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Inference and Learning
 We now have compact representations of probability 

distributions:  BN

 A BN M describes a unique probability distribution P

 Typical tasks:

 Task 1: How do we answer queries about P?

 We use inference as a name for the process of computing answers to such 
queries

 Task 2: How do we estimate a plausible model M from data D?

i. We use learning as a name for the process of obtaining point estimate of M.

ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of M 
need to do inference to impute the missing data.
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Approaches to inference
 Exact inference algorithms

 The elimination algorithm
 Belief propagation
 The junction tree algorithms      (but will not cover in detail here)

 Approximate inference techniques

 Variational algorithms 
 Stochastic simulation / sampling methods
 Markov chain Monte Carlo methods
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 A food web:

Query: P(h)

 By BN decomposition, we get

Marginalization and Elimination


g f e d c b a

hgfedcbaPhP ),,,,,,,()(

B A

DC

E F

G H

a naïve summation needs to 
enumerate over an exponential 
number of  terms

What is the probability that hawks are leaving given that the grass condition is poor?
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 Query: P(A |h)
 Need to eliminate: B,C,D,E,F,G,H

 Initial factors:

 Choose an elimination order: H,G,F,E,D,C,B

 Step 1: 
 Conditioning (fix the evidence node (i.e., h) on its observed value (i.e.,   )):

 This step is isomorphic to a marginalization step:
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 Query: P(A|h)
 Need to eliminate: B,C,D,E,F,G

 Initial factors:

 Step 2: Eliminate G
 compute

B A

DC

E F

G H
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Example: Variable Elimination
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 Query: P(A |h)
 Need to eliminate: B,C,D,E,F

 Initial factors:

 Step 3: Eliminate F
 compute

B A

DC

E F

G H

Example: Variable Elimination
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B A

DC

E

 Query: P(A |h)
 Need to eliminate: B,C,D,E

 Initial factors:

 Step 4: Eliminate E
 compute

B A

DC

E F

G H

Example: Variable Elimination
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 Query: P(A |h)
 Need to eliminate: B,C,D

 Initial factors:

 Step 5: Eliminate D
 compute

B A

DC

E F

G H

Example: Variable Elimination
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 Query: P(A |h)
 Need to eliminate: B,C

 Initial factors:

 Step 6: Eliminate C
 compute

B A

DC

E F

G H

Example: Variable Elimination
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 Query: P(A |h)
 Need to eliminate: B

 Initial factors:

 Step 7: Eliminate B
 compute

B A

DC

E F

G H

Example: Variable Elimination
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 Query: P(A |h)
 Need to eliminate: B

 Initial factors:

 Step 8: Wrap-up

B A
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E F
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Example: Variable Elimination
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 Suppose in one elimination step we compute

This requires 
 multiplications

─ For each value of x, y1, …, yk, we do k multiplications

 additions

─ For each value of y1, …, yk , we do |Val(X)| additions

Complexity is exponential in number of variables in the 
intermediate factor
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Complexity of variable 
elimination
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 Induced dependency during marginalization is captured in 
elimination cliques
 Summation <-> elimination
 Intermediate term <-> elimination clique

 Can this lead to an generic 
inference algorithm?

Elimination Clique
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 Elimination  message passing on a clique tree

 Messages can be reused
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From Elimination to Message 
Passing
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From Elimination to Message 
Passing

 Elimination  message passing on a clique tree
 Another query ...

 Messages mf and mh are reused, others need to be recomputed
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From elimination to message 
passing
 Recall ELIMINATION algorithm:

 Choose an ordering Z in which query node f is the final node
 Place all potentials on an active list
 Eliminate node i by removing all potentials containing i, take sum/product over xi.
 Place the resultant factor back on the list

 For a TREE graph:
 Choose query node f as the root of the tree
 View tree as a directed tree with edges pointing towards from f
 Elimination ordering based on depth-first traversal
 Elimination of each node can be considered as 

message-passing (or Belief Propagation) directly 
along tree branches, rather than on some transformed graphs

 thus, we can use the tree itself as a data-structure to do general inference!!
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k l

Message passing for trees

Let mij(xi) denote the factor resulting 
from eliminating variables from bellow 
up to i, which is a function of xi:

This is reminiscent of a message sent 
from j to i.

mij(xi) represents a "belief" of xi from xj!
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 Elimination on trees is equivalent to message passing along 
tree branches!

f

i

j

k l
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m24(X 4)

X1

X2

X3
X4

The message passing protocol:
 A two-pass algorithm:

m21(X 1)

m32(X 2) m42(X 2)

m12(X 2)

m23(X 3)
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Belief Propagation (SP-algorithm): 
Sequential implementation
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Inference on general GM
 Now, what if the GM is not a tree-like graph?

 Can we still directly run message 
message-passing protocol along its edges?

 For non-trees, we do not have the guarantee that message-passing 
will be consistent!

 Then what?
 Construct a graph data-structure from P that has a tree structure, and run message-passing 

on it!

 Junction tree algorithm
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Summary: Exact Inference
 The simple Eliminate algorithm captures the key algorithmic 

Operation underlying probabilistic inference:
--- That of taking a sum over product of potential functions

 The computational complexity of the Eliminate algorithm can be 
reduced to purely graph-theoretic considerations. 

 This graph interpretation will also provide hints about how to design 
improved inference algorithms 

 What can we say about the overall computational complexity of the 
algorithm? In particular, how can we control the "size" of the 
summands that appear in the sequence of summation operation. 
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Approaches to inference
 Exact inference algorithms

 The elimination algorithm
 Belief propagation
 The junction tree algorithms      (but will not cover in detail here)

 Approximate inference techniques

 Variational algorithms 
 Stochastic simulation / sampling methods
 Markov chain Monte Carlo methods
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Monte Carlo methods
 Draw random samples from the desired distribution 

 Yield a stochastic representation of a complex distribution
 marginals and other expections can be approximated using sample-based 

averages

 Asymptotically exact and easy to apply to arbitrary models

 Challenges:
 how to draw samples from a given dist. (not all distributions can be trivially 

sampled)?

 how to make better use of the samples (not all sample are useful, or eqally 
useful, see an example later)?

 how to know we've sampled enough?
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Example: naive sampling
 Construct samples according to probabilities given in a BN.
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Alarm example: (Choose the right sampling 
sequence)
1) Sampling:P(B)=<0.001, 0.999> suppose it is false, 
B0. Same for E0. P(A|B0, E0)=<0.001, 0.999> 
suppose it is false... 
2) Frequency counting: In the samples right, 
P(J|A0)=P(J,A0)/P(A0)=<1/9, 8/9>.

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E1 B0 A1 M1 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E1 B0 A1 M1 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0



Example: naive sampling
 Construct samples according to probabilities given in a BN.
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Alarm example: (Choose the right sampling 
sequence)

3) what if we want to compute P(J|A1) ? 
we have only one sample ...
P(J|A1)=P(J,A1)/P(A1)=<0, 1>.

4) what if we want to compute P(J|B1) ? 
No such sample available!
P(J|A1)=P(J,B1)/P(B1) can not be defined.

For a model with hundreds or more 
variables, rare events will be very hard to 
garner evough samples even after a long 
time or sampling ...

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E1 B0 A1 M1 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0



Markov chain Monte Carlo 
(MCMC)
 Construct a Markov chain whose stationary distribution is the 

target density  = P(X|e).
 Run for T samples (burn-in time) until the chain       

converges/mixes/reaches stationary distribution.
 Then collect M (correlated) samples xm .
 Key issues:

 Designing proposals so that the chain mixes rapidly.
 Diagnosing convergence.
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Markov Chains
 Definition:

 Given an n-dimensional state space
 Random vector X = (x1,…,xn)
 x(t) = x at time-step t
 x(t) transitions to x(t+1) with prob

P(x(t+1) | x(t),…,x(1)) = T(x(t+1) | x(t)) = T(x(t)  x(t+1)) 

 Homogenous: chain determined by state x(0), fixed transition 
kernel Q (rows sum to 1)

 Equilibrium: (x) is a stationary (equilibrium) distribution if 
(x') = x(x) Q(xx'). 

i.e., is a left eigenvector of the transition matrix T = TQ.
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Gibbs sampling
 The transition matrix updates each node one at a time using 

the following proposal: 

 It is efficient since                  only depends on the values in Xi’s Markov 
blanket
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Gibbs sampling
 Gibbs sampling is an MCMC algorithm that is especially 

appropriate for inference in graphical models.

 The procedue
 we have variable set X={x1, x2, x3,... xN} for a GM

 at each step one of the variables Xi is selected (at random or according 
to some fixed sequences), denote the remaining variables as X-i , and its 
current value as x-i

(t-1)

 Using the "alarm network" as an example, say at time t we choose XE, and we 
denote the current value assignments of the remaining variables, X-E , 
obtained from previous samples, as 

 the conditonal distribution p(Xi| x-i
(t-1)) is computed

 a value xi
(t) is sampled from this distribution

 the sample xi
(t) replaces the previous sampled value of Xi in  X.

 i.e., 
© Eric Xing @ CMU, 2006-2016
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Markov Blanket
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 Markov Blanket in BN
 A variable is independent from 

others, given its parents, children 
and children‘s parents (d-
separation).

 MB in MRF
 A variable is independent all its 

non-neighbors, given all its direct 
neighbors.

p(Xi| X-i)= p(Xi| MB(Xi))

 Gibbs sampling
 Every step, choose one variable 

and sample it by P(X|MB(X)) based 
on previous sample.



Gibbs sampling of the alarm 
network
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 To calculate P(J|B1,M1)
 Choose (B1,E0,A1,M1,J1) as a 

start
 Evidences are B1, M1, variables

are A, E, J.
 Choose next variable as A
 Sample A by 

P(A|MB(A))=P(A|B1, E0, M1, J1) 
suppose to be false.

 (B1, E0, A0, M1, J1)
 Choose next random variable 

as E, sample E~P(E|B1,A0) 
 ...MB(A)={B, E, J, M}

MB(E)={A, B}



Example
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Example:
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Example
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Example
P(J1 | B1,M1) = 0.90
P(J1 | E1,M0) = 0.14
P(E1 | J1)       = 0.01
P(E1 | M1)      = 0.04
P(E1 | M1,J1) = 0.17
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The                   of simulation
 Run several chains
 Start at over-dispersed 

points
 Monitor the log lik.
 Monitor the serial 

correlations
 Monitor acceptance ratios

 Re-parameterize (to get 
approx. indep.)

 Re-block (Gibbs)
 Collapse (int. over other 

pars.)
 Run with troubled pars. 

fixed at reasonable vals.
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The goal:

Given set of independent samples (assignments of 
random variables), find the best (the most likely?) 
Bayesian Network (both DAG and CPDs)

(B,E,A,C,R)=(T,F,F,T,F)
(B,E,A,C,R)=(T,F,T,T,F)
……..

(B,E,A,C,R)=(F,T,T,T,F)

E

R

B

A

C

0.9 0.1

e

b
e

0.2 0.8

0.01 0.99
0.9 0.1

be
b
b

e

BE P(A | E,B)

E

R

B

A

C

Learning Graphical Models
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Learning Graphical Models 
(cont.)
 Scenarios:

 completely observed GMs
 directed
 undirected 

 partially observed GMs
 directed
 undirected (an open research topic) 

 Estimation principles:
 Maximal likelihood estimation (MLE)
 Bayesian estimation
 Maximal conditional likelihood
 Maximal "Margin" 

 We use learning as a name for the process of estimating the 
parameters, and in some cases, the topology of the network, from 
data.
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MLE for general BN parameters
 If we assume the parameters for each CPD are globally 

independent, and all nodes are fully observed, then the log-
likelihood function decomposes into a sum of local terms, one 
per node:
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 Consider the distribution defined by the directed acyclic GM:

 This is exactly like learning four separate small BNs, each of 
which consists of a node and its parents.

Example: decomposable 
likelihood of a directed model
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E.g.: MLE for BNs with tabular 
CPDs
 Assume each CPD is represented as a table (multinomial) 

where

 Note that in case of multiple parents,      will have a composite 
state, and the CPD will be a high-dimensional table

 The sufficient statistics are counts of family configurations

 The log-likelihood is

 Using a Lagrange multiplier 
to enforce               , we get:
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Definition of HMM
 Transition probabilities between 

any two states

or

 Start probabilities 

 Emission probabilities associated with each state

or in general:
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Supervised ML estimation
 Given x = x1…xN for which the true state path y = y1…yN is 

known,

 Define:
Aij = # times state transition ij occurs in y
Bik = # times state i in y emits k in x

 We can show that the maximum likelihood parameters  are:

 If y is continuous, we can treat                                               as NT
observations of, e.g., a Gaussian, and apply learning rules for Gaussian …
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 Consider the distribution defined by the directed acyclic GM:

 Need to compute p(xH|xV)  inference

What if some nodes are not 
observed?
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MLE for BNs with tabular CPDs
 Assume each CPD is represented as a table (multinomial) 

where

 Note that in case of multiple parents,      will have a composite 
state, and the CPD will be a high-dimensional table

 The sufficient statistics are counts of family configurations

 The log-likelihood is

 Using a Lagrange multiplier 
to enforce               , we get:
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Summary

 A GMM describes a unique probability distribution P

 Typical tasks:

 Task 1: How do we answer queries about P?

 We use inference as a name for the process of computing answers to such 
queries

 Task 2: How do we estimate a plausible model M from data D?

i. We use learning as a name for the process of obtaining point estimate of M.

ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of M 
need to do inference to impute the missing data.
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