
Deep	
 Learning	

1	

Matt	
 Gormley	

Lecture	
 13	

October	
 19,	
 2016	

	

School of Computer Science

Readings:	

Bishop	
 Ch.	
 4.1.7,	
 Ch.	
 5	

Murphy	
 Ch.	
 16.5,	
 Ch.	
 28	

Mitchell	
 Ch.	
 4	

10-­‐701	
 Introduction	
 to	
 Machine	
 Learning	

Reminders	

•  Homework	
 3:	
 	

– due	
 10/24/16	

	

2	

Outline	

•  Deep	
 Neural	
 Networks	
 (DNNs)	

–  Three	
 ideas	
 for	
 training	
 a	
 DNN	

–  Experiments:	
 MNIST	
 digit	
 classification	

–  Autoencoders	

–  Pretraining	

•  Recurrent	
 Neural	
 Networks	
 (RNNs)	

–  Bidirectional	
 RNNs	

–  Deep	
 Bidirectional	
 RNNs	

–  Deep	
 Bidirectional	
 LSTMs	

–  Connection	
 to	
 forward-­‐backward	
 algorithm	

•  Convolutional	
 Neural	
 Networks	
 (CNNs)	

–  Convolutional	
 layers	

–  Pooling	
 layers	

–  Image	
 recognition	

	

	
 3	

PRE-­‐TRAINING	
 FOR	
 DEEP	
 NETS	

4	

A	
 Recipe	
 for	
 	

Machine	
 Learning	

1.	
 Given	
 training	
 data:	
 3.	
 Define	
 goal:	

5	

Background	

2.	
 Choose	
 each	
 of	
 these:	

–  Decision	
 function	

–  Loss	
 function	

4.	
 Train	
 with	
 SGD:	

(take	
 small	
 steps	

opposite	
 the	
 gradient)	

Goals	
 for	
 Today’s	
 Lecture	

1.  Explore	
 a	
 new	
 class	
 of	
 decision	
 functions	
 	

(Deep	
 Neural	
 Networks)	

2.  Consider	
 variants	
 of	
 this	
 recipe	
 for	
 training	

Idea	
 #1:	
 No	
 pre-­‐training	

6	

Training	

�  Idea	
 #1:	
 (Just	
 like	
 a	
 shallow	
 network)	

�  Compute	
 the	
 supervised	
 gradient	
 by	
 backpropagation.	

�  Take	
 small	
 steps	
 in	
 the	
 direction	
 of	
 the	
 gradient	
 (SGD)	

Comparison	
 on	
 MNIST	

1.0	

1.5	

2.0	

2.5	

Shallow	
 Net	
 Idea	
 #1	

(Deep	
 Net,	
 no-­‐
pretraining)	
 	

Idea	
 #2	

(Deep	
 Net,	

supervised	
 pre-­‐
training)	

Idea	
 #3	

(Deep	
 Net,	

unsupervised	
 pre-­‐
training)	

%	

Er

ro
r	

7	

Training	

•  Results	
 from	
 Bengio	
 et	
 al.	
 (2006)	
 on	
 	

MNIST	
 digit	
 classification	
 task	

•  Percent	
 error	
 (lower	
 is	
 better)	
 	

Comparison	
 on	
 MNIST	

1.0	

1.5	

2.0	

2.5	

Shallow	
 Net	
 Idea	
 #1	

(Deep	
 Net,	
 no-­‐
pretraining)	
 	

Idea	
 #2	

(Deep	
 Net,	

supervised	
 pre-­‐
training)	

Idea	
 #3	

(Deep	
 Net,	

unsupervised	
 pre-­‐
training)	

%	

Er

ro
r	

8	

Training	

•  Results	
 from	
 Bengio	
 et	
 al.	
 (2006)	
 on	
 	

MNIST	
 digit	
 classification	
 task	

•  Percent	
 error	
 (lower	
 is	
 better)	
 	

Idea	
 #1:	
 No	
 pre-­‐training	

•  What	
 goes	
 wrong?	

A.  Gets	
 stuck	
 in	
 local	
 optima	

•  Nonconvex	
 objective	
 	

•  Usually	
 start	
 at	
 a	
 random	
 (bad)	
 point	
 in	
 parameter	
 space	

B.  Gradient	
 is	
 progressively	
 getting	
 more	
 dilute	

•  “Vanishing	
 gradients”	

9	

Training	

�  Idea	
 #1:	
 (Just	
 like	
 a	
 shallow	
 network)	

�  Compute	
 the	
 supervised	
 gradient	
 by	
 backpropagation.	

�  Take	
 small	
 steps	
 in	
 the	
 direction	
 of	
 the	
 gradient	
 (SGD)	

0.0
0.5

1.0

-20
-15

-10
-5

-20

-15

-10

-5

0

Problem	
 A:	

Nonconvexity	

•  Where	
 does	
 the	
 nonconvexity	
 come	
 from?	

•  Even	
 a	
 simple	
 quadratic	
 z	
 =	
 xy	
 objective	
 is	

nonconvex:	

10	

Training	

z	

x	

y	

Problem	
 A:	

Nonconvexity	

•  Where	
 does	
 the	
 nonconvexity	
 come	
 from?	

•  Even	
 a	
 simple	
 quadratic	
 z	
 =	
 xy	
 objective	
 is	

nonconvex:	

11	

Training	

0.0
0.5

1.0

-20 -15 -10 -5

-20

-15

-10

-5

0

z	

x	

y	

12	

Stochastic	
 Gradient	

Descent…	

…climbs	
 to	
 the	
 top	

of	
 the	
 nearest	
 hill…	

	

	

Problem	
 A:	

Nonconvexity	
 Training	

13	

Stochastic	
 Gradient	

Descent…	

…climbs	
 to	
 the	
 top	

of	
 the	
 nearest	
 hill…	

	

	

Problem	
 A:	

Nonconvexity	
 Training	

14	

Stochastic	
 Gradient	

Descent…	

…climbs	
 to	
 the	
 top	

of	
 the	
 nearest	
 hill…	

	

	

Problem	
 A:	

Nonconvexity	
 Training	

15	

Stochastic	
 Gradient	

Descent…	

…climbs	
 to	
 the	
 top	

of	
 the	
 nearest	
 hill…	

	

	

Problem	
 A:	

Nonconvexity	
 Training	

16	

Stochastic	
 Gradient	

Descent…	

…climbs	
 to	
 the	
 top	

of	
 the	
 nearest	
 hill…	

	

…which	
 might	
 not	

lead	
 to	
 the	
 top	
 of	

the	
 mountain	

	

	

Problem	
 A:	

Nonconvexity	
 Training	

Problem	
 B:	

Vanishing	
 Gradients	

The	
 gradient	
 for	
 an	
 edge	

at	
 the	
 base	
 of	
 the	

network	
 depends	
 on	
 the	

gradients	
 of	
 many	
 edges	

above	
 it	

	

The	
 chain	
 rule	
 multiplies	

many	
 of	
 these	
 partial	

derivatives	
 together	

17	

Training	

…

…Input	

Hidden	
 Layer	

…Hidden	
 Layer	

…

Output	

Hidden	
 Layer	

Problem	
 B:	

Vanishing	
 Gradients	

The	
 gradient	
 for	
 an	
 edge	

at	
 the	
 base	
 of	
 the	

network	
 depends	
 on	
 the	

gradients	
 of	
 many	
 edges	

above	
 it	

	

The	
 chain	
 rule	
 multiplies	

many	
 of	
 these	
 partial	

derivatives	
 together	

18	

Training	

…

…Input	

Hidden	
 Layer	

…Hidden	
 Layer	

…

Output	

Hidden	
 Layer	

Problem	
 B:	

Vanishing	
 Gradients	

The	
 gradient	
 for	
 an	
 edge	

at	
 the	
 base	
 of	
 the	

network	
 depends	
 on	
 the	

gradients	
 of	
 many	
 edges	

above	
 it	

	

The	
 chain	
 rule	
 multiplies	

many	
 of	
 these	
 partial	

derivatives	
 together	

19	

Training	

…

…Input	

Hidden	
 Layer	

…Hidden	
 Layer	

…

Output	

Hidden	
 Layer	

0.1	

0.3	

0.2	

0.7	

Idea	
 #1:	
 No	
 pre-­‐training	

•  What	
 goes	
 wrong?	

A.  Gets	
 stuck	
 in	
 local	
 optima	

•  Nonconvex	
 objective	
 	

•  Usually	
 start	
 at	
 a	
 random	
 (bad)	
 point	
 in	
 parameter	
 space	

B.  Gradient	
 is	
 progressively	
 getting	
 more	
 dilute	

•  “Vanishing	
 gradients”	

20	

Training	

�  Idea	
 #1:	
 (Just	
 like	
 a	
 shallow	
 network)	

�  Compute	
 the	
 supervised	
 gradient	
 by	
 backpropagation.	

�  Take	
 small	
 steps	
 in	
 the	
 direction	
 of	
 the	
 gradient	
 (SGD)	

Idea	
 #2:	
 Supervised	
 	

Pre-­‐training	

1.  Supervised	
 Pre-­‐training	

–  Use	
 labeled	
 data	

–  Work	
 bottom-­‐up	

•  Train	
 hidden	
 layer	
 1.	
 Then	
 fix	
 its	
 parameters.	

•  Train	
 hidden	
 layer	
 2.	
 Then	
 fix	
 its	
 parameters.	

•  …	

•  Train	
 hidden	
 layer	
 n.	
 Then	
 fix	
 its	
 parameters.	

2.  Supervised	
 Fine-­‐tuning	

–  Use	
 labeled	
 data	
 to	
 train	
 following	
 “Idea	
 #1”	

–  Refine	
 the	
 features	
 by	
 backpropagation	
 so	
 that	
 they	
 become	

tuned	
 to	
 the	
 end-­‐task	

21	

Training	

�  Idea	
 #2:	
 (Two	
 Steps)	

�  Train	
 each	
 level	
 of	
 the	
 model	
 in	
 a	
 greedy	
 way	

�  Then	
 use	
 our	
 original	
 idea	

Idea	
 #2:	
 Supervised	
 	

Pre-­‐training	

22	

Training	

�  Idea	
 #2:	
 (Two	
 Steps)	

�  Train	
 each	
 level	
 of	
 the	
 model	
 in	
 a	
 greedy	
 way	

�  Then	
 use	
 our	
 original	
 idea	

…

…

Output	

Input	

Hidden	
 Layer	
 1	

�  Idea	
 #2:	
 (Two	
 Steps)	

�  Train	
 each	
 level	
 of	
 the	
 model	
 in	
 a	
 greedy	
 way	

�  Then	
 use	
 our	
 original	
 idea	

Idea	
 #2:	
 Supervised	
 	

Pre-­‐training	

23	

Training	

…

…Input	

Hidden	
 Layer	
 1	

…

Output	

Hidden	
 Layer	
 2	

Idea	
 #2:	
 Supervised	
 	

Pre-­‐training	

24	

Training	

�  Idea	
 #2:	
 (Two	
 Steps)	

�  Train	
 each	
 level	
 of	
 the	
 model	
 in	
 a	
 greedy	
 way	

�  Then	
 use	
 our	
 original	
 idea	

…

…Input	

Hidden	
 Layer	
 1	

…Hidden	
 Layer	
 2	

…

Output	

Hidden	
 Layer	
 3	

Idea	
 #2:	
 Supervised	
 	

Pre-­‐training	

25	

Training	

�  Idea	
 #2:	
 (Two	
 Steps)	

�  Train	
 each	
 level	
 of	
 the	
 model	
 in	
 a	
 greedy	
 way	

�  Then	
 use	
 our	
 original	
 idea	

…

…Input	

Hidden	
 Layer	
 1	

…Hidden	
 Layer	
 2	

…

Output	

Hidden	
 Layer	
 3	

Comparison	
 on	
 MNIST	

1.0	

1.5	

2.0	

2.5	

Shallow	
 Net	
 Idea	
 #1	

(Deep	
 Net,	
 no-­‐
pretraining)	
 	

Idea	
 #2	

(Deep	
 Net,	

supervised	
 pre-­‐
training)	

Idea	
 #3	

(Deep	
 Net,	

unsupervised	
 pre-­‐
training)	

%	

Er

ro
r	

26	

Training	

•  Results	
 from	
 Bengio	
 et	
 al.	
 (2006)	
 on	
 	

MNIST	
 digit	
 classification	
 task	

•  Percent	
 error	
 (lower	
 is	
 better)	
 	

Comparison	
 on	
 MNIST	

1.0	

1.5	

2.0	

2.5	

Shallow	
 Net	
 Idea	
 #1	

(Deep	
 Net,	
 no-­‐
pretraining)	
 	

Idea	
 #2	

(Deep	
 Net,	

supervised	
 pre-­‐
training)	

Idea	
 #3	

(Deep	
 Net,	

unsupervised	
 pre-­‐
training)	

%	

Er

ro
r	

27	

Training	

•  Results	
 from	
 Bengio	
 et	
 al.	
 (2006)	
 on	
 	

MNIST	
 digit	
 classification	
 task	

•  Percent	
 error	
 (lower	
 is	
 better)	
 	

Idea	
 #3:	
 Unsupervised	

Pre-­‐training	

1.  Unsupervised	
 Pre-­‐training	

–  Use	
 unlabeled	
 data	

–  Work	
 bottom-­‐up	

•  Train	
 hidden	
 layer	
 1.	
 Then	
 fix	
 its	
 parameters.	

•  Train	
 hidden	
 layer	
 2.	
 Then	
 fix	
 its	
 parameters.	

•  …	

•  Train	
 hidden	
 layer	
 n.	
 Then	
 fix	
 its	
 parameters.	

2.  Supervised	
 Fine-­‐tuning	

–  Use	
 labeled	
 data	
 to	
 train	
 following	
 “Idea	
 #1”	

–  Refine	
 the	
 features	
 by	
 backpropagation	
 so	
 that	
 they	
 become	

tuned	
 to	
 the	
 end-­‐task	

28	

Training	

�  Idea	
 #3:	
 (Two	
 Steps)	

�  Use	
 our	
 original	
 idea,	
 but	
 pick	
 a	
 better	
 starting	
 point	

�  Train	
 each	
 level	
 of	
 the	
 model	
 in	
 a	
 greedy	
 way	

The	
 solution:	

Unsupervised	
 pre-­‐training	

29	

…

…Input	

Hidden	
 Layer	

Output	

Unsupervised	
 pre-­‐
training	
 of	
 the	
 first	
 layer:	
 	

•  What	
 should	
 it	
 predict?	

•  What	
 else	
 do	
 we	

observe?	
 	

•  The	
 input!	

This	
 topology	
 defines	
 an	

Auto-­‐encoder.	

The	
 solution:	

Unsupervised	
 pre-­‐training	

Unsupervised	
 pre-­‐
training	
 of	
 the	
 first	
 layer:	
 	

•  What	
 should	
 it	
 predict?	

•  What	
 else	
 do	
 we	

observe?	
 	

•  The	
 input!	

This	
 topology	
 defines	
 an	

Auto-­‐encoder.	

30	

…

…Input	

Hidden	
 Layer	

…“Input”	
 ’	
 ’	
 ’	
 ’	

Auto-­‐Encoders	

Key	
 idea:	
 Encourage	
 z	
 to	
 give	
 small	
 reconstruction	
 error:	

–  x’	
 is	
 the	
 reconstruction	
 of	
 x	

–  Loss	
 =	
 ||	
 x	
 –	
 DECODER(ENCODER(x))	
 ||2	

–  Train	
 with	
 the	
 same	
 backpropagation	
 algorithm	
 for	
 2-­‐layer	

Neural	
 Networks	
 with	
 xm	
 as	
 both	
 input	
 and	
 output.	

31	

…

…Input	

Hidden	
 Layer	

…“Input”	
 ’	
 ’	
 ’	
 ’	

Slide	
 adapted	
 from	
 Raman	
 Arora	

DECODER:	
 	
 x’	
 =	
 h(W’z)	

ENCODER:	
 	
 z	
 =	
 h(Wx)	

The	
 solution:	

Unsupervised	
 pre-­‐training	

Unsupervised	
 pre-­‐
training	

•  Work	
 bottom-­‐up	

–  Train	
 hidden	
 layer	
 1.	

Then	
 fix	
 its	
 parameters.	

–  Train	
 hidden	
 layer	
 2.	

Then	
 fix	
 its	
 parameters.	

–  …	

–  Train	
 hidden	
 layer	
 n.	

Then	
 fix	
 its	
 parameters.	

32	

…

…Input	

Hidden	
 Layer	

…“Input”	
 ’	
 ’	
 ’	
 ’	

The	
 solution:	

Unsupervised	
 pre-­‐training	

Unsupervised	
 pre-­‐
training	

•  Work	
 bottom-­‐up	

–  Train	
 hidden	
 layer	
 1.	

Then	
 fix	
 its	
 parameters.	

–  Train	
 hidden	
 layer	
 2.	

Then	
 fix	
 its	
 parameters.	

–  …	

–  Train	
 hidden	
 layer	
 n.	

Then	
 fix	
 its	
 parameters.	

33	

…

…Input	

Hidden	
 Layer	

…Hidden	
 Layer	

…’	
 ’	
 ’	

The	
 solution:	

Unsupervised	
 pre-­‐training	

Unsupervised	
 pre-­‐
training	

•  Work	
 bottom-­‐up	

–  Train	
 hidden	
 layer	
 1.	

Then	
 fix	
 its	
 parameters.	

–  Train	
 hidden	
 layer	
 2.	

Then	
 fix	
 its	
 parameters.	

–  …	

–  Train	
 hidden	
 layer	
 n.	

Then	
 fix	
 its	
 parameters.	

34	

…

…Input	

Hidden	
 Layer	

…Hidden	
 Layer	

…Hidden	
 Layer	

…’	
 ’	
 ’	

The	
 solution:	

Unsupervised	
 pre-­‐training	

Unsupervised	
 pre-­‐
training	

•  Work	
 bottom-­‐up	

–  Train	
 hidden	
 layer	
 1.	

Then	
 fix	
 its	
 parameters.	

–  Train	
 hidden	
 layer	
 2.	

Then	
 fix	
 its	
 parameters.	

–  …	

–  Train	
 hidden	
 layer	
 n.	

Then	
 fix	
 its	
 parameters.	

Supervised	
 fine-­‐tuning	

Backprop	
 and	
 update	
 all	

parameters	

35	

…

…Input	

Hidden	
 Layer	

…Hidden	
 Layer	

…Hidden	
 Layer	

Output	

Deep	
 Network	
 Training	
 	

	

36	

�  Idea	
 #3:	

1.  Unsupervised	
 layer-­‐wise	
 pre-­‐training	

2.  Supervised	
 fine-­‐tuning	

�  Idea	
 #2:	

1.  Supervised	
 layer-­‐wise	
 pre-­‐training	

2.  Supervised	
 fine-­‐tuning	

�  Idea	
 #1:	

1.  Supervised	
 fine-­‐tuning	
 only	

Comparison	
 on	
 MNIST	

1.0	

1.5	

2.0	

2.5	

Shallow	
 Net	
 Idea	
 #1	

(Deep	
 Net,	
 no-­‐
pretraining)	
 	

Idea	
 #2	

(Deep	
 Net,	

supervised	
 pre-­‐
training)	

Idea	
 #3	

(Deep	
 Net,	

unsupervised	
 pre-­‐
training)	

%	

Er

ro
r	

37	

Training	

•  Results	
 from	
 Bengio	
 et	
 al.	
 (2006)	
 on	
 	

MNIST	
 digit	
 classification	
 task	

•  Percent	
 error	
 (lower	
 is	
 better)	
 	

Comparison	
 on	
 MNIST	

1.0	

1.5	

2.0	

2.5	

Shallow	
 Net	
 Idea	
 #1	

(Deep	
 Net,	
 no-­‐
pretraining)	
 	

Idea	
 #2	

(Deep	
 Net,	

supervised	
 pre-­‐
training)	

Idea	
 #3	

(Deep	
 Net,	

unsupervised	
 pre-­‐
training)	

%	

Er

ro
r	

38	

Training	

•  Results	
 from	
 Bengio	
 et	
 al.	
 (2006)	
 on	
 	

MNIST	
 digit	
 classification	
 task	

•  Percent	
 error	
 (lower	
 is	
 better)	
 	

Is	
 layer-­‐wise	
 pre-­‐training	

always	
 necessary?	

39	

Training	

In	
 2010,	
 a	
 record	
 on	
 a	
 hand-­‐writing	

recognition	
 task	
 was	
 set	
 by	
 standard	
 supervised	

backpropagation	
 (our	
 Idea	
 #1).	

	

How?	
 A	
 very	
 fast	
 implementation	
 on	
 GPUs.	

	

See	
 Ciresen	
 et	
 al.	
 (2010)	

Deep	
 Learning	

•  Goal:	
 learn	
 features	
 at	
 different	
 levels	
 of	

abstraction	

•  Training	
 can	
 be	
 tricky	
 due	
 to…	

– Nonconvexity	

– Vanishing	
 gradients	

•  Unsupervised	
 layer-­‐wise	
 pre-­‐training	
 can	

help	
 with	
 both!	

40	

RECURRENT	
 NEURAL	
 NETWORKS	

41	

Recurrent	
 Neural	
 Networks	
 (RNNs)	

42	

xt

h

yt

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition	
 of	
 the	
 RNN:	
 inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units: h = (h1, h2, . . . , hT), hi � RJ

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

Recurrent	
 Neural	
 Networks	
 (RNNs)	

43	

x1

h1

y1

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition	
 of	
 the	
 RNN:	
 inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units: h = (h1, h2, . . . , hT), hi � RJ

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5

Recurrent	
 Neural	
 Networks	
 (RNNs)	

44	

x1

h1

y1

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition	
 of	
 the	
 RNN:	
 inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units: h = (h1, h2, . . . , hT), hi � RJ

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5

Recurrent	
 Neural	
 Networks	
 (RNNs)	

•  If	
 T=1,	
 then	
 we	
 have	
 a	
 standard	

feed-­‐forward	
 neural	
 net	
 with	

one	
 hidden	
 layer	

•  All	
 of	
 the	
 deep	
 nets	
 from	
 last	

lecture	
 (DNN,	
 DBN,	
 DBM)	

required	
 fixed	
 size	
 inputs/
outputs	

45	

x1

h1

y1

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition	
 of	
 the	
 RNN:	
 inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units: h = (h1, h2, . . . , hT), hi � RJ

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

Recurrent	
 Neural	
 Networks	
 (RNNs)	

•  By	
 unrolling	
 the	
 RNN	
 through	

time,	
 we	
 can	
 share	
 parameters	

and	
 accommodate	
 arbitrary	

length	
 input/output	
 pairs	

•  Applications:	
 time-­‐series	
 data	

such	
 as	
 sentences,	
 speech,	

stock-­‐market,	
 signal	
 data,	
 etc.	

46	

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition	
 of	
 the	
 RNN:	
 inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units: h = (h1, h2, . . . , hT), hi � RJ

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

xt

h

yt

Background:	
 Backprop	
 through	
 time	

Recurrent	
 neural	

network:	

BPTT:	
 	

1.	
 Unroll	
 the	

computation	

over	
 time	

47	

(Robi
nson	

&	
 Fall
side,	
 1

987)	

(Werbos
,	
 1988

)	

(Mozer,	

1995)

	

a xt

bt

xt+1

yt+1

a x1

b1

x2

b2

x3

b3

x4

y4

2.	
 Run	

backprop	

through	
 the	

resulting	
 feed-­‐
forward	

network	

Bidirectional	
 RNN	

48	

xt

h

yt

Recursive	
 Definition:	

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units:
��
h and

��
h

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

h

Bidirectional	
 RNN	

49	

x1

h1

y1

Recursive	
 Definition:	

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units:
��
h and

��
h

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

h1

x2

h2

y2

h2

x3

h3

y3

h3

x4

h4

y4

h4

Bidirectional	
 RNN	

50	

x1

h1

y1

Recursive	
 Definition:	

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units:
��
h and

��
h

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

h1

x2

h2

y2

h2

x3

h3

y3

h3

x4

h4

y4

h4

Bidirectional	
 RNN	

51	

x1

h1

y1

Recursive	
 Definition:	

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units:
��
h and

��
h

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

h1

x2

h2

y2

h2

x3

h3

y3

h3

x4

h4

y4

h4

Is	
 there	
 an	
 analogy	
 to	

some	
 other	
 recursive	

algorithm(s)	
 we	
 know?	

Deep	
 RNNs	

52	

Recursive	
 Definition:	

Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each y

t

defines a probability distribution over the
K possible states: that is, yk

t

(the k

th element of y
t

) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

� log Pr(z|x) = �
TX

t=1

log y

zt
t

(13)

Which leads to the following error derivatives at the output
layer

� @ log Pr(z|x)
@ŷ

k

t

= y

k

t

� �

k,zt (14)

where ŷ

t

is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

inputs: x = (x1, x2, . . . , xT), xi � RI

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Figure	
 from	
 (Graves	
 et	
 al.,	
 2013)	

Deep	
 Bidirectional	
 RNNs	

53	

inputs: x = (x1, x2, . . . , xT), xi � RI

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

Figure	
 from	
 (Graves	
 et	
 al.,	
 2013)	

xt

h

yt

h

h’

h’

•  Notice	
 that	
 the	
 upper	

level	
 hidden	
 units	
 have	

input	
 from	
 two	
 previous	

layers	
 (i.e.	
 wider	
 input)	

•  Likewise	
 for	
 the	
 output	

layer	

•  What	
 analogy	
 can	
 we	

draw	
 to	
 DNNs,	
 DBNs,	

DBMs?	

Long	
 Short-­‐Term	
 Memory	
 (LSTM)	

Motivation:	

•  Standard	
 RNNs	
 have	
 trouble	
 learning	
 long	

distance	
 dependencies	

•  LSTMs	
 combat	
 this	
 issue	

54	

x1

h1

y1

x2

h2

y2

xT-1

hT-1

yT-1

xT

hT

yT …	

…	

…	

Long	
 Short-­‐Term	
 Memory	
 (LSTM)	

Motivation:	

•  Vanishing	
 gradient	
 problem	
 for	
 Standard	
 RNNs	

•  Figure	
 shows	
 sensitivity	
 (darker	
 =	
 more	
 sensitive)	
 to	
 the	
 input	
 at	

time	
 t=1	

55	

Figure	
 from	
 (Graves,	
 2012)	

Long	
 Short-­‐Term	
 Memory	
 (LSTM)	

Motivation:	

•  LSTM	
 units	
 have	
 a	
 rich	
 internal	
 structure	

•  The	
 various	
 “gates”	
 determine	
 the	
 propagation	
 of	
 information	

and	
 can	
 choose	
 to	
 “remember”	
 or	
 “forget”	
 information	

56	

Figure	
 from	
 (Graves,	
 2012)	

CHAPTER 4. LONG SHORT-TERM MEMORY 35

Figure 4.4: Preservation of gradient information by LSTM. As in Fig-
ure 4.1 the shading of the nodes indicates their sensitivity to the inputs at time
one; in this case the black nodes are maximally sensitive and the white nodes
are entirely insensitive. The state of the input, forget, and output gates are
displayed below, to the left and above the hidden layer respectively. For sim-
plicity, all gates are either entirely open (‘O’) or closed (‘—’). The memory cell
‘remembers’ the first input as long as the forget gate is open and the input gate
is closed. The sensitivity of the output layer can be switched on and o↵ by the
output gate without a↵ecting the cell.

4.2 Influence of Preprocessing

The above discussion raises an important point about the influence of prepro-
cessing. If we can find a way to transform a task containing long range con-
textual dependencies into one containing only short-range dependencies before
presenting it to a sequence learning algorithm, then architectures such as LSTM
become somewhat redundant. For example, a raw speech signal typically has a
sampling rate of over 40 kHz. Clearly, a great many timesteps would have to
be spanned by a sequence learning algorithm attempting to label or model an
utterance presented in this form. However when the signal is first transformed
into a 100 Hz series of mel-frequency cepstral coe�cients, it becomes feasible to
model the data using an algorithm whose contextual range is relatively short,
such as a hidden Markov model.

Nonetheless, if such a transform is di�cult or unknown, or if we simply
wish to get a good result without having to design task-specific preprocessing
methods, algorithms capable of handling long time dependencies are essential.

4.3 Gradient Calculation

Like the networks discussed in the last chapter, LSTM is a di↵erentiable function
approximator that is typically trained with gradient descent. Recently, non
gradient-based training methods of LSTM have also been considered (Wierstra
et al., 2005; Schmidhuber et al., 2007), but they are outside the scope of this
book.

Long	
 Short-­‐Term	
 Memory	
 (LSTM)	

57	

x1

y1

x2

y2

x3

y3

x4

y4
are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Long	
 Short-­‐Term	
 Memory	
 (LSTM)	

58	

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

•  Input	
 gate:	
 masks	
 out	
 the	

standard	
 RNN	
 inputs	

•  Forget	
 gate:	
 masks	
 out	

the	
 previous	
 cell	

•  Cell:	
 stores	
 the	
 input/
forget	
 mixture	

•  Output	
 gate:	
 masks	
 out	

the	
 values	
 of	
 the	
 next	

hidden	

Figure	
 from	
 (Graves	
 et	
 al.,	
 2013)	

Long	
 Short-­‐Term	
 Memory	
 (LSTM)	

59	

x1

y1

x2

y2

x3

y3

x4

y4
are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Deep	
 Bidirectional	
 LSTM	
 (DBLSTM)	

60	

Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each y

t

defines a probability distribution over the
K possible states: that is, yk

t

(the k

th element of y
t

) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

� log Pr(z|x) = �
TX

t=1

log y

zt
t

(13)

Which leads to the following error derivatives at the output
layer

� @ log Pr(z|x)
@ŷ

k

t

= y

k

t

� �

k,zt (14)

where ŷ

t

is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input

Figure	
 from	
 (Graves	
 et	
 al.,	
 2013)	

•  Figure:	
 input/output	

layers	
 not	
 shown	

•  Same	
 general	

topology	
 as	
 a	
 Deep	

Bidirectional	
 RNN,	

but	
 with	
 LSTM	
 units	

in	
 the	
 hidden	
 layers	

•  No	
 additional	

representational	

power	
 over	
 DBRNN,	

but	
 easier	
 to	
 learn	
 in	

practice	

Deep	
 Bidirectional	
 LSTM	
 (DBLSTM)	

61	

Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each y

t

defines a probability distribution over the
K possible states: that is, yk

t

(the k

th element of y
t

) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

� log Pr(z|x) = �
TX

t=1

log y

zt
t

(13)

Which leads to the following error derivatives at the output
layer

� @ log Pr(z|x)
@ŷ

k

t

= y

k

t

� �

k,zt (14)

where ŷ

t

is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input

Figure	
 from	
 (Graves	
 et	
 al.,	
 2013)	

How	
 important	
 is	
 this	

particular	
 architecture?	

	

Jozefowicz	
 et	
 al.	
 (2015)	

evaluated	
 10,000	

different	
 LSTM-­‐like	

architectures	
 and	

found	
 several	
 variants	

that	
 worked	
 just	
 as	

well	
 on	
 several	
 tasks.	

CONVOLUTIONAL	
 NEURAL	
 NETS	

62	

Expressive Capabilities of ANNs
l  Boolean functions:

l  Every Boolean function can be represented by network with single hidden layer
l  But might require exponential (in number of inputs) hidden units

l  Continuous functions:
l  Every bounded continuous function can be approximated with arbitrary small

error, by network with one hidden layer [Cybenko 1989; Hornik et al 1989]
l  Any function can be approximated to arbitrary accuracy by a network with two

hidden layers [Cybenko 1988].

© Eric Xing @ CMU, 2006-2011 63

Using ANN to
hierarchical representation

Good Representations are hierarchical

•  In Language: hierarchy in syntax and semantics
– Words->Parts of Speech->Sentences->Text
– Objects,Actions,Attributes...-> Phrases -> Statements -> Stories

•  In Vision: part-whole hierarchy
– Pixels->Edges->Textons->Parts->Objects->Scenes

© Eric Xing @ CMU, 2006-2011 64

Trainable	

Feature	

Extractor	

Trainable	

Feature	

Extractor	

Trainable	

Classifier	

“Deep” learning: learning hierarchical
representations

•  Deep Learning: learning a hierarchy of internal representations
•  From low-level features to mid-level invariant representations,

to object identities
•  Representations are increasingly invariant as we go up the

layers
•  using multiple stages gets around the specificity/invariance

dilemma

© Eric Xing @ CMU, 2006-2011 65

Trainable	

Feature	

Extractor	

Trainable	

Feature	

Extractor	

Trainable	

Classifier	

Learned	
 Internal	
 Representa9on	

Filtering+NonLinearity+Pooling = 1
stage of a Convolutional Net

•  [Hubel & Wiesel 1962]:
– simple cells detect local features
– complex cells “pool” the outputs of simple cells within a retinotopic

neighborhood.

© Eric Xing @ CMU, 2006-2011 66

pooling	
 subsampling	

“Simple	
 cells”	

“Complex	
 cells”	

Mul9ple	

convolu9ons	

Re9notopic	
 Feature	
 Maps	

Convolu'ons,	

Filtering	

Pooling	

Subsampling	

Convolu'ons,	

Filtering	
 Pooling	

Subsampling	

Convolu'ons,	

Filtering	
 Convolu'ons,	

Classifica'on	

Convolutional Network: Multi-Stage
Trainable Architecture

Hierarchical	
 Architecture	

Representations are more global, more invariant, and more
abstract as we go up the layers

Alternated	
 Layers	
 of	
 Filtering	
 and	
 Spa'al	
 Pooling	

Filtering detects conjunctions of features
Pooling computes local disjunctions of features

Fully	
 Trainable	

All the layers are trainable

© Eric Xing @ CMU, 2006-2011 67

input	

1@32x32	

Layer	
 1	

6@28x28	

Layer	
 2	

6@14x14	

Layer	
 3	

12@10x10	
 Layer	
 4	

12@5x5	

Layer	
 5	

100@1x1	

10	

5x5	

convolu9on	

5x5	

convolu9on	

	

5x5	

convolu9on	

	

2x2	

pooling/	

subsampling	

2x2	

pooling/	

subsampling	

Layer	
 6:	
 10	

Convolutional Net Architecture
for Hand-writing recognition

l  Convolutional net for handwriting recognition (400,000 synapses)
l  Convolutional layers (simple cells): all units in a feature plane share the same weights
l  Pooling/subsampling layers (complex cells): for invariance to small distortions.
l  Supervised gradient-descent learning using back-propagation
l  The entire network is trained end-to-end. All the layers are trained simultaneously.
l  [LeCun et al. Proc IEEE, 1998]

© Eric Xing @ CMU, 2006-2011 68

How to train?

© Eric Xing @ CMU, 2006-2011 69

HandwriOen	
 Digit	
 Dataset	
 MNIST:	
 60,000	
 training	
 samples,	
 10,000	
 test	
 samples	

Application:
MNIST Handwritten Digit Dataset

© Eric Xing @ CMU, 2006-2011 70

C LAS S IFIER DEFORMATION PREPROCES S ING ERROR	
 (%) Reference
linea r	
 c la s s ifie r	
 (1-­‐la yer	
 NN) none 12.00 LeC un	
 et	
 a l.	
 1998
linea r	
 c la s s ifie r	
 (1-­‐la yer	
 NN) des kewing 8.40 LeC un	
 et	
 a l.	
 1998
pa irwis e 	
 linea r	
 c la s s ifie r des kewing 7.60 LeC un	
 et	
 a l.	
 1998
K-­‐nea res t-­‐ne ig hbors ,	
 (L2) none 3.09 Kenneth	
 Wilder,	
 U .	
 C hicago
K-­‐nea res t-­‐ne ig hbors ,	
 (L2) des kewing 2.40 LeC un	
 et	
 a l.	
 1998
K-­‐nea res t-­‐ne ig hbors ,	
 (L2) des kew,	
 c lean,	
 blur 1 .80 Kenneth	
 Wilder,	
 U .	
 C hicago
K-­‐NN	
 L3,	
 2 	
 pixe l	
 jitte r des kew,	
 c lean,	
 blur 1 .22 Kenneth	
 Wilder,	
 U .	
 C hicago
K-­‐NN,	
 s hape 	
 context	
 m a tching s hape 	
 context	
 fea ture 0.63 Be long ie 	
 e t	
 a l.	
 IEEE 	
 PAMI	
 2002
40	
 PCA	
 + 	
 quadra tic 	
 c la s s ifie r none 3.30 LeC un	
 et	
 a l.	
 1998
1000	
 RB F	
 + 	
 linea r	
 c la s s ifie r none 3.60 LeC un	
 et	
 a l.	
 1998
K-­‐NN,	
 Tangent	
 D is tance s ubs am p	
 16x16	
 pixe ls 1 .10 LeC un	
 et	
 a l.	
 1998
S VM,	
 Gaus s ian	
 Kerne l none 1.40
S VM	
 deg 	
 4 	
 polynom ia l des kewing 1.10 LeC un	
 et	
 a l.	
 1998
Reduced	
 S et	
 S VM	
 deg 	
 5 	
 poly des kewing 1.00 LeC un	
 et	
 a l.	
 1998
V irtua l	
 S VM	
 deg -­‐9 	
 poly	
 Affine none 0.80 LeC un	
 et	
 a l.	
 1998
V-­‐S VM,	
 	
 2 -­‐pixe l	
 jitte red none 0.68 DeCos te 	
 and	
 S cholkopf,	
 MLJ	
 2002
V-­‐S VM,	
 	
 2 -­‐pixe l	
 jitte red des kewing 0.56 DeCos te 	
 and	
 S cholkopf,	
 MLJ	
 2002
2-­‐la yer	
 NN,	
 300	
 HU ,	
 MS E none 4.70 LeC un	
 et	
 a l.	
 1998
2-­‐la yer	
 NN,	
 300	
 HU ,	
 MS E ,	
 Affine none 3.60 LeC un	
 et	
 a l.	
 1998
2-­‐la yer	
 NN,	
 300	
 HU des kewing 1.60 LeC un	
 et	
 a l.	
 1998
3-­‐la yer	
 NN,	
 500+ 150	
 HU none 2.95 LeC un	
 et	
 a l.	
 1998
3-­‐la yer	
 NN,	
 500+ 150	
 HU 	
 Affine none 2.45 LeC un	
 et	
 a l.	
 1998
3-­‐la yer	
 NN,	
 500+ 300	
 HU ,	
 C E ,	
 reg none 1.53 H inton,	
 unpublis hed,	
 2005
2-­‐la yer	
 NN,	
 800	
 HU ,	
 C E none 1.60 S im a rd	
 e t	
 a l.,	
 IC DAR	
 2003
2-­‐la yer	
 NN,	
 800	
 HU ,	
 C E 	
 Affine none 1.10 S im a rd	
 e t	
 a l.,	
 IC DAR	
 2003
2-­‐la yer	
 NN,	
 800	
 HU ,	
 MS E E la s tic none 0.90 S im a rd	
 e t	
 a l.,	
 IC DAR	
 2003
2-­‐la yer	
 NN,	
 800	
 HU ,	
 C E E la s tic none 0.70 S im a rd	
 e t	
 a l.,	
 IC DAR	
 2003
C onvolutiona l	
 net	
 LeNet-­‐1 s ubs am p	
 16x16	
 pixe ls 1 .70 LeC un	
 et	
 a l.	
 1998
C onvolutiona l	
 net	
 LeNet-­‐4 none 1.10 LeC un	
 et	
 a l.	
 1998
C onvolutiona l	
 net	
 LeNet-­‐5 , none 0.95 LeC un	
 et	
 a l.	
 1998
C onv.	
 net	
 LeNet-­‐5 , Affine none 0.80 LeC un	
 et	
 a l.	
 1998
Boos ted	
 LeNet-­‐4 Affine none 0.70 LeC un	
 et	
 a l.	
 1998
C onv.	
 net,	
 C E 	
 Affine none 0.60 S im a rd	
 e t	
 a l.,	
 IC DAR	
 2003
C om v	
 net,	
 C E 	
 E la s tic none 0.40 S im a rd	
 e t	
 a l.,	
 IC DAR	
 2003

Results on MNIST Handwritten
Digits

© Eric Xing @ CMU, 2006-2011 71

Application: ANN for Face Reco.
l  The model

l  The learned hidden unit
weights

© Eric Xing @ CMU, 2006-2011 72

Face Detection with a
Convolutional Net

© Eric Xing @ CMU, 2006-2011 73

Courtesy: Lee and Ng

Computer vision features

© Eric Xing @ CMU, 2006-2011 74

SIFT	
 Spin	
 image	

HoG	
 RIFT	

Textons	
 GLOH	

Drawbacks of feature engineering
1. Needs expert knowledge
2. Time consuming hand-tuning	

Sparse coding on images

© Eric Xing @ CMU, 2006-2011 75

	
 	
 	
 	
 Natural	
 Images	
 Learned	
 bases:	
 	
 “Edges”	

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

= 0.8 * + 0.3 * + 0.5 *

 x = 0.8 * b
36 + 0.3 * b42

+ 0.5 * b65	

 [0, 0, … 0.8, …, 0.3, …, 0.5, …] = coefficients (feature representation)

New	
 example	

Courtesy: Lee and Ng

Basis (or features) can be learned by
Optimization

© Eric Xing @ CMU, 2006-2011 76

Given	
 input	
 data	
 {x(1),	
 …,	
 x(m)},	
 we	
 want	
 to	
 find	
 good	

bases	
 {b1,	
 …,	
 bn}:	

∑∑ ∑ +−
i

i

i j
j

i
j

i
ab abax 1

)(2
2

)()(
, ||||||||min β

Reconstruc9on	
 error	
 Sparsity	
 penalty	

 1||||: ≤∀ jbj Normaliza9on	

constraint	

Solve by alternating minimization:
-- Keep b fixed, find optimal a.
-- Keep a fixed, find optimal b. Courtesy: Lee and Ng

Learning Feature Hierarchy

© Eric Xing @ CMU, 2006-2011 77

Input image (pixels)

“Sparse coding”
(edges)

[Related work: Hinton, Bengio, LeCun, and others.]

DBN	
 (Hinton	
 et	
 al.,	
 2006)	
 with	
 addi9onal	
 sparseness	
 constraint.	

Higher layer
(Combinations

of edges)

Courtesy: Lee and Ng

Convolutional architectures	

© Eric Xing @ CMU, 2006-2011 78

§  	
 Weight	
 sharing	
 by	
 convolu9on	
 (e.g.,	

	
 [Lecun	
 et	
 al.,	
 1989])	

§  	
 “Max-­‐pooling”	

	
 	
 Invariance	
 	

	
 	
 Computa9onal	
 efficiency	

	
 	
 Determinis9c	
 and	
 feed-­‐forward	

	

§  	
 One	
 can	
 develop	
 convolu9onal	
 Restricted	

Boltzmann	
 machine	
 (CRBM).	

§  	
 One	
 can	
 define	
 probabilis.c	
 max-­‐pooling	

that	
 combine	
 bo5om-­‐up	
 and	
 top-­‐down	

informa.on.	

convolu9on	
 filter	

Detec9on	
 layer	

maximum	
 2x2	
 grid	

Max-­‐pooling	
 layer	

Detec9on	
 layer	

Max-­‐pooling	
 layer	

Input	

convolu9on	

convolu9on	

maximum	
 2x2	
 grid	

max	

conv	

conv	

max	

Courtesy: Lee and Ng

Convolutional Deep Belief
Networks

l  Bottom-up (greedy), layer-wise training
l  Train one layer (convolutional RBM) at a time.

l  Inference (approximate)
l  Undirected connections for all layers (Markov net)
 [Related work: Salakhutdinov and Hinton, 2009]
l  Block Gibbs sampling or mean-field
l  Hierarchical probabilistic inference

© Eric Xing @ CMU, 2006-2011 79
Courtesy: Lee and Ng

Unsupervised learning of object-
parts

© Eric Xing @ CMU, 2006-2011 80

Faces	
 Cars	
 Elephants	
 Chairs	

Courtesy: Lee and Ng

Weaknesses & Criticisms
l  Learning everything. Better to encode prior knowledge about

structure of images.

 A: Compare with machine learning vs. linguists debate in
NLP.

l  Results not yet competitive with best engineered systems.

 A: Agreed. True for some domains.

© Eric Xing @ CMU, 2006-2011 81
Courtesy: Lee and Ng

Tutorials	

•  LSTMs	

– Christopher	
 Olah’s	
 blog	

– http://colah.github.io/posts/2015-­‐08-­‐
Understanding-­‐LSTMs/	
 	

•  Convolutional	
 Neural	
 Networks	

– Andrej	
 Karpathy,	
 CS231n	
 Notes	

– http://cs231n.github.io/convolutional-­‐networks/	

82	

