Xp,61) P(Xs | X, O3) P(Xy | X, X3, 0,)

2 (G Y. Ay

e Need to compute p(xy|xy) = inference
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e Assume each CPD is represented as a table (multinomial)
where def _ 0"
Qijk = p(xi:”xﬂi =k) xg?
Note that in case of multiple parents, Xﬁwill have a composite : ==
state, and the CPD will be a high-dimensional table X"
The sufficient statistics are counts of family configurations "
def
ik
Nije = Zn<xr{,ixn,ﬁi>
. . . n;;
e The log-likelihood is £(6:D)=log [ [ 6 = D ;. logdy,
i.j .k i.j ok
e Using a Lagrange multiplier N
Oy = —X—
to enforce ZJ. 0, =1, we get: i Z N
i,k
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Summary

A GMM describes a unique probability distribution P
Typical tasks:

Task 1: How do we answer queries about P?

We use inference as a name for the process of computing answers to such
queries

Task 2: How do we estimate a plausible model M from data D?

I.  We use learning as a name for the process of obtaining point estimate of M.
ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.

lii. When not all variables are observable, even computing point estimate of M
need to do inference to impute the missing data.
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