Machine Learning

10-701, Fall 2016

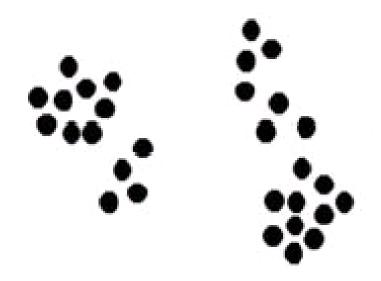
Expectation Maximization: Mixture model and HMM

Eric Xing

Lecture 16, October 31, 2016

Reading: Chap. 9, 13, C.B book

What is clustering?



- Are there any "grouping" them ?
- What is each group?
- How many ?
- How to identify them?

Examples

Images

Language

species

Issues for clustering

- What is a natural grouping among these objects?
 - Definition of "groupness"
- What makes objects "related"?
 - Definition of "similarity/distance"
- Representation for objects
 - Vector space? Normalization?
- How many clusters?
 - Fixed a priori?
 - Completely data driven?
 - Avoid "trivial" clusters too large or small
- Clustering Algorithms
 - Partitional algorithms
 - Hierarchical algorithms
- Formal foundation and convergence

Minkowski metric

$$d(x, y) = \sqrt{\sum_{i=1}^{p} |x_i - y_i|^r}$$

- Partitioning method: Construct a partition of n objects into a set of K clusters
- Given: a set of objects and the number K
- Find: a partition of K clusters that optimizes the chosen partitioning criterion
 - Globally optimal: exhaustively enumerate all partitions
 - Effective heuristic methods: K-means and K-medoids algorithms

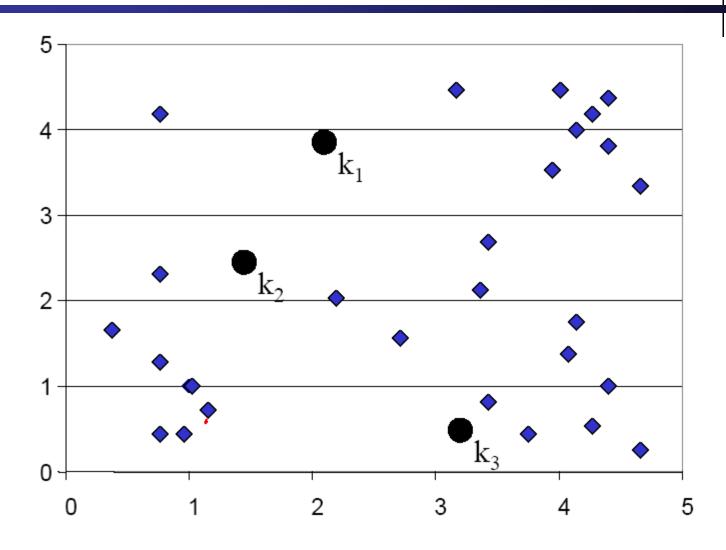
K-Means

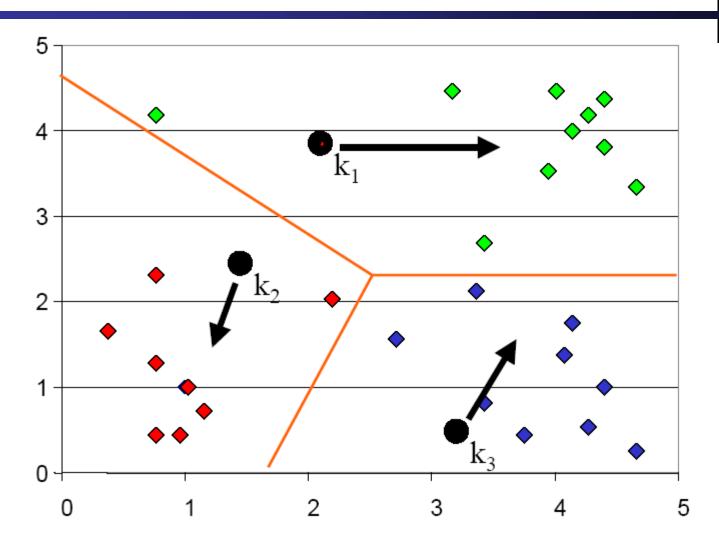
Algorithm

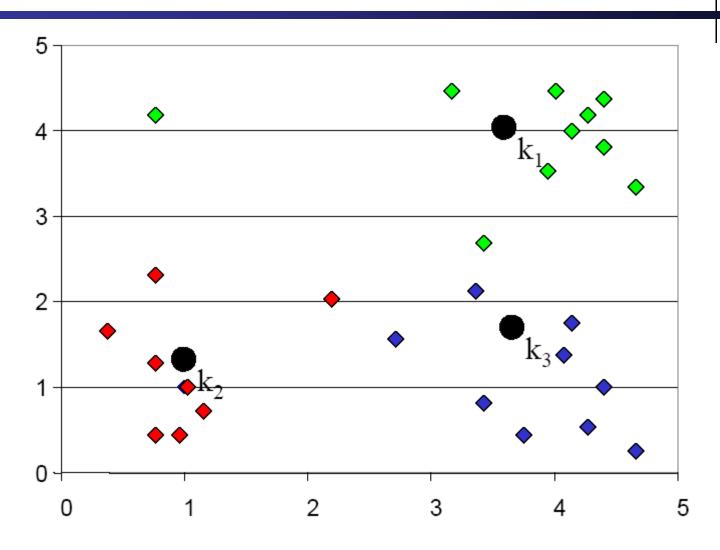
- Decide on a value for k.
- 2. Initialize the *k* cluster centers randomly if necessary.
- 3. Decide the class memberships of the *N* objects by assigning them to the nearest cluster centroids (aka the center of gravity or mean)

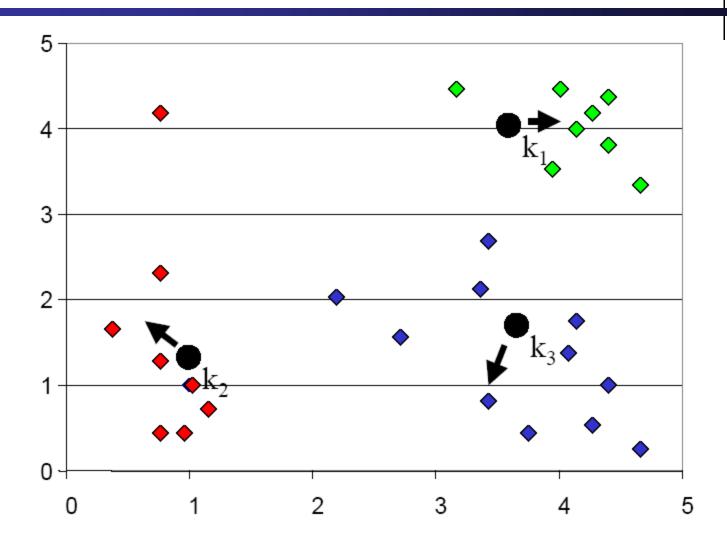
$$\vec{\mu}_k = \frac{1}{\mathcal{C}_k} \sum_{i \in \mathcal{C}_k} \vec{x}_i$$

- 4. Re-estimate the *k* cluster centers, by assuming the memberships found above are correct.
- 5. If none of the *N* objects changed membership in the last iteration, exit. Otherwise go to 3.

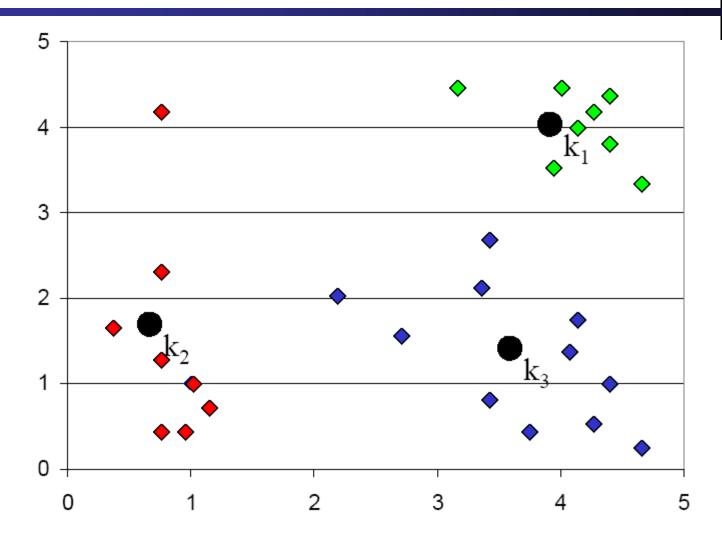








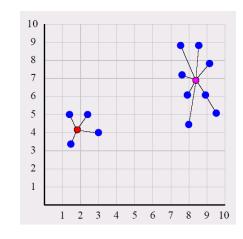
灰



Convergence

- Why should the K-means algorithm ever reach a fixed point?
 - -- A state in which clusters don't change.
- K-means is a special case of a general procedure known as the Expectation Maximization (EM) algorithm.
 - EM is known to converge.
 - Number of iterations could be large.
- Goodness measure
 - sum of squared distances from cluster centroid:

$$SD_{K_i} = \sum_{j=1}^{m_k} ||x_{ij} - \mu_i||^2$$
 $SD_K = \sum_{i=1}^k SD_{K_i}$



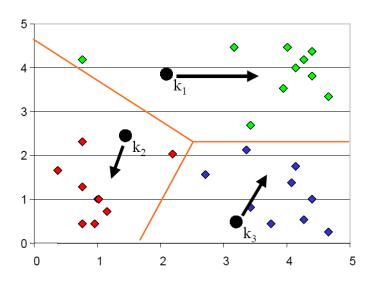
 Reassignment monotonically decreases SD since each vector is assigned to the closest centroid.

Time Complexity

- Computing distance between two objs is O(m) where m is the dimensionality of the vectors.
- Reassigning clusters: O(Kn) distance computations, or O(Knm).
- Computing centroids: Each doc gets added once to some centroid: O(nm).
- Assume these two steps are each done once for *l* iterations:
 O(*lKnm*).

Seed Choice

Results can vary based on random seed selection.

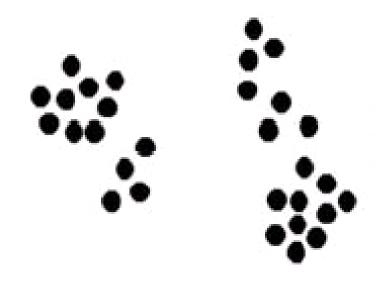


- Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings.
 - Select good seeds using a heuristic (e.g., doc least similar to any existing mean)
 - Try out multiple starting points (very important!!!)
 - Initialize with the results of another method.

How Many Clusters?

- Number of clusters K is given
 - Partition n docs into predetermined number of clusters
- Finding the "right" number of clusters is part of the problem
 - Given objs, partition into an "appropriate" number of subsets.
 - E.g., for query results ideal value of K not known up front though UI may impose limits.
- Solve an optimization problem: penalize having lots of clusters
 - application dependent, e.g., compressed summary of search results list.
 - Information theoretic approaches: model-based approach
- Tradeoff between having more clusters (better focus within each cluster) and having too many clusters
- Nonparametric Bayesian Inference

Clustering and partially observable probabilistic models

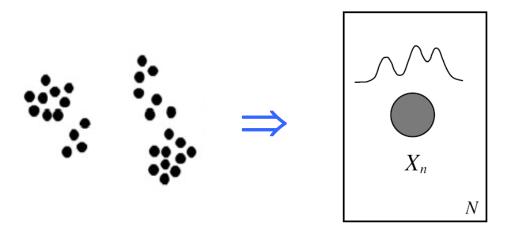


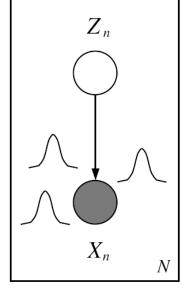
Unobserved Variables

- A variable can be unobserved (latent) because:
 - it is an imaginary quantity meant to provide some simplified and abstractive view of the data generation process
 - e.g., speech recognition models, mixture models ...
 - it is a real-world object and/or phenomena, but difficult or impossible to measure
 - e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...
 - it is a real-world object and/or phenomena, but sometimes wasn't measured, because of faulty sensors; or was measure with a noisy channel, etc.
 - e.g., traffic radio, aircraft signal on a radar screen,
- Discrete latent variables can be used to partition/cluster data into sub-groups (mixture models, forthcoming).
- Continuous latent variables (factors) can be used for dimensionality reduction (factor analysis, etc., later lectures).

Mixture Models

- A density model p(x) may be multi-modal.
- We may be able to model it as a mixture of uni-modal distributions (e.g., Gaussians).
- Each mode may correspond to a different sub-population (e.g., male and female).



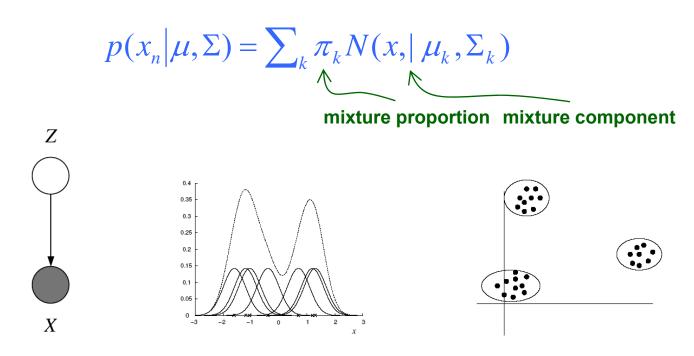


(b)

(a) © Eric Xing @ CMU, 2006-2016

Gaussian Mixture Models (GMMs)

Consider a mixture of K Gaussian components:



- This model can be used for unsupervised clustering.
 - This model (fit by AutoClass) has been used to discover new kinds of stars in astronomical data, etc.

GGM derivations

- Consider a mixture of K Gaussian components:
 - Z is a latent class indicator vector:

$$p(\mathbf{z}_n) = \text{multi}(\mathbf{z}_n : \pi) = \prod_k (\pi_k)^{\mathbf{z}_n^k}$$



X is a conditional Gaussian variable with a class-specific mean/covariance

$$p(\mathbf{x}_{n} \mid \mathbf{z}_{n}^{k} = 1, \mu, \Sigma) = \frac{1}{(2\pi)^{m/2} |\Sigma_{k}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x}_{n} - \mu_{k})^{T} \Sigma_{k}^{-1} (\mathbf{x}_{n} - \mu_{k})\right\}$$

The likelihood of a sample:

 $p(x_{n}|\mu,\Sigma) = \sum_{k} p(z^{k} = 1|\pi)p(x,|z^{k} = 1,\mu,\Sigma)$ $= \sum_{z_{n}} \prod_{k} \left((\pi_{k})^{z_{n}^{k}} N(x_{n} : \mu_{k},\Sigma_{k})^{z_{n}^{k}} \right) = \sum_{k} \pi_{k} N(x,|\mu_{k},\Sigma_{k})$ mixture component $= \sum_{z_{n}} \prod_{k} \left((\pi_{k})^{z_{n}^{k}} N(x_{n} : \mu_{k},\Sigma_{k})^{z_{n}^{k}} \right) = \sum_{k} \pi_{k} N(x,|\mu_{k},\Sigma_{k})$

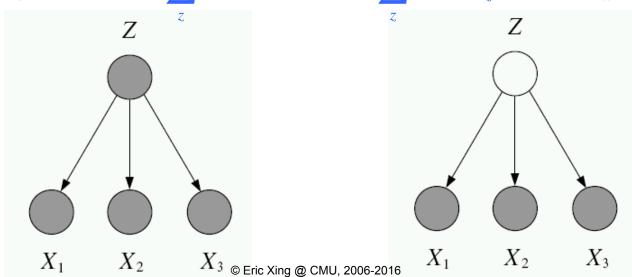
Why is Learning Harder?

 In fully observed iid settings, the log likelihood decomposes into a sum of local terms.

$$\ell_c(\theta; D) = \log p(x, z \mid \theta) = \log p(z \mid \theta_z) + \log p(x \mid z, \theta_x)$$

 With latent variables, all the parameters become coupled together via marginalization

$$\ell_c(\theta; D) = \log \sum p(x, z \mid \theta) = \log \sum p(z \mid \theta_z) p(x \mid z, \theta_x)$$



Gradient Learning for mixture models

 We can learn mixture densities using gradient descent on the log likelihood. The gradients are quite interesting:

$$\ell(\theta) = \log p(x | \theta) = \log \sum_{k} \pi_{k} p_{k}(x | \theta_{k})$$

$$\frac{\partial \ell}{\partial \theta} = \frac{1}{p(x | \theta)} \sum_{k} \pi_{k} \frac{\partial p_{k}(x | \theta_{k})}{\partial \theta}$$

$$= \sum_{k} \frac{\pi_{k}}{p(x | \theta)} p_{k}(x | \theta_{k}) \frac{\partial \log p_{k}(x | \theta_{k})}{\partial \theta}$$

$$= \sum_{k} \pi_{k} \frac{p_{k}(x | \theta_{k})}{p(x | \theta)} \frac{\partial \log p_{k}(x | \theta_{k})}{\partial \theta} = \sum_{k} r_{k} \frac{\partial \ell_{k}}{\partial \theta_{k}}$$

- In other words, the gradient is the responsibility weighted sum of the individual log likelihood gradients.
- Can pass this to a conjugate gradient routine.

Parameter Constraints

- Often we have constraints on the parameters, e.g. $\Sigma_k \pi_k = 1$, $\Sigma_k \pi_k = 1$
- We can use constrained optimization, or we can reparameterize in terms of unconstrained values.
 - For normalized weights, use the softmax transform:
 - For covariance matrices, use the Cholesky decomposition:

$$\Sigma^{-1} = \mathbf{A}^{\mathsf{T}} \, \mathbf{A}$$

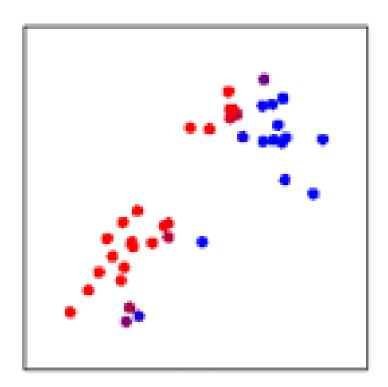
where A is upper diagonal with positive diagonal:

$$\mathbf{A}_{ii} = \exp(\lambda_i) > \mathbf{0} \quad \mathbf{A}_{ij} = \eta_{ij} \quad (\mathbf{j} > \mathbf{i}) \quad \mathbf{A}_{ij} = \mathbf{0} \quad (\mathbf{j} < \mathbf{i})$$

the parameters γ_i , λ_i , $\eta_{ij} \in \mathbb{R}$ are unconstrained.

• Use chain rule to compute $\frac{\partial \ell}{\partial \pi}$, $\frac{\partial \ell}{\partial \mathbf{A}}$

The Expectation-Maximization (EM) Algorithm



- E.g., A mixture of K Gaussians:
 - Z is a latent class indicator vector

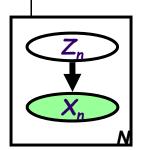
$$p(z_n) = \text{multi}(z_n : \pi) = \prod_k (\pi_k)^{z_n^k}$$

$$p(x_n \mid z_n^k = 1, \mu, \Sigma) = \frac{1}{(2\pi)^{m/2} |\Sigma_k|^{1/2}} \exp\left\{-\frac{1}{2} (x_n - \mu_k)^T \Sigma_k^{-1} (x_n - \mu_k)\right\}$$

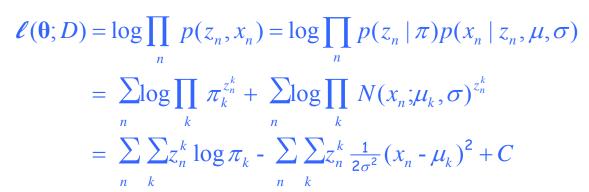
The likelihood of a sample:

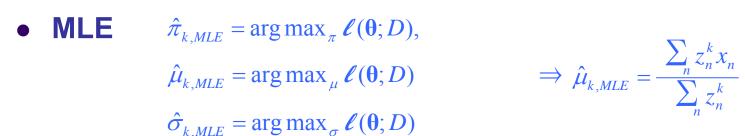
$$p(x_{n}|\mu,\Sigma) = \sum_{k} p(z^{k} = 1 \mid \pi) p(x, \mid z^{k} = 1, \mu, \Sigma)$$

$$= \sum_{z_{n}} \prod_{k} \left((\pi_{k})^{z_{n}^{k}} N(x_{n} : \mu_{k}, \Sigma_{k})^{z_{n}^{k}} \right) = \sum_{k} \pi_{k} N(x, \mid \mu_{k}, \Sigma_{k})$$



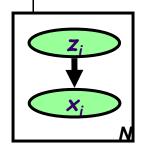
- Recall MLE for completely observed data
- Data log-likelihood





What if we do not know z_n ? $z_n \to p(z_n^k = 1 | x, \mu^{(t)}, \Sigma^{(t)})$

$$z_n \rightarrow p(z_n^k = 1 \mid x, \mu^{(t)}, \Sigma^{(t)})$$



EM algorithm for **GMM**

- Start:
 - "Guess" the centroid μ_k and coveriance Σ_k of each of the K clusters
- Loop



Comparing to K-means

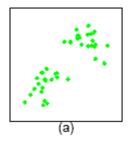
- Start:
 - "Guess" the centroid μ_k and coveriance Σ_k of each of the K clusters
- Loop
 - For each point n=1 to N, compute its cluster label:

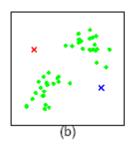
$$z_n^{(t)} = \arg\max_k (x_n - \mu_k^{(t)})^T \Sigma_k^{-1(t)} (x_n - \mu_k^{(t)})$$

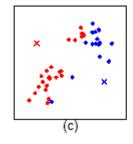
For each cluster k=1:K

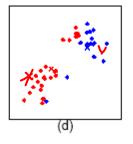
$$\mu_k^{(t+1)} = \frac{\sum_{n} \delta(z_n^{(t)}, k) x_n}{\sum_{n} \delta(z_n^{(t)}, k)}$$

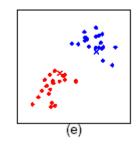
$$\sum_{k}^{(t+1)} = \dots$$

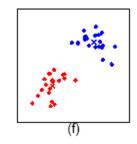










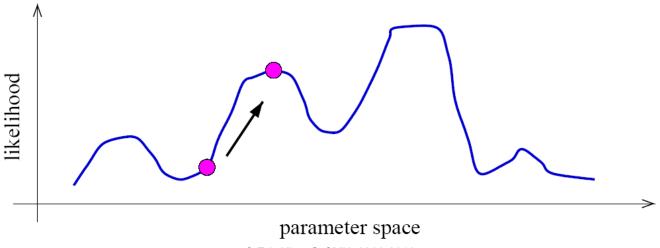


Notes on EM Algorithm

- EM is an optimization strategy for objective functions that can be interpreted as likelihoods in the presence of missing data.
- It is much simpler than gradient methods:
 - No need to choose step size.
 - Enforces constraints automatically.
 - Calls inference and fully observed learning as subroutines.
- EM is an Iterative algorithm with two linked steps:
 - E-step: fill-in hidden values using inference, $p(z|x, \theta)$.
 - M-step: update parameters t+1 using standard MLE/MAP method applied to completed data
- We will prove that this procedure monotonically improves (or leaves it unchanged). Thus it always converges to a local optimum of the likelihood.

Identifiability

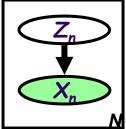
- A mixture model induces a multi-modal likelihood.
- Hence gradient ascent can only find a local maximum.
- Mixture models are unidentifiable, since we can always switch the hidden labels without affecting the likelihood.
- Hence we should be careful in trying to interpret the "meaning" of latent variables.



How is EM derived?

- A mixture of K Gaussians:
 - Z is a latent class indicator vector

$$p(\mathbf{z}_n) = \text{multi}(\mathbf{z}_n : \pi) = \prod_k (\pi_k)^{\mathbf{z}_n^k}$$



X is a conditional Gaussian variable with a class-specific mean/covariance

$$p(\mathbf{x}_{n} \mid \mathbf{z}_{n}^{k} = 1, \mu, \Sigma) = \frac{1}{(2\pi)^{m/2} |\Sigma_{k}|^{1/2}} \exp \left\{ -\frac{1}{2} (\mathbf{x}_{n} - \mu_{k})^{\mathsf{T}} \Sigma_{k}^{-1} (\mathbf{x}_{n} - \mu_{k}) \right\}$$

The likelihood of a sample:

$$p(x_{n}|\mu,\Sigma) = \sum_{k} p(z_{n}^{k} = 1 | \pi) p(x, | z_{n}^{k} = 1, \mu, \Sigma)$$

$$= \sum_{z_{n}} \prod_{k} (\pi_{k})^{z_{n}^{k}} N(x_{n} : \mu_{k}, \Sigma_{k})^{z_{n}^{k}}) = \sum_{k} \pi_{k} N(x, | \mu_{k}, \Sigma_{k})$$

The "complete" likelihood

$$p(x_n, z_n^k = 1 | \mu, \Sigma) = p(z_n^k = 1 | \pi) p(x_n, z_n^k = 1, \mu, \Sigma) = \pi_k N(x_n, \mu_k, \Sigma_k)$$
$$p(x_n, z_n | \mu, \Sigma) = \prod_k \left[\pi_k N(x_n, \mu_k, \Sigma_k) \right]^{z_n^k}$$

But this is itself a random variable! Not good as objective function

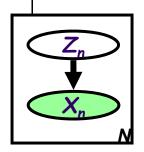
How is EM derived?

The complete log likelihood:

$$\ell(\mathbf{\theta}; D) = \log \prod_{n} p(z_n, x_n) = \log \prod_{n} p(z_n | \pi) p(x_n | z_n, \mu, \sigma)$$

$$= \sum_{n} \log \prod_{k} \pi_k^{z_n^k} + \sum_{n} \log \prod_{k} N(x_n; \mu_k, \sigma)^{z_n^k}$$

$$= \sum_{n} \sum_{k} z_n^k \log \pi_k - \sum_{n} \sum_{k} z_n^k \frac{1}{2\sigma^2} (x_n - \mu_k)^2 + C$$



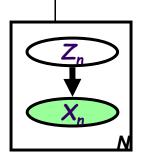
The expected complete log likelihood

$$\langle \ell_{c}(\boldsymbol{\theta}; \boldsymbol{x}, \boldsymbol{z}) \rangle = \sum_{n} \langle \log p(\boldsymbol{z}_{n} \mid \boldsymbol{\pi}) \rangle_{p(\boldsymbol{z} \mid \boldsymbol{x})} + \sum_{n} \langle \log p(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) \rangle_{p(\boldsymbol{z} \mid \boldsymbol{x})}$$

$$= \sum_{n} \sum_{k} \langle \boldsymbol{z}_{n}^{k} \rangle \log \pi_{k} - \frac{1}{2} \sum_{n} \sum_{k} \langle \boldsymbol{z}_{n}^{k} \rangle ((\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k})^{\mathsf{T}} \boldsymbol{\Sigma}_{k}^{-1} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}) + \log |\boldsymbol{\Sigma}_{k}| + \boldsymbol{C})$$

E-step

• We maximize $\langle I_c(\theta) \rangle$ iteratively using the following iterative procedure:



— Expectation step: computing the expected value of the sufficient statistics of the hidden variables (i.e., z) given current est. of the parameters (i.e., π and μ).

$$\tau_{n}^{k(t)} = \left\langle \mathbf{z}_{n}^{k} \right\rangle_{q^{(t)}} = p(\mathbf{z}_{n}^{k} = 1 \mid \mathbf{x}, \mu^{(t)}, \Sigma^{(t)}) = \frac{\pi_{k}^{(t)} N(\mathbf{x}_{n}, \mid \mu_{k}^{(t)}, \Sigma_{k}^{(t)})}{\sum_{i} \pi_{i}^{(t)} N(\mathbf{x}_{n}, \mid \mu_{i}^{(t)}, \Sigma_{i}^{(t)})}$$

Here we are essentially doing inference

M-step

- We maximize $\langle I_c(\mathbf{\theta}) \rangle$ iteratively using the following iterative procudure:
 - Maximization step: compute the parameters under current results of the expected value of the hidden variables

$$\pi_{k}^{*} = \arg\max\langle I_{c}(\boldsymbol{\theta})\rangle, \qquad \Rightarrow \frac{\partial}{\partial \tau_{k}}\langle I_{c}(\boldsymbol{\theta})\rangle = 0, \forall k, \quad \text{s.t. } \sum_{k} \pi_{k} = 1$$

$$\Rightarrow \pi_{k}^{*} = \frac{\sum_{n}\langle \boldsymbol{z}_{n}^{k}\rangle_{q^{(t)}}}{N} = \frac{\sum_{n}\tau_{n}^{k(t)}}{N} = \frac{\langle \boldsymbol{n}_{k}\rangle_{N}}{N}$$

$$\mu_{k}^{*} = \arg\max\langle I(\boldsymbol{\theta})\rangle, \qquad \Rightarrow \mu_{k}^{(t+1)} = \frac{\sum_{n}\tau_{n}^{k(t)}\boldsymbol{x}_{n}}{\sum_{n}\tau_{n}^{k(t)}}$$

$$\Sigma_{k}^{*} = \arg\max\langle I(\boldsymbol{\theta})\rangle, \qquad \Rightarrow \Sigma_{k}^{(t+1)} = \frac{\sum_{n}\tau_{n}^{k(t)}(\boldsymbol{x}_{n} - \mu_{k}^{(t+1)})(\boldsymbol{x}_{n} - \mu_{k}^{(t+1)})^{\mathsf{T}}}{\sum_{n}\tau_{n}^{k(t)}}$$

$$\frac{\partial \log|A^{-1}|}{\partial A^{-1}} = A^{\mathsf{T}}$$

$$\frac{\partial x^{\mathsf{T}} A \mathbf{x}}{\partial A} = \mathbf{x} \mathbf{x}^{\mathsf{T}}$$

 This is isomorphic to MLE except that the variables that are hidden are replaced by their expectations (in general they will by replaced by their corresponding "sufficient statistics")

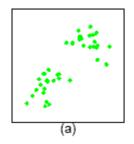
Compare: K-means

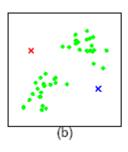
- The EM algorithm for mixtures of Gaussians is like a "soft version" of the K-means algorithm.
- In the K-means "E-step" we do hard assignment:

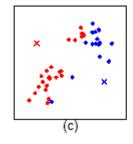
$$\boldsymbol{z}_{n}^{(t)} = \arg\max_{k} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}^{(t)})^{\mathsf{T}} \, \boldsymbol{\Sigma}_{k}^{-1(t)} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}^{(t)})$$

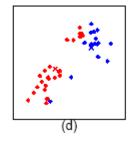
 In the K-means "M-step" we update the means as the weighted sum of the data, but now the weights are 0 or 1:

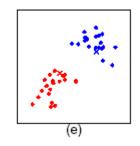
$$\mu_k^{(t+1)} = \frac{\sum_n \delta(\boldsymbol{z}_n^{(t)}, \boldsymbol{k}) \boldsymbol{x}_n}{\sum_n \delta(\boldsymbol{z}_n^{(t)}, \boldsymbol{k})}$$

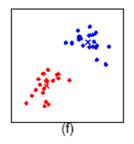












Theory underlying EM

- What are we doing?
- Recall that according to MLE, we intend to learn the model parameter that would have maximize the likelihood of the data.
- But we do not observe z, so computing

$$\ell_c(\theta; D) = \log \sum_z p(x, z \mid \theta) = \log \sum_z p(z \mid \theta_z) p(x \mid z, \theta_x)$$

is difficult!

What shall we do?

Complete & Incomplete Log Likelihoods

Complete log likelihood

Let X denote the observable variable(s), and Z denote the latent variable(s). If Z could be observed, then

$$\ell_c(\theta; \mathbf{x}, \mathbf{z}) = \log p(\mathbf{x}, \mathbf{z} \mid \theta)$$

- Usually, optimizing $\ell_c()$ given both z and x is straightforward (c.f. MLE for fully observed models).
- Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of factors, the parameter for each factor can be estimated separately.
- But given that Z is not observed, $\ell_c()$ is a random quantity, cannot be maximized directly.

Incomplete log likelihood

With *z* unobserved, our objective becomes the log of a marginal probability:

$$\ell_c(\theta; \mathbf{x}) = \log \mathbf{p}(\mathbf{x} \mid \theta) = \log \sum \mathbf{p}(\mathbf{x}, \mathbf{z} \mid \theta)$$

This objective won't decouple

Expected Complete Log Likelihood

• For any distribution q(z), define expected complete log likelihood:

$$\langle \ell_c(\theta; \mathbf{x}, \mathbf{z}) \rangle_q = \sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}, \theta) \log p(\mathbf{x}, \mathbf{z} \mid \theta)$$

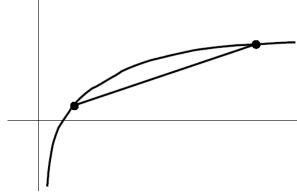
- A deterministic function of θ
- Linear in ℓ_c() --- inherit its factorizabiility
- Does maximizing this surrogate yield a maximizer of the likelihood?
- Jensen's inequality

$$\ell(\theta; x) = \log p(x \mid \theta)$$

$$= \log \sum_{z} p(x, z \mid \theta)$$

$$= \log \sum_{z} q(z \mid x) \frac{p(x, z \mid \theta)}{q(z \mid x)}$$

$$\geq \sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)} \implies \ell$$



$$\Rightarrow \ell(\theta; x) \ge \langle \ell_c(\theta; x, z) \rangle_q + H_q$$

Lower Bounds and Free Energy

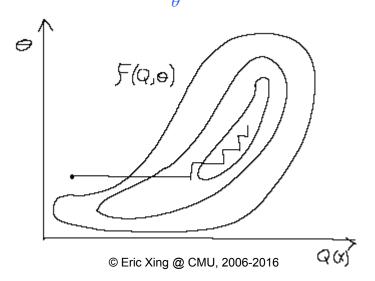
For fixed data x, define a functional called the free energy:

$$F(q,\theta) = \sum_{z} q(z \mid x) \log \frac{p(x,z \mid \theta)}{q(z \mid x)} \le \ell(\theta;x)$$

The EM algorithm is coordinate-ascent on F:

• E-step:
$$q^{t+1} = \arg\max_{q} F(q, \theta^{t})$$
• M-step:
$$\theta^{t+1} = \arg\max_{\theta} F(q^{t+1}, \theta^{t})$$

M-step:



E-step: maximization of expected ℓ_c w.r.t. q

Claim:

$$q^{t+1} = \arg \max_{q} F(q, \theta^{t}) = p(z \mid x, \theta^{t})$$

- This is the posterior distribution over the latent variables given the data and the parameters. Often we need this at test time anyway (e.g. to perform classification).
- Proof (easy): this setting attains the bound $\ell(\theta,x) \ge F(q,\theta)$

$$F(p(z|x,\theta^t),\theta^t) = \sum_{z} p(z|x,\theta^t) \log \frac{p(x,z|\theta^t)}{p(z|x,\theta^t)}$$
$$= \sum_{z} p(z|x,\theta^t) \log p(x|\theta^t)$$
$$= \log p(x|\theta^t) = \ell(\theta^t;x)$$

• Can also show this result using variational calculus or the fact that $\ell(\theta;x) - F(q,\theta) = \text{KL}(q \parallel p(z \mid x,\theta))$

E-step ≡ plug in posterior expectation of latent variables

• Without loss of generality: assume that $p(x,z|\theta)$ is a generalized exponential family distribution:

$$p(x,z|\theta) = \frac{1}{Z(\theta)}h(x,z)\exp\left\{\sum_{i}\theta_{i}f_{i}(x,z)\right\}$$

• Special cases: if p(X|Z) are GLIMs, then

$$f_i(\mathbf{X},\mathbf{Z}) = \eta_i^{\mathsf{T}}(\mathbf{Z})\xi_i(\mathbf{X})$$

• The expected complete log likelihood under $q^{t+1} = p(z \mid x, \theta^t)$ is

$$\left\langle \ell_{c}(\theta^{t}; \mathbf{x}, \mathbf{z}) \right\rangle_{q^{t+1}} = \sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}, \theta^{t}) \log p(\mathbf{x}, \mathbf{z} \mid \theta^{t}) - A(\theta)$$

$$= \sum_{i} \theta_{i}^{t} \left\langle f_{i}(\mathbf{x}, \mathbf{z}) \right\rangle_{q(\mathbf{z} \mid \mathbf{x}, \theta^{t})} - A(\theta)$$

$$= \sum_{i} \theta_{i}^{t} \left\langle \eta_{i}(\mathbf{z}) \right\rangle_{q(\mathbf{z} \mid \mathbf{x}, \theta^{t})} \xi_{i}(\mathbf{x}) - A(\theta)$$

M-step: maximization of expected ℓ_c w.r.t. θ

Note that the free energy breaks into two terms:

$$F(q,\theta) = \sum_{z} q(z \mid x) \log \frac{p(x,z \mid \theta)}{q(z \mid x)}$$

$$= \sum_{z} q(z \mid x) \log p(x,z \mid \theta) - \sum_{z} q(z \mid x) \log q(z \mid x)$$

$$= \langle \ell_{c}(\theta; x,z) \rangle_{q} + H_{q}$$

- The first term is the expected complete log likelihood (energy) and the second term, which does not depend on θ , is the entropy.
- Thus, in the M-step, maximizing with respect to θ for fixed q we only need to consider the first term:

$$\theta^{t+1} = \arg \max_{\theta} \left\langle \ell_{c}(\theta; \boldsymbol{x}, \boldsymbol{z}) \right\rangle_{q^{t+1}} = \arg \max_{\theta} \sum_{z} q(z \mid \boldsymbol{x}) \log p(\boldsymbol{x}, \boldsymbol{z} \mid \theta)$$

• Under optimal q^{t+1} , this is equivalent to solving a standard MLE of fully observed model $p(x,z|\theta)$, with the sufficient statistics involving z replaced by their expectations w.r.t. $p(z|x,\theta)$.

Summary: EM Algorithm

- A way of maximizing likelihood function for latent variable models. Finds MLE of parameters when the original (hard) problem can be broken up into two (easy) pieces:
 - 1. Estimate some "missing" or "unobserved" data from observed data and current parameters.
 - 2. Using this "complete" data, find the maximum likelihood parameter estimates.
- Alternate between filling in the latent variables using the best guess (posterior) and updating the parameters based on this guess:

• E-step:
$$q^{t+1} = \arg \max_{q} F(q, \theta^t)$$

• M-step: $\theta^{t+1} = \arg \max_{q} F(q^{t+1}, \theta^t)$

 In the M-step we optimize a lower bound on the likelihood. In the E-step we close the gap, making bound=likelihood.

EM Variants

Sparse EM:

Do not re-compute exactly the posterior probability on each data point under all models, because it is almost zero. Instead keep an "active list" which you update every once in a while.

Generalized (Incomplete) EM:

It might be hard to find the ML parameters in the M-step, even given the completed data. We can still make progress by doing an M-step that improves the likelihood a bit (e.g. gradient step). Recall the IRLS step in the mixture of experts model.

A Report Card for EM

- Some good things about EM:
 - no learning rate (step-size) parameter
 - automatically enforces parameter constraints
 - very fast for low dimensions
 - each iteration guaranteed to improve likelihood
- Some bad things about EM:
 - can get stuck in local minima
 - can be slower than conjugate gradient (especially near convergence)
 - requires expensive inference step
 - is a maximum likelihood/MAP method