Machine Learning

10-701, Fall 2016
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- Reading: Chap. 9, 13, C.B book
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What is clustering?
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e Are there any “grouping” them ?
e What is each group ?

e How many ?

e How to identify them?
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Examples :

e Images
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e lLanguage

e species
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Issues for clustering

e \What is a natural grouping among these objects?

e Definition of "groupness”

e \What makes objects “related”?
e Definition of "similarity/distance"

e Representation for objects
e Vector space? Normalization?

e How many clusters?
e Fixed a priori?
e Completely data driven?
Avoid “trivial” clusters - too large or small

e Clustering Algorithms
e Partitional algorithms
e Hierarchical algorithms

e Formal foundation and convergence
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Partitioning Algorithms :

e Partitioning method: Construct a partition of n objects into a
set of K clusters

e Given: a set of objects and the number K

e Find: a partition of K clusters that optimizes the chosen
partitioning criterion
e Globally optimal: exhaustively enumerate all partitions
e Effective heuristic methods: K-means and K-medoids algorithms
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K-Means :

Algorithm

1. Decide on a value for k.
2. Initialize the k cluster centers randomly if necessary.

3. Decide the class memberships of the N objects by assigning them
to the nearest cluster centroids (aka the center of gravity or mean)

4. Re-estimate the k cluster centers, by assuming the memberships
found above are correct.

5. If none of the N objects changed membership in the last iteration,
exit. Otherwise go to 3.
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K-means Clustering: Step 1
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K-means Clustering: Step 2
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K-means Clustering: Step 3
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K-means Clustering: Step 4
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K-means Clustering: Step 5
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Convergence o6

e \Why should the K-means algorithm ever reach a fixed point?

e -- A state in which clusters don’t change.

e K-means is a special case of a general procedure known as
the Expectation Maximization (EM) algorithm.

e EMis known to converge.

e Number of iterations could be large. )
e Goodness measure ;
e sum of squared distances from cluster centroid: i )i,
mg k 3
2 2
SDi, =Y ey — il SDx =S SDx,
J=1 =1 1 23 456 7 8 910

e Reassignment monotonically decreases SD since each vector
IS assigned to the closest centroid.
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Time Complexity -

e Computing distance between two objs is O(m) where m is the
dimensionality of the vectors.

e Reassigning clusters: O(Kn) distance computations, or
O(Knm).

e Computing centroids: Each doc gets added once to some
centroid: O(nm).

e Assume these two steps are each done once for | iterations:
O(IKnm).
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Seed Choice ot

e Results can vary based on random seed selection.
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e Some seeds can result in poor convergence rate, or
convergence to sub-optimal clusterings.

e Select good seeds using a heuristic (e.g., doc least similar to any existing mean)
e Try out multiple starting points (very important!!!)
e |Initialize with the results of another method.
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How Many Clusters? -

e Number of clusters K is given
e Partition n docs into predetermined number of clusters

e Finding the “right” number of clusters is part of the problem

e Given objs, partition into an “appropriate” number of subsets.

e E.g., for query results - ideal value of K not known up front - though Ul may
impose limits.

e Solve an optimization problem: penalize having lots of
clusters

e application dependent, e.g., compressed summary of search results list.
e Information theoretic approaches: model-based approach

e Tradeoff between having more clusters (better focus within
each cluster) and having too many clusters

e Nonparametric Bayesian Inference
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Clustering and partially
observable probabilistic models
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Unobserved Variables o

e A variable can be unobserved (latent) because:

e itis animaginary quantity meant to provide some simplified and abstractive view
of the data generation process

e.g., speech recognition models, mixture models ...

e itis a real-world object and/or phenomena, but difficult or impossible to measure
e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...

e itis a real-world object and/or phenomena, but sometimes wasn’t measured,
because of faulty sensors; or was measure with a noisy channel, etc.

e.g., traffic radio, aircraft signal on a radar screen,

e Discrete latent variables can be used to partition/cluster data
into sub-groups (mixture models, forthcoming).

e Continuous latent variables (factors) can be used for
dimensionality reduction (factor analysis, etc., later lectures).
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Mixture Models -

e A density model p(x) may be multi-modal.

e \We may be able to model it as a mixture of uni-modal
distributions (e.g., Gaussians).

e Each mode may correspond to a different sub-population
(e.g., male and female).
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Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components:

p(xn‘,u,Z) :Zkﬂ-kN(Xa‘ His Zy)
S

mixture proportion mixture component

X

e This model can be used for unsupervised clustering.

e This model (fit by AutoClass) has been used to discover new kinds of stars in
astronomical data, etc.

© Eric Xing @ CMU, 2006-2016
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GGM derivations ot

e Consider a mixture of K Gaussian components:
e Zis alatent class indicator vector:

p(z,)=multi(z, : 1) =[] (z, "
k

e Xis a conditional Gaussian variable with a class-specific mean/covariance

1 -
p(xn |an Zl,ﬂ,Z) - (27[)"'/2‘2 ‘1/2 eXp{'%(Xn - Hy )T z“kl(xn ':Uk)}
k

e The likelihood of a sample:
mixture component
mixture proportion

)= p(z“=1|m)p(x,|z" =1, 11,%) Va
:Zzn Hk ((”k )znkN(Xn 3ﬂkazk)z"k ): Zk N (XS] 1, 2))

p(X,
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Learning mixture models 4+
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Why is Learning Harder?

e In fully observed iid settings, the log likelihood decomposes
into a sum of local terms.

£(0;D)=log p(x,2|0) =log p(z|6,) +log p(x| 2,6,)

e With latent variables, all the parameters become coupled
together via marginalization

£(0;D)=log Y p(x,2|0) =log " p(z]6,)p(x|2,6,)
Z VA VA Z

X X5 X3
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Gradient Learning for mixture 1
models 4+

e \We can learn mixture densities using gradient descent on the
log likelihood. The gradients are quite interesting:

£(0)=logp(x|8)=log > 7, p, (x|6;)
k

o 1 op, (x16,)
Z”k Px ‘k

00 p(x|0)% o0
7Tk dlog p, (X‘Qk )
- 0
4 P(X\Q)pk(x‘ ) PY:
pi (x/6;) dlog p, (x|6,) A
= — r —=
27 oixle) o6, 2",

e |n other words, the gradient is the responsibility weighted sum
of the individual log likelihood gradients.

e (Can pass this to a conjugate gradient routine.
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Parameter Constraints ot

e Often we have constraints on the parameters, e.g. X, 7, =1, X
being symmetric positive definite (hence X > 0).

e \We can use constrained optimization, or we can
reparameterize in terms of unconstrained values.
e For normalized weights, use the softmax transform:

e For covariance matrices, use the Cholesky decomposition:
>1T=ATA
where A is upper diagonal with positive diagonal:
Aj zexp(l,)>0 Ay =n; (J>1) Ay =0 (J <)
the parameters y;, 4;, 77; € R are unconstrained.

e Use chain rule to compute ol ol

on’ oA’
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The Expectation-Maximization i
(EM) Algorithm oo
lli;.'-:
s
S
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EM algorithm for GMM -

e E.g., A mixture of K Gaussians:

e Zis a latent class indicator vector

p(z,) =multi(z, : 7) =[] (z, )"

e X is a conditional Gaussian variable with a class-specific
mean/covariance

p(x, |28 =1, 1,%) = expl-3(X, - 1) S (X, - 11)}

(Zﬂ)m/z‘Zk ‘1/2

e The likelihood of a sample:
POX | 2) =D, p(Z“ =1 7)p(x,| 2" =1, 1. %)

:Zzn]i[k((ﬂ-k)zrl§ N(Xn :/’lk’zk)Zﬁ ): Zkﬂ-kN(X’l'uk’zk)
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EM algorithm for GMM -

e Recall MLE for completely observed data <>
e Data log-likelihood C x;, O
/(O;D)=logH p(z,, n)—logH p(z, [ 7)P(X, | 24, 14, 0)
= Zlog]] Zo o+ Zlog]] N (X, ;14 ,0)
= ZZZ log 7, - ZZZnZ L (%, - 4)°+C

e MLE Aowe =argmax  £(6;D),

A : 2, 2%,
Hy e =argmax  £(0;D) = e = i S
O e =argmax_£(0;D) '

e What if we do not know z,,? 2, — pzf =1|x, u,ZV)
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EM algorithm for GMM -

o Start:
e "Guess" the centroid g, and coveriance 2, of each of the K clusters
e Loop
.t . L=1 . ® L=4
ot () "% ﬁ . @
oot ot % ' ‘%
- ':‘ '.. O . .t .
(@) (c) (d) (€)
L=6 @ L=8 .(m3 L=10 @ L=12 @
9 )
- ~ .. e 4 . -

(f) (9) (h) (1)
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Comparing to K-means o

e Start:

e "Guess" the centroid g, and coveriance 2, of each of the K clusters

e Loop
e Foreach point n=1to N,
compute its cluster label:
7O

n

To-1
=argmax(X, —4”)" 2, (%, = 24.”)

e For each cluster k=1:K

oy _ Z 5z, k)x

(t+1)
:uk t Zk
E 5z, k
-t -t P -t . -t
l‘& " f‘# = i‘.ﬁ M ‘Qtrv. Q‘r - l"ﬂ
. . . * . . * . .
:,;;i -‘ + :",‘.;l.-‘ 4 % .';;i!t * % # ;.H‘ + ‘:;:}3 L] P +
« M F + & ‘ -3 ]

(c)

id)
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Notes on EM Algorithm o°

e EM is an optimization strategy for objective functions that can
be interpreted as likelihoods in the presence of missing data.

e |t is much simpler than gradient methods:

e No need to choose step size.
e Enforces constraints automatically.
e Calls inference and fully observed learning as subroutines.

e EM is an lterative algorithm with two linked steps:
e E-step: fill-in hidden values using inference, p(z|x, &).

e M-step: update parameters t+1 using standard MLE/MAP method applied to
completed data

e \We will prove that this procedure monotonically improves (or
leaves it unchanged). Thus it always converges to a local
optimum of the likelihood.

© Eric Xing @ CMU, 2006-2016
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Identifiability

e A mixture model induces a multi-modal likelihood.

e Hence gradient ascent can only find a local maximum.

e Mixture models are unidentifiable, since we can always switch
the hidden labels without affecting the likelihood.

e Hence we should be careful in trying to interpret the
“meaning” of latent variables.

likelihood

/

parameter space
© Eric Xing @ CMU, 2006-2016 31



How is EM derived?

e A mixture of K Gaussians:
e /s a latent class indicator vector

p(z,) =multi(z, : 1) =[] (=,
k

e Xis a conditional Gaussian variable with a class-specific mean/covariance

1 g
p(xn ‘znk - 19#92) = (27;)’”/2‘2 ‘1/2 exp{—%(xn - Hy )T 2kl(xn —,le)}
k

e The likelihood of a sample:
wE)=3 p(z, =11m)p(%| 2, =1, 1)
= Zzn Hk ((”k )ZE N (X, :ﬂk:Zk)zﬁ ): Zk T NG| 4,2)

e The “complete” likelihood

p(X,

1,5) = p(z, =1 7)p(%,] 2, =1, 24, %) = N (X, | 24, %)
P(Xy» Zp |44, ) :H[ﬂ-kN(Xa‘ ﬂkazk)]zn
k

But this is itself a random variable! Not good as objective function
© Eric Xing @ CMU, 2006-2016
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How is EM derived? -
e The complete log likelihood:
£(; D)—logH p(Zn,Xn)—logH P(z, | m)P(X, | Z,, 11, 0) i

S Zlog]] T+ Zlog]] N (X, 3ty 0)
S ZZz log 7, - ZZz L (X, - )? +C

n k -

e The expected complete log likelihood

(€ 0;x,2))= 2logp(z,| 7)) .+ 2logp(X, |2, 4.5)

n

= Xz Yogm - X Xz)0x, - s B 06, - )+ logfe,+€ )
n k n k
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E-step oo

o We maximize<lc (9)> iteratively using the following
iterative procedure:

— Expectation step: computing the expected value of the
sufficient statistics of the hidden variables (i.e., z) given
current est. of the parameters (i.e., zand n).

t t t
7N (x| 1,2
t t t
270N (x,,| 1,20
i

k(t k k t t
4 ():<Zn >q(t) :p(zn :1|X91u( )92( )):

n

Here we are essentially doing inference
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M-step oo

o We maximize<lc (9)> iteratively using the following
iterative procudure:

— Maximization step: compute the parameters under

N
current results of the expected value of the hidden variables
7, =arg max</c (9)>, = ?i<lc (9)> =0,Vk, st 2 =1
k
2 (z)) 3 ko
* " n q(t) - nT” / _<nkV
7 k= N = N=TN
% ek,
lle = arg maX</ (0)>, :> /Ll/((t+1) :W Fact:
hon dlogA”| |
2 on 06—t Y h
n N OA

This is isomorphic to MLE except that the variables that are hidden are

replaced by their expectations (in general they will by replaced by their
corresponding "sufficient statistics")
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Compare: K-means :
e The EM algorithm for mixtures of Gaussians is like a "soft
version" of the K-means algorithm.
e Inthe K-means “E-step” we do hard assignment:
Z(t) =argmax(x ,u(t)) > 1(t)(x ,u(t))
e |n the K-means “M-step” we update the means as the
weighted sum of the data, but now the weights are 0 or 1:
o) _ >, 6z, k)x
Ky Z 5(2 (t)
F2X Es N B N pek - Pl Fat
(a) (b) (c) (d) () (f)
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Theory underlying EM -

e \What are we doing?

e Recall that according to MLE, we intend to learn the model
parameter that would have maximize the likelihood of the
data.

e But we do not observe z, so computing
£(0;D)=logy p(x,z|0)=log> p(z|6,)p(x|z,6,)

is difficult!

e \What shall we do?
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Complete & Incomplete Log
Likelihoods

e Complete log likelihood
Let X denote the observable variable(s), and Z denote the latent variable(s).
If Z could be observed, then o
l(0;x,z)=logp(x,z|0)

e Usually, optimizing () given both z and x is straightforward (c.f. MLE for fully
observed models).

e Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of
factors, the parameter for each factor can be estimated separately.

e But given that Z is not observed, () is a random quantity, cannot be
maximized directly.

e Incomplete log likelihood
With z unobserved, our objective becomes the log of a marginal probability:

4.(6;x)=logp(x |0)=log)> p(x,z|0)

e This objective won't decouple
© Eric Xing @ CMU, 2006-2016 38




Expected Complete Log coce
Likelihood .o

e For any distribution g(z), define expected complete log likelihood:
def

(£(0:x,2)) =>.q(z|x,0)logp(x,z|0)
A deterministic function éf 0

Linear in £() --- inherit its factorizabiility
Does maximizing this surrogate yield a maximizer of the likelihood?

e Jensen’s inequality

£(0;x)=1logp(x|0)
=log ) p(x.z|0)

p(x,z|0) /
=1
LI 00z 1
p(x,z|0)
zgq(z|x)log 0z %) /(HQX)Z<4(‘9§X>Z)>q+Hq
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Lower Bounds and Free Energy os

e For fixed data x, define a functional called the free energy:

p(x,z|6)
F(q.,0)= |
q,0) §q<z|x>og 2 10

< £(6;x)

e The EM algorithm is coordinate-ascent on F :
e E-step: q1t+1 =argmaxF (q,6")
q

e M-step: ot +1

= argmgaxF(q”l,é?t)

F
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E-step: maximization of expected | 3:2:
L w.rt. g :

e Claim: qt+1 :argmaXF(q,Qt): p(z |X,(9t)
q

e This is the posterior distribution over the latent variables given the data and the
parameters. Often we need this at test time anyway (e.g. to perform
classification).

e Proof (easy): this setting attains the bound 46,x)>F(q,0)
p(x,z]6")

p(z‘x,é’t)

=D P(zx,6")log p(x|&")

=log p(x]6")=£(6";x)
e Can also show this result using variational calculus or the fact
that ¢(6;x)-F(q.6)=KL(q | p(z |x,6))

F(p(z[x,6"),0) =Y p(z|x,0")log
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E-step = plug In posterior
expectation of latent variables °°

o Without loss of generality: assume that p(x,z|0) is a
generalized exponential family distribution:

1
_%h(x,z)exp{ZH,f,(X,z)}

e Special cases: if p(X|Z) are GLIMs, then f(x,2)=1 (2)& (X)

o Zhe expected complete log likelihood under - p(z|x,6%)
|

(4(6:x.2)) ., =D.q(z|x,6')logp(x.26°)~A(®)

- Ze’t <f’ (X’z)>q(zx,0t) _A(e)

p~GLIM

= 2O @)y 5 (X)-AO)

© Eric Xing @ CMU, 2006-2016
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M-step: maximization of expected | 3:2:
(L w.rt. 6 ot

e Note that the free energy breaks into two terms:

p(x,20)
F(q.0)= 1
q,0) ;q(zlx)og 2 10

=>q(z | x)log p(x,z [6)-Y q(z | x)logq(z | x)

=<4(9;x,z)>q +H

e The first term is the expected complete log likelihood (energy) and the second
term, which does not depend on 4, is the entropy.

e Thus, in the M-step, maximizing with respect to g for fixed g
we only need to consider the first term:

gt —argmax</ (0;x z)> i —argmaXZq(z | x)logp(x,z |6)

e Under optimal gt*, this is equivalent to solvmg a standard MLE of fully observed
model p(x,z| 6), with the sufficient statistics involving z replaced by their
expectations w.r.t. p(z| x,0).
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Summary: EM Algorithm -

e A way of maximizing likelihood function for latent variable
models. Finds MLE of parameters when the original (hard)
problem can be broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

e Alternate between filling in the latent variables using the best
guess (posterior) and updating the parameters based on this

guess.
o E-step: q'" =argmaxF (q,6")
q
e M-step: @t+1 = arg mgXF(qt+1,9t)

e |[n the M-step we optimize a lower bound on the likelihood. In
the E-step we close the gap, making bound=likelihood.
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EM Variants oo

e Sparse EM:

Do not re-compute exactly the posterior probability on each
data point under all models, because it is almost zero. Instead
keep an “active list” which you update every once in a while.

e Generalized (Incomplete) EM.:

It might be hard to find the ML parameters in the M-step, even
given the completed data. We can still make progress by
doing an M-step that improves the likelihood a bit (e.g.
gradient step). Recall the IRLS step in the mixture of experts
model.
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A Report Card for EM

e Some good things about EM:

no learning rate (step-size) parameter
automatically enforces parameter constraints
very fast for low dimensions

each iteration guaranteed to improve likelihood

e Some bad things about EM:

can get stuck in local minima

can be slower than conjugate gradient (especially near convergence)
requires expensive inference step

is a maximum likelihood/MAP method

© Eric Xing @ CMU, 2006-2016
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