Machine Learning

10-701, Fall 2016
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- Reading: Chap. 9, 13, C.B book
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What is clustering? o°

e Are there any “grouping” them ?
e What is each group ?

e How many ?

e How to identify them?
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Examples :

e Images

= P L |
= ["Z:" =1

e lLanguage

e species
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Issues for clustering

e \What is a natural grouping among these objects?
e Definition of "groupness”

e \What makes objects “related”?

e Definition of "similarity/distance"

e Representation for objects
e Vector space? Normalization?

e How many clusters?
e Fixed a priori?
e Completely data driven?
Avoid “trivial” clusters - too large or small

Minkowski metric

\/ Clustering Algorithms

e Partitional algorithms

" [
d(x,y)= \/Zm—yir

=

e Hierarchical algorithms y=t

e Formal foundation and convergence
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Partitioning Algorithms :

e Partitioning method: Construct a partition of n objects into a
set of K clusters

e Given: a set of objects and the number{g/

e Find: a partition of K clusters that optimizes the chosen
partitioning criterion
e Globally optimal: exhaustively enumerate all partitions
e Effective heuristic methods: K-means and K-medoids algorithms
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K-Means :

Algorithm

1. Decide on a value for k.
2. Initialize the k cluster centers randomly if necessary.

3. Decide the class memberships of the N objects by assigning them
to the nearest cluster centroids (aka the center of gravity or mean)

4. Re-estimate the k cluster centers, by assuming the memberships
found above are correct.

5. If none of the N objects changed membership in the last iteration,
exit. Otherwise go to 3.
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K-means Clustering: Step 1
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K-means Clustering: Step 2
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K-means Clustering: Step 3
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K-means Clustering: Step 4
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K-means Clustering: Step 5
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Convergence o6

e \Why should the K-means algorithm ever reach a fixed point?

e -- A state in which clusters don’t change.

e K-means is a special case of a general procedure known as
the Expectation Maximization (EM) algorithm.

e EMis known to converge.

e Number of iterations could be large. )
e Goodness measure ;
e sum of squared distances from cluster centroid: i )i,
mg k 3
2 2
SDi, =Y ey — il SDx =S SDx,
J=1 =1 1 23 456 7 8 910

e Reassignment monotonically decreases SD since each vector
IS assigned to the closest centroid.

© Eric Xing @ CMU, 2006-2016 12



Time Complexity -

e Computing distance between two objs is O(m) where m is the
dimensionality of the vectors.

S ssigning clusters: O(Kn) distance computations, or
O(Knm).

e Computing centroids: Each doc gets added once to some
centroid: Q(nm).

e Assu hese two steps are each done once for | iterations:
O(IKnm
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Seed Choice ot

e Results can vary based on random seed selection.
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e Some seeds can result in poor convergence rate, or
convergence to sub-optimal clusterings.

e Select good seeds using a heuristic (e.g., doc least similar to any existing mean)
e Try out multiple starting points (very important!!!)
e |Initialize with the results of another method.
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How Many Clusters? -

e Number of clusters K is given
e Partition n docs into predetermined number of clusters

e Finding the “right” number of clusters is part of the problem

e Given objs, partition into an “appropriate” number of subsets.
e E.g., for query results - ideal value of K not known up front - though Ul may
impose limits.
e Solve an optimization problem: penalize having lots of
clusters T
e application dependent, e.g., compressed summary of search results list.
e Information theoretic approaches: model-based approach

e Tradeoff between having more clusters (better focus within
each cluster) and having too many clusters

e Nonparametric Bayesian Inference
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15



Clustering and partially
observable probabilistic models
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Unobserved Variables o

e A variable can be unobserved (latent) because:

e itis animaginary quantity meant to provide some simplified and abstractive view
of the data generation process

e.g., speech recognition models, mixture models ...

e itis a real-world object and/or phenomena, but difficult or impossible to measure
e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...

e itis a real-world object and/or phenomena, but sometimes wasn’t measured,
because of faulty sensors; or was measure with a noisy channel, etc.

e.g., traffic radio, aircraft signal on a radar screen,

e Discrete-tatent variables can be used to partition/cluster data
into sub-groups (mixture models, forthcoming).

e Continuous latent variables (factors) can be used for
dimensionality reduction (factor analysis, etc., later lectures).
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Mixture Models .
e A density model p(x) may be multi-modal.
e \We may be able to model it as a mixture of uni-modal
distributions (e.g., Gaussians).
e Each mode may correspond to a different sub-population
(e.g., male and female).
Zn
v/

.'ﬂ:.. 1I‘Irlll :. :

v

(a)
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Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components:
Flx| )
p(xn‘ﬂ?z) - Zk ,@J\I (Xa‘ /ukazk)

A\

_mixt\uregroportion mixture component
Z W

X

e This model can be used for unsupervised clustering.

e This model (fit by AutoClass) has been used to discover new kinds of stars in
astronomical data, etc.

© Eric Xing @ CMU, 2006-2016
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_ _ PCX) cose
GGM derivations oo

e Consider a mixture of K Gaussian components:
o Zis a latent class indicator vector:

p(z,)=multi(z, : 1) =[] (z, "
k

~

e Xis a conditional Gaussian variable with a class-specific mean/covariance

exp{-%(xn - 1) Z (X, ':Uk)}

pix. 2) =P QY ()

e The likelihood of a sample: /
L/ mixture component

mixture proportion

pX D)=, p(z* =Lmpx,|z* =L u%) Ve
- Zzn Hk ((”k )z,,k N (x, : 14,2 )z"k ): Zk N (XS] 1, 2))

p(x |z =1,1%)=

(27[)'"/2‘2,( ‘1/2

© Eric Xing @ CMU, 2006-2016 20



Learning mixture models

X; = Zy
M
Ze vk
Tu
ohy- )
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Why is Learning Harder? T 7

e In fully observed iid settings, the log likelihood decomposes

into a sum of local terms. ) )
Ab_ £(6:0)=1og p(x.2|0) = log p(z) 6,) + log p(X| 2.6,)
7 W, —  dox

e With latent variables, all the parameters become coupled
together via marginalization

4,(0;D)=log) p(x,z|0)=log) p(z|6,)p(x|2,6,)

/i B Z

X X5 X3
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Gradient Learning for mixture 1
models 4+

e \We can learn mixture densities using gradient descent on the
log likelihood. The gradients are quite interesting:

£(0)=logp(x|8)=log > 7, p, (x|6;)
k

ot 1 opx (x[6,)
20 p(x|0) ;”“ 00 /
7T, dlog p, (x‘é’k)

= 9

4 p(x\&)pk(x‘ ) PY:
_ p (x|6;) dlog p, (x|6,) 04,
_;”k p(x|0) 06, ‘;”‘ 20,

e |n other words, the gradient is the responsibility weighted sum
of the individual log likelihood gradients.

e (Can pass this to a conjugate gradient routine.
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Parameter Constraints

e Often we have constraints on the parameters, e.g. X, 7, =1, X

being symmetric positive definite (hence X > 0).

e \We can use constrained optimization, or we can
reparameterize in terms of unconstrained values.
e For normalized weights, use the softmax transform:

e For covariance matrices, use the Cholesky decomposition:
>1T=ATA
where A is upper diagonal with positive diagonal:
Aj zexp(l,)>0 Ay =n; (J>1) Ay =0 (J <)
the parameters y;, 4;, 77; € R are unconstrained.

e Use chain rule to compute ol ol

on’ oA’
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The Expectation-Maximization i
(EM) Algorithm oo
2 )7
L ] ; ;:
. s @;
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EM algorithm for GMM -

e E.g., A mixture of K Gaussians:

e Zis a latent class indicator vector

p(z,) =multi(z, : 7) =[] (z, )"

k

e X is a conditional Gaussian variable with a class-specific
mean/covariance

p(x, |28 =1, 1,%) = expl-3(X, - 1) S (X, - 11)}

R (Zﬂ)m/z‘Zk‘l/Z

e The likelihood of a sample:
POX | 2) =D, p(Z“ =1 7)p(x,| 2" =1, 1. %)

:Zzn]i[k((ﬂ-k)zrl§ N(Xn :/’lk’zk)Zﬁ ): Zkﬂ-kN(X’l'uk’zk)
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EM algorithm for GMM

e Recall MLE for completely observed data <>

e Data log-likelihood C x;, O

/(B;D)=10gH p(zZ,, n)—logH P(z, [7)P(X, | Z,, 4,0)
= Zlogl—[ 7rk + Zlogl_[ N(Xn,yk,a)
= ZZZ log 7, - ZZznz = (X, ,uk) +C

e MLE 7%k,MLE =argmax, £(8; D), Z Kk
U = arg maX/U /(9, D) = ,[lk,MLE — ﬁ

O, ue =argmax_~£(0;D)

—

e What if we do not know z,,? 2, — pzf =1|x, u,ZV)

© Eric Xing @ CMU, 2006-2016
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EM algorithm for GMM . . :

e Start: T) \’L‘-\:"’\“"Nd‘?‘
e "Guess" the c%rjtrojcf yn andﬁcs\:(?riance 1f&c‘)f each of the K clusters
R T T G
- | A2 O] & ij
(@) (c) (d) (€)
& LA R
(f) (9) (h) (1)
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Comparing to K-means o

o Start:

e "Guess" the centroid g, and coveriance 2, of each of the K clusters
e Loop

e Foreach point n=1to N, ‘\

)20 = )

compute its gtlsteNlabel:
(t) (
Z. Farg mEX(Xn — I

{(Z.1%)
e For each cluster k=1:K ﬁ
t+l) _ Z 5(2(0 k)X H _ T ~
A > 52 k) % T 2w

e = - A 3~ e
N ha x s u'i*.'.v. T = T
L] L] - - . - L]
. :;;i o+ :"'.;l.-" + % ::;i!t * /X ;H’ + ::;:}3 » . :;} &
+ M o + M o b & &
(@) (b) (c) id) (e) ()
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Notes on EM Algorithm o°

e EM is an optimization strategy for objective functions that can
be interpreted as likelihoods in the presence of missing data.

e |t is much simpler than gradient methods:

e No need to choose step size.
e Enforces constraints automatically.
e Calls inference and fully observed learning as subroutines.

e EM is an lterative algorithm with two linked steps:
e E-step: fill-in hidden values using inference, p(z|x, &).

e M-step: update parameters t+1 using standard MLE/MAP method applied to
completed data

e \We will prove that this procedure monotonically improves (or
leaves it unchanged). Thus it always converges to a local
optimum of the likelihood.

© Eric Xing @ CMU, 2006-2016
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Identifiability

e A mixture model induces a multi-modal likelihood.

e Hence gradient ascent can only find a local maximum.

e Mixture models are unidentifiable, since we can always switch
the hidden labels without affecting the likelihood.

e Hence we should be careful in trying to interpret the
“meaning” of latent variables.

likelihood

/

parameter space
© Eric Xing @ CMU, 2006-2016 31



How is EM derived?

e A mixture of K Gaussians:
e /s a latent class indicator vector

p(z,) =multi(z, : 1) =[] (=,
k

e Xis a conditional Gaussian variable with a class-specific mean/covariance

1 g
p(xn ‘znk - 19#92) = (27;)’”/2‘2 ‘1/2 exp{—%(xn - Hy )T 2kl(xn —,le)}
k

e The likelihood of a sample:
wE)=3 p(z, =11m)p(%| 2, =1, 1)
= Zzn Hk ((”k )ZE N (X, :ﬂk:Zk)zﬁ ): Zk T NG| 4,2)

e The “complete” likelihood

\/ ﬁx’nw: p(znk :l‘ﬂ-)p(xa| an :la/usz):ﬂ-kN(Xa‘/ukazk)

p(xnazn lLl’E) :H[ﬂ-kN(Xa‘ ﬂkﬂzk)]2§

k
But this is itself a random variable! Not good as objective function

© Eric Xing @ CMU, 2006-2016
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How is EM derived? -
e The complete log likelihood:
£(09;D) = logH P(Z,,X,) = logH p(z, [ 7)P(X, | Z,, 1, 0) i
N
~ Zlog]] T+ Zlog]] N(X ;14 ,0)7
- ZZZ log 7, - ZZZ L (%, - p)° +C %@/
e The expected complete log likelihood :r(jrlj_/

(£0:x12)) = oz p(z, 1), 0+ LllorpX, |20 6D),.,
- 3 Xz¥)logm, —- = 2 22 )0, = )" i Cx, = )+ logfE | +C )
n ke n k ~—
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E-step

o We maximize</c (9)> iteratively using the following

iterative procedure:

— Expectation step: computing the expected value of the

sufficient statistics of the hidden variables (i.e., z) given

current est. of the parameters (i.e., zand n).

7Ty

WE - x)

k

k(t k k t t
4 ():<Zn >q(t) :p(zn :1|X91u( )92( )):

n

Tm— =

27N (x

Here we are essentially doing inference

—
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M-step oo

o We maximize<lc (9)> iteratively using the following
iterative procudure:

— Maximization step: compute the parameters under

N
current results of the expected value of the hidden variables
T, :argmax</c (9)>, = o </ (9)> 0,Vk, st Zﬂ'k =1

k
— ﬂ: = o (t)/ Z’[y/ nk
S
. o*Ix
L, = arg max</ (9)>, = ,u(”l) = k(t) Fact:
OlogA™

( y)(x — 1% = D) @i'l |:AT

T, = argmax</ (9)>, = 2D = ox Ax ¢

Z z.k(t)
OA
This is iWLE except that the variables that are hidden are

replaced by their expectations (in general they will by replaced by their
corresponding "sufficient statistics")

= XX
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Compare: K-means :
e The EM algorithm for mixtures of Gaussians is like a "soft
version" of the K-means algorithm.
e Inthe K-means “E-step” we do hard assignment:
Z(t) =argmax(x ,u(t)) > 1(t)(x ,u(t))
e |n the K-means “M-step” we update the means as the
weighted sum of the data, but now the weights are 0 or 1:
o) _ >, 6z, k)x
Ky Z 5(2 (t)
F2X Es N B N pek - Pl Fat
(a) (b) (c) (d) () (f)
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Theory underlying EM -

e \What are we doing?

e Recall that according to MLE, we intend to learn the model
parameter that would have maximize the likelihood of the
data.

e But we do not observe z, so computing
£(0;D)=logy p(x,z|0)=log> p(z|6,)p(x|z,6,)

is difficult!

e \What shall we do?

© Eric Xing @ CMU, 2006-2016 37



Complete & Incomplete Log
Likelihoods

o gm&l@g likelihood

Let X denote the observable variable(s), and Z denote the latent variable(s).
If Z could be observed, then o
4, (0;x,z)=logp(x,z|0)

e Usually, optimizing () given both z and x is straightforward (c.f. MLE for fully
observed models).

e Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of
factors, the parameter for each factor can be estimated separately.

e But given that Z is not observed, () is a random quantity, cannot be
maximized directly.

e Incomplete log likelihood
With z unobserved, our objective becomes the log of a marginal probability:

£,(0;x)=log p(x | ) @;mx,z 16)

e This objective won't decouple
© Eric Xing @ CMU, 2006-2016 38




Expected Complete Log it
Likelihood _t 109 e 4+

4
A deterministic function of &

Linear in £() --- inherit its factorizgpbiility

Does maximizing this surrogate yigld a maximizer of the likelihood?
e Jensen’s inequality 2ol J)
¢(f>)=logp(x |0) = Zﬁ:

=log) p(x.z|0) Z
p(x,2 |6) /

=1lo Z|X

0829120

p(x.z|6)

> | . .

;;CI(Z | x)log 2 1) j =  (0;%)=(£(6; x,z)>q {ﬂ
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Lower Bounds and Free Energy os

e For fixed data x, define a functional called the free energy:

p(x,z|6)
F(q,0))= |
q,0) §q<z|x>og 2 10

< £(6;x)

e The EM algorithm is coordinate-ascent on F :

t+1

o E-step: g'* =argmaxF (q,6") 1(:»())
q ———
6t+1 _ argmHaXF(q”l,é?t)

—

e M-step:

© Eric Xing @ CMU, 2006-2016 Q) 40



E-step: maximization of expected | 3:2:
L w.rt. g :

e Claim: b1 _ . .
q = argmg{&F(q,@ )4 p(z |Xlﬂ

——

e This is the posterior distribution over the latent variables given the data and the
parameters. Often we need this at test time anyway (e.g. to perform
classification).

e Proof (easy): this setting attains the bound 46,x)>F(q,0)
9
v t
o ~. pezley  PUEX)
= 6'),0") = L6091
(P(z[x.6").6" gﬁx ) e o) /
= p(z|x,60")log p(x| ") 7@ ]
=log p(x|0") =£(6";

e Can also show this result using variational calculus or the fact
that ¢6:x)-F(q.0)=KL(q | p(z | x.0))
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. - 000
E-step = plug In posterior sect
expectation of latent variables oo
o Without loss of generality: assume that p(x,z|0) is a
generalized exponential family distribution:
/ %h(x Z)eXp{ZQﬁ(X,Z)}
e Special cases: if p(X|Z) are GLIMs, then f(x,2) =1 (2)&(X)
e The expected complete log likelihood under ¢+ =p(z |x,0")

IS

(4(0:x.2)) ., =D.q(z|x,6)logp(x.2 |6°)~A(®)

—

- Ze’t <f’ (X’z)>q(zx,0t) _A(e)

p~GLIM

= 2O @)y 5 (X)-AO)

© Eric Xing @ CMU, 2006-2016
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M-step: maximization of expected | 3:2:
(L w.rt. 6 ot

e Note that the free energy breaks into two terms:

p(x,20)
F(q.0)= 1
q,0) ;q(zlx)og 2 10

=>q(z | x)log p(x,z [6)-Y q(z | x)logq(z | x)

=<4(9;x,z)>q +H

e The first term is the expected complete log likelihood (energy) and the second
term, which does not depend on 4, is the entropy.

e Thus, in the M-step, maximizing with respect to g for fixed g
we only need to consider the first term:

gt —argmax</ (0;x z)> i —argmaXZq(z | x)logp(x,z |6)

e Under optimal gt*, this is equivalent to solvmg a standard MLE of fully observed
model p(x,z| 6), with the sufficient statistics involving z replaced by their
expectations w.r.t. p(z| x,0).
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Summary: EM Algorithm -

e A way of maximizing likelihood function for latent variable
models. Finds MLE of parameters when the original (hard)
problem can be broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

e Alternate between filling in the latent variables using the best
guess (posterior) and updating the parameters based on this

guess:
o E-step: }‘) —argmajéF 2 yt) )
0

e M-step: \;—argmaxl:(q”l Ht

e |[n the M-step we optimize a lower bound on the likelihood. In
the E-step we close the gap, making bound=likelihood.
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EM Variants oo

e Sparse EM:

Do not re-compute exactly the posterior probability on each
data point under all models, because it is almost zero. Instead
keep an “active list” which you update every once in a while.

e Generalized (Incomplete) EM.:

It might be hard to find the ML parameters in the M-step, even
given the completed data. We can still make progress by
doing an M-step that improves the likelihood a bit (e.g.
gradient step). Recall the IRLS step in the mixture of experts
model.
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A Report Card for EM

e Some good things about EM:

no learning rate (step-size) parameter
automatically enforces parameter constraints
very fast for low dimensions

each iteration guaranteed to improve likelihood

e Some bad things about EM:

can get stuck in local minima

can be slower than conjugate gradient (especially near convergence)
requires expensive inference step

is a maximum likelihood/MAP method

© Eric Xing @ CMU, 2006-2016
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