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What is clustering?

 Are there any “grouping” them ?
 What is each group ?
 How many ?
 How to identify them?
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Examples
 People

 Images

 Language

 species
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Issues for clustering
 What is a natural grouping among these objects?

 Definition of "groupness"

 What makes objects “related”?
 Definition of "similarity/distance"

 Representation for objects
 Vector space? Normalization?

 How many clusters?
 Fixed a priori?
 Completely data driven?

 Avoid “trivial” clusters - too large or small

 Clustering Algorithms
 Partitional algorithms
 Hierarchical algorithms

 Formal foundation and convergence
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Partitioning Algorithms
 Partitioning method: Construct a partition of n objects into a 

set of K clusters

 Given: a set of objects and the number K

 Find: a partition of K clusters that optimizes the chosen 
partitioning criterion
 Globally optimal: exhaustively enumerate all partitions
 Effective heuristic methods: K-means and K-medoids algorithms
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K-Means
Algorithm

1. Decide on a value for k.
2. Initialize the k cluster centers randomly if necessary.
3. Decide the class memberships of the N objects by assigning them 

to the nearest cluster centroids (aka the center of gravity or mean)

4. Re-estimate the k cluster centers, by assuming the memberships 
found above are correct.

5. If none of the N objects changed membership in the last iteration, 
exit. Otherwise go to 3.
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K-means Clustering: Step 1
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K-means Clustering: Step 2
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K-means Clustering: Step 3
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K-means Clustering: Step 4
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K-means Clustering: Step 5
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Convergence
 Why should the K-means algorithm ever reach a fixed point? 

 -- A state in which clusters don’t change.

 K-means is a special case of a general procedure known as 
the Expectation Maximization (EM) algorithm.
 EM is known to converge.
 Number of iterations could be large.

 Goodness measure 
 sum of squared distances from cluster centroid:

 Reassignment monotonically decreases SD since each vector 
is assigned to the closest centroid.
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Time Complexity
 Computing distance between two objs is O(m) where m is the 

dimensionality of the vectors.

 Reassigning clusters: O(Kn) distance computations, or 
O(Knm).

 Computing centroids: Each doc gets added once to some 
centroid: O(nm).

 Assume these two steps are each done once for l iterations: 
O(lKnm).
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Seed Choice
 Results can vary based on random seed selection.

 Some seeds can result in poor convergence rate, or 
convergence to sub-optimal clusterings.
 Select good seeds using a heuristic (e.g., doc least similar to any existing mean)
 Try out multiple starting points (very important!!!)
 Initialize with the results of another method.
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How Many Clusters?
 Number of clusters K is given 

 Partition n docs into predetermined number of clusters

 Finding the “right” number of clusters is part of the problem
 Given objs, partition into an “appropriate” number of subsets.
 E.g., for query results - ideal value of K not known up front - though UI may 

impose limits.

 Solve an optimization problem: penalize having lots of 
clusters
 application dependent, e.g., compressed summary of search results list.
 Information theoretic approaches: model-based approach

 Tradeoff between having more clusters (better focus within 
each cluster) and having too many clusters

 Nonparametric Bayesian Inference
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Clustering and partially
observable probabilistic models
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Unobserved Variables
 A variable can be unobserved (latent) because:

 it is an imaginary quantity meant to provide some simplified and abstractive view 
of the data generation process
 e.g., speech recognition models, mixture models …

 it is a real-world object and/or phenomena, but difficult or impossible to measure
 e.g., the temperature of a star, causes of a disease, evolutionary ancestors …

 it is a real-world object and/or phenomena, but sometimes wasn’t measured, 
because of faulty sensors; or was measure with a noisy channel, etc.
 e.g., traffic radio, aircraft signal on a radar screen, 

 Discrete latent variables can be used to partition/cluster data 
into sub-groups (mixture models, forthcoming).

 Continuous latent variables (factors) can be used for 
dimensionality reduction (factor analysis, etc., later lectures).
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Mixture Models
 A density model p(x) may be multi-modal.
 We may be able to model it as a mixture of uni-modal 

distributions (e.g., Gaussians).
 Each mode may correspond to a different sub-population 

(e.g., male and female).


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Gaussian Mixture Models (GMMs)
 Consider a mixture of K Gaussian components:

 This model can be used for unsupervised clustering.
 This model (fit by AutoClass) has been used to discover new kinds of stars in 

astronomical data, etc.

 
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GGM derivations
 Consider a mixture of K Gaussian components:

 Z is a latent class indicator vector:

 X is a conditional Gaussian variable with a class-specific mean/covariance

 The likelihood of a sample:
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Learning mixture models

21© Eric Xing @ CMU, 2006-2016



Why is Learning Harder?
 In fully observed iid settings, the log likelihood decomposes 

into a sum of local terms.

 With latent variables, all the parameters become coupled 
together via marginalization
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Gradient Learning for mixture 
models
 We can learn mixture densities using gradient descent on the 

log likelihood. The gradients are quite interesting:

 In other words, the gradient is the responsibility weighted sum 
of the individual log likelihood gradients.

 Can pass this to a conjugate gradient routine.
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Parameter Constraints
 Often we have constraints on the parameters, e.g. kk = 1, 

being symmetric positive definite (hence ii > 0).
 We can use constrained optimization, or we can 

reparameterize in terms of unconstrained values.
 For normalized weights, use the softmax transform: 

 For covariance matrices, use the Cholesky decomposition:

where A is upper diagonal with positive diagonal:

the parameters i, i, ij  R are unconstrained.

 Use chain rule to compute 
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The Expectation-Maximization 
(EM) Algorithm
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EM algorithm for GMM
 E.g., A mixture of K Gaussians:

 Z is a latent class indicator vector

 X is a conditional Gaussian variable with a class-specific 
mean/covariance

 The likelihood of a sample:
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 Recall MLE for completely observed data

 Data log-likelihood

 MLE

 What if we do not know zn?
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EM algorithm for GMM
 Start: 

 "Guess" the centroid k and coveriance k of each of the K clusters 

 Loop
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Comparing to K-means
 Start: 

 "Guess" the centroid k and coveriance k of each of the K clusters 

 Loop
 For each point n=1 to N,

compute its cluster label:

 For each cluster k=1:K
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Notes on EM Algorithm
 EM is an optimization strategy for objective functions that can 

be interpreted as likelihoods in the presence of missing data.
 It is much simpler than gradient methods:

 No need to choose step size.
 Enforces constraints automatically.
 Calls inference and fully observed learning as subroutines.

 EM is an Iterative algorithm with two linked steps:
 E-step: fill-in hidden values using inference, p(z|x, t).
 M-step: update parameters t+1 using standard MLE/MAP method applied to 

completed data

 We will prove that this procedure monotonically improves (or 
leaves it unchanged). Thus it always converges to a local 
optimum of the likelihood.
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Identifiability
 A mixture model induces a multi-modal likelihood.
 Hence gradient ascent can only find a local maximum.
 Mixture models are unidentifiable, since we can always switch 

the hidden labels without affecting the likelihood.
 Hence we should be careful in trying to interpret the 

“meaning” of latent variables.
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How is EM derived?
 A mixture of K Gaussians:

 Z is a latent class indicator vector

 X is a conditional Gaussian variable with a class-specific mean/covariance

 The likelihood of a sample:

 The “complete” likelihood

Zn

Xn
N

 ∏):(multi)(
k

z
knn

k
nzzp  

 )-()-(-exp
)(

),,|( // knk
T

kn
k

m
k
nn xxzxp 


 1

2
1

2122
11 




    






k kkkz k
z

kkn
z

k

k
k

n
k

nn

xNxN

zxpzpxp

n

k
n

k
n ),|,(),:(

),,1|,()|1(),(





),|,(),,1|,()|1(),1,( kkk
k

n
k

n
k
nn xNzxpzpzxp  

But this is itself a random variable! Not good as objective function

  
k

z
kkknn

k
nxNzxp ),|,(),,( 

32© Eric Xing @ CMU, 2006-2016



How is EM derived?
 The complete log likelihood:

 The expected complete log likelihood
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 We maximize           iteratively using the following               
iterative procedure:

─ Expectation step: computing the expected value of the 
sufficient statistics of the hidden variables (i.e., z) given 
current est. of the parameters (i.e.,  and ). 

 Here we are essentially doing inference
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 We maximize           iteratively using the following               
iterative procudure:

─ Maximization step: compute the parameters under               
current results of the expected value of the hidden variables

 This is isomorphic to MLE except that the variables that are hidden are 
replaced by their expectations (in general they will by replaced by their 
corresponding "sufficient statistics") 
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Compare: K-means
 The EM algorithm for mixtures of Gaussians is like a "soft 

version" of the K-means algorithm.
 In the K-means “E-step” we do hard assignment:

 In the K-means “M-step” we update the means as the 
weighted sum of the data, but now the weights are 0 or 1:
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Theory underlying EM
 What are we doing?

 Recall that according to MLE, we intend to learn the model 
parameter that would have maximize the likelihood of the 
data. 

 But we do not observe z, so computing 

is difficult!

 What shall we do?
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Complete & Incomplete Log 
Likelihoods
 Complete log likelihood

Let X denote the observable variable(s), and Z denote the latent variable(s). 
If Z could be observed, then

 Usually, optimizing lc() given both z and x is straightforward (c.f. MLE for fully 
observed models).

 Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of 
factors, the parameter for each factor can be estimated separately.

 But given that Z is not observed, lc() is a random quantity, cannot be 
maximized directly.

 Incomplete log likelihood
With z unobserved, our objective becomes the log of a marginal probability:

 This objective won't decouple 
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Expected Complete Log 
Likelihood
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 For any distribution q(z), define expected complete log likelihood:

 A deterministic function of 
 Linear in lc() --- inherit its factorizabiility
 Does maximizing this surrogate yield a maximizer of the likelihood?

 Jensen’s inequality
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Lower Bounds and Free Energy
 For fixed data x, define a functional called the free energy:

 The EM algorithm is coordinate-ascent on F :
 E-step:

 M-step:
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E-step: maximization of expected 
lc w.r.t. q
 Claim: 

 This is the posterior distribution over the latent variables given the data and the 
parameters. Often we need this at test time anyway (e.g. to perform 
classification).

 Proof (easy): this setting attains the bound l(;x)F(q, )

 Can also show this result using variational calculus or the fact 
that
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E-step  plug in posterior 
expectation of latent variables
 Without loss of generality: assume that p(x,z|) is a 

generalized exponential family distribution:

 Special cases: if p(X|Z) are GLIMs, then 

 The expected complete log likelihood under                            
is
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M-step: maximization of expected 
lc w.r.t. 
 Note that the free energy breaks into two terms:

 The first term is the expected complete log likelihood (energy) and the second 
term, which does not depend on , is the entropy.

 Thus, in the M-step, maximizing with respect to  for fixed q
we only need to consider the first term:

 Under optimal qt+1, this is equivalent to solving a standard MLE of fully observed 
model p(x,z|), with the sufficient statistics involving z replaced by their 
expectations w.r.t. p(z|x,).
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Summary: EM Algorithm
 A way of maximizing likelihood function for latent variable 

models. Finds MLE of parameters when the original (hard) 
problem can be broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current 
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

 Alternate between filling in the latent variables using the best 
guess (posterior) and updating the parameters based on this 
guess:
 E-step: 
 M-step: 

 In the M-step we optimize a lower bound on the likelihood. In 
the E-step we close the gap, making bound=likelihood.
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EM Variants
 Sparse EM:

Do not re-compute exactly the posterior probability on each 
data point under all models, because it is almost zero. Instead 
keep an “active list” which you update every once in a while.

 Generalized (Incomplete) EM: 
It might be hard to find the ML parameters in the M-step, even 
given the completed data. We can still make progress by 
doing an M-step that improves the likelihood a bit (e.g. 
gradient step). Recall the IRLS step in the mixture of experts 
model.
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A Report Card for EM
 Some good things about EM:

 no learning rate (step-size) parameter
 automatically enforces parameter constraints
 very fast for low dimensions
 each iteration guaranteed to improve likelihood

 Some bad things about EM:
 can get stuck in local minima
 can be slower than conjugate gradient (especially near convergence)
 requires expensive inference step
 is a maximum likelihood/MAP method
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