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Reminders	
  

•  Homework	
  3:	
  	
  
– due	
  10/24/16	
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Outline	
  
•  Deep	
  Neural	
  Networks	
  (DNNs)	
  

–  Three	
  ideas	
  for	
  training	
  a	
  DNN	
  
–  Experiments:	
  MNIST	
  digit	
  classification	
  
–  Autoencoders	
  
–  Pretraining	
  

•  Recurrent	
  Neural	
  Networks	
  (RNNs)	
  
–  Bidirectional	
  RNNs	
  
–  Deep	
  Bidirectional	
  RNNs	
  
–  Deep	
  Bidirectional	
  LSTMs	
  
–  Connection	
  to	
  forward-­‐backward	
  algorithm	
  

•  Convolutional	
  Neural	
  Networks	
  (CNNs)	
  
–  Convolutional	
  layers	
  
–  Pooling	
  layers	
  
–  Image	
  recognition	
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PRE-­‐TRAINING	
  FOR	
  DEEP	
  NETS	
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A	
  Recipe	
  for	
  	
  
Machine	
  Learning	
  

1.	
  Given	
  training	
  data:	
   3.	
  Define	
  goal:	
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Background	
  

2.	
  Choose	
  each	
  of	
  these:	
  
–  Decision	
  function	
  

–  Loss	
  function	
  

4.	
  Train	
  with	
  SGD:	
  
(take	
  small	
  steps	
  
opposite	
  the	
  gradient)	
  

Goals	
  for	
  Today’s	
  Lecture	
  

1.  Explore	
  a	
  new	
  class	
  of	
  decision	
  functions	
  	
  
(Deep	
  Neural	
  Networks)	
  

2.  Consider	
  variants	
  of	
  this	
  recipe	
  for	
  training	
  



Idea	
  #1:	
  No	
  pre-­‐training	
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Training	
  

�  Idea	
  #1:	
  (Just	
  like	
  a	
  shallow	
  network)	
  
�  Compute	
  the	
  supervised	
  gradient	
  by	
  backpropagation.	
  
�  Take	
  small	
  steps	
  in	
  the	
  direction	
  of	
  the	
  gradient	
  (SGD)	
  



Comparison	
  on	
  MNIST	
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  no-­‐
pretraining)	
  	
  

Idea	
  #2	
  
(Deep	
  Net,	
  

supervised	
  pre-­‐
training)	
  

Idea	
  #3	
  
(Deep	
  Net,	
  

unsupervised	
  pre-­‐
training)	
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Training	
  

•  Results	
  from	
  Bengio	
  et	
  al.	
  (2006)	
  on	
  	
  
MNIST	
  digit	
  classification	
  task	
  

•  Percent	
  error	
  (lower	
  is	
  better)	
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Training	
  

•  Results	
  from	
  Bengio	
  et	
  al.	
  (2006)	
  on	
  	
  
MNIST	
  digit	
  classification	
  task	
  

•  Percent	
  error	
  (lower	
  is	
  better)	
  	
  



Idea	
  #1:	
  No	
  pre-­‐training	
  

•  What	
  goes	
  wrong?	
  
A.  Gets	
  stuck	
  in	
  local	
  optima	
  

•  Nonconvex	
  objective	
  	
  
•  Usually	
  start	
  at	
  a	
  random	
  (bad)	
  point	
  in	
  parameter	
  space	
  

B.  Gradient	
  is	
  progressively	
  getting	
  more	
  dilute	
  
•  “Vanishing	
  gradients”	
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Training	
  

�  Idea	
  #1:	
  (Just	
  like	
  a	
  shallow	
  network)	
  
�  Compute	
  the	
  supervised	
  gradient	
  by	
  backpropagation.	
  
�  Take	
  small	
  steps	
  in	
  the	
  direction	
  of	
  the	
  gradient	
  (SGD)	
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Problem	
  A:	
  
Nonconvexity	
  

•  Where	
  does	
  the	
  nonconvexity	
  come	
  from?	
  
•  Even	
  a	
  simple	
  quadratic	
  z	
  =	
  xy	
  objective	
  is	
  
nonconvex:	
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Training	
  

z	
  

x	
  
y	
  



Problem	
  A:	
  
Nonconvexity	
  

•  Where	
  does	
  the	
  nonconvexity	
  come	
  from?	
  
•  Even	
  a	
  simple	
  quadratic	
  z	
  =	
  xy	
  objective	
  is	
  
nonconvex:	
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Training	
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Stochastic	
  Gradient	
  
Descent…	
  

…climbs	
  to	
  the	
  top	
  
of	
  the	
  nearest	
  hill…	
  

	
  

	
  

Problem	
  A:	
  
Nonconvexity	
  Training	
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Stochastic	
  Gradient	
  
Descent…	
  

…climbs	
  to	
  the	
  top	
  
of	
  the	
  nearest	
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Problem	
  A:	
  
Nonconvexity	
  Training	
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Stochastic	
  Gradient	
  
Descent…	
  

…climbs	
  to	
  the	
  top	
  
of	
  the	
  nearest	
  hill…	
  

	
  

	
  

Problem	
  A:	
  
Nonconvexity	
  Training	
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Stochastic	
  Gradient	
  
Descent…	
  

…climbs	
  to	
  the	
  top	
  
of	
  the	
  nearest	
  hill…	
  

	
  

	
  

Problem	
  A:	
  
Nonconvexity	
  Training	
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Stochastic	
  Gradient	
  
Descent…	
  

…climbs	
  to	
  the	
  top	
  
of	
  the	
  nearest	
  hill…	
  

	
  

…which	
  might	
  not	
  
lead	
  to	
  the	
  top	
  of	
  
the	
  mountain	
  

	
  

	
  

Problem	
  A:	
  
Nonconvexity	
  Training	
  



Problem	
  B:	
  
Vanishing	
  Gradients	
  

The	
  gradient	
  for	
  an	
  edge	
  
at	
  the	
  base	
  of	
  the	
  
network	
  depends	
  on	
  the	
  
gradients	
  of	
  many	
  edges	
  
above	
  it	
  
	
  
The	
  chain	
  rule	
  multiplies	
  
many	
  of	
  these	
  partial	
  
derivatives	
  together	
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Training	
  

…

…Input	
  

Hidden	
  Layer	
  

…Hidden	
  Layer	
  

…

Output	
  

Hidden	
  Layer	
  



Problem	
  B:	
  
Vanishing	
  Gradients	
  

The	
  gradient	
  for	
  an	
  edge	
  
at	
  the	
  base	
  of	
  the	
  
network	
  depends	
  on	
  the	
  
gradients	
  of	
  many	
  edges	
  
above	
  it	
  
	
  
The	
  chain	
  rule	
  multiplies	
  
many	
  of	
  these	
  partial	
  
derivatives	
  together	
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Problem	
  B:	
  
Vanishing	
  Gradients	
  

The	
  gradient	
  for	
  an	
  edge	
  
at	
  the	
  base	
  of	
  the	
  
network	
  depends	
  on	
  the	
  
gradients	
  of	
  many	
  edges	
  
above	
  it	
  
	
  
The	
  chain	
  rule	
  multiplies	
  
many	
  of	
  these	
  partial	
  
derivatives	
  together	
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Training	
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Idea	
  #1:	
  No	
  pre-­‐training	
  

•  What	
  goes	
  wrong?	
  
A.  Gets	
  stuck	
  in	
  local	
  optima	
  

•  Nonconvex	
  objective	
  	
  
•  Usually	
  start	
  at	
  a	
  random	
  (bad)	
  point	
  in	
  parameter	
  space	
  

B.  Gradient	
  is	
  progressively	
  getting	
  more	
  dilute	
  
•  “Vanishing	
  gradients”	
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Training	
  

�  Idea	
  #1:	
  (Just	
  like	
  a	
  shallow	
  network)	
  
�  Compute	
  the	
  supervised	
  gradient	
  by	
  backpropagation.	
  
�  Take	
  small	
  steps	
  in	
  the	
  direction	
  of	
  the	
  gradient	
  (SGD)	
  



Idea	
  #2:	
  Supervised	
  	
  
Pre-­‐training	
  

1.  Supervised	
  Pre-­‐training	
  
–  Use	
  labeled	
  data	
  
–  Work	
  bottom-­‐up	
  

•  Train	
  hidden	
  layer	
  1.	
  Then	
  fix	
  its	
  parameters.	
  
•  Train	
  hidden	
  layer	
  2.	
  Then	
  fix	
  its	
  parameters.	
  
•  …	
  
•  Train	
  hidden	
  layer	
  n.	
  Then	
  fix	
  its	
  parameters.	
  

2.  Supervised	
  Fine-­‐tuning	
  
–  Use	
  labeled	
  data	
  to	
  train	
  following	
  “Idea	
  #1”	
  
–  Refine	
  the	
  features	
  by	
  backpropagation	
  so	
  that	
  they	
  become	
  

tuned	
  to	
  the	
  end-­‐task	
  
21	
  

Training	
  

�  Idea	
  #2:	
  (Two	
  Steps)	
  
�  Train	
  each	
  level	
  of	
  the	
  model	
  in	
  a	
  greedy	
  way	
  
�  Then	
  use	
  our	
  original	
  idea	
  



Idea	
  #2:	
  Supervised	
  	
  
Pre-­‐training	
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�  Idea	
  #2:	
  (Two	
  Steps)	
  
�  Train	
  each	
  level	
  of	
  the	
  model	
  in	
  a	
  greedy	
  way	
  
�  Then	
  use	
  our	
  original	
  idea	
  

…

…

Output	
  

Input	
  

Hidden	
  Layer	
  1	
  



�  Idea	
  #2:	
  (Two	
  Steps)	
  
�  Train	
  each	
  level	
  of	
  the	
  model	
  in	
  a	
  greedy	
  way	
  
�  Then	
  use	
  our	
  original	
  idea	
  

Idea	
  #2:	
  Supervised	
  	
  
Pre-­‐training	
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Training	
  

…

…Input	
  

Hidden	
  Layer	
  1	
  

…

Output	
  

Hidden	
  Layer	
  2	
  



Idea	
  #2:	
  Supervised	
  	
  
Pre-­‐training	
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Training	
  

�  Idea	
  #2:	
  (Two	
  Steps)	
  
�  Train	
  each	
  level	
  of	
  the	
  model	
  in	
  a	
  greedy	
  way	
  
�  Then	
  use	
  our	
  original	
  idea	
  

…

…Input	
  

Hidden	
  Layer	
  1	
  

…Hidden	
  Layer	
  2	
  

…

Output	
  

Hidden	
  Layer	
  3	
  



Idea	
  #2:	
  Supervised	
  	
  
Pre-­‐training	
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�  Idea	
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Training	
  

•  Results	
  from	
  Bengio	
  et	
  al.	
  (2006)	
  on	
  	
  
MNIST	
  digit	
  classification	
  task	
  

•  Percent	
  error	
  (lower	
  is	
  better)	
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Training	
  

•  Results	
  from	
  Bengio	
  et	
  al.	
  (2006)	
  on	
  	
  
MNIST	
  digit	
  classification	
  task	
  

•  Percent	
  error	
  (lower	
  is	
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Idea	
  #3:	
  Unsupervised	
  
Pre-­‐training	
  

1.  Unsupervised	
  Pre-­‐training	
  
–  Use	
  unlabeled	
  data	
  
–  Work	
  bottom-­‐up	
  

•  Train	
  hidden	
  layer	
  1.	
  Then	
  fix	
  its	
  parameters.	
  
•  Train	
  hidden	
  layer	
  2.	
  Then	
  fix	
  its	
  parameters.	
  
•  …	
  
•  Train	
  hidden	
  layer	
  n.	
  Then	
  fix	
  its	
  parameters.	
  

2.  Supervised	
  Fine-­‐tuning	
  
–  Use	
  labeled	
  data	
  to	
  train	
  following	
  “Idea	
  #1”	
  
–  Refine	
  the	
  features	
  by	
  backpropagation	
  so	
  that	
  they	
  become	
  

tuned	
  to	
  the	
  end-­‐task	
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Training	
  

�  Idea	
  #3:	
  (Two	
  Steps)	
  
�  Use	
  our	
  original	
  idea,	
  but	
  pick	
  a	
  better	
  starting	
  point	
  
�  Train	
  each	
  level	
  of	
  the	
  model	
  in	
  a	
  greedy	
  way	
  



The	
  solution:	
  
Unsupervised	
  pre-­‐training	
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…

…Input	
  

Hidden	
  Layer	
  

Output	
  

Unsupervised	
  pre-­‐
training	
  of	
  the	
  first	
  layer:	
  	
  
•  What	
  should	
  it	
  predict?	
  
•  What	
  else	
  do	
  we	
  
observe?	
  	
  

•  The	
  input!	
  

This	
  topology	
  defines	
  an	
  
Auto-­‐encoder.	
  



The	
  solution:	
  
Unsupervised	
  pre-­‐training	
  

Unsupervised	
  pre-­‐
training	
  of	
  the	
  first	
  layer:	
  	
  
•  What	
  should	
  it	
  predict?	
  
•  What	
  else	
  do	
  we	
  
observe?	
  	
  

•  The	
  input!	
  

This	
  topology	
  defines	
  an	
  
Auto-­‐encoder.	
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…

…Input	
  

Hidden	
  Layer	
  

…“Input”	
   ’	
   ’	
   ’	
   ’	
  



Auto-­‐Encoders	
  

Key	
  idea:	
  Encourage	
  z	
  to	
  give	
  small	
  reconstruction	
  error:	
  
–  x’	
  is	
  the	
  reconstruction	
  of	
  x	
  
–  Loss	
  =	
  ||	
  x	
  –	
  DECODER(ENCODER(x))	
  ||2	
  
–  Train	
  with	
  the	
  same	
  backpropagation	
  algorithm	
  for	
  2-­‐layer	
  

Neural	
  Networks	
  with	
  xm	
  as	
  both	
  input	
  and	
  output.	
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…
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Hidden	
  Layer	
  

…“Input”	
   ’	
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Slide	
  adapted	
  from	
  Raman	
  Arora	
  

DECODER:	
  	
  x’	
  =	
  h(W’z)	
  

ENCODER:	
  	
  z	
  =	
  h(Wx)	
  



The	
  solution:	
  
Unsupervised	
  pre-­‐training	
  

Unsupervised	
  pre-­‐
training	
  
•  Work	
  bottom-­‐up	
  

–  Train	
  hidden	
  layer	
  1.	
  
Then	
  fix	
  its	
  parameters.	
  

–  Train	
  hidden	
  layer	
  2.	
  
Then	
  fix	
  its	
  parameters.	
  

–  …	
  
–  Train	
  hidden	
  layer	
  n.	
  

Then	
  fix	
  its	
  parameters.	
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–  …	
  
–  Train	
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Then	
  fix	
  its	
  parameters.	
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The	
  solution:	
  
Unsupervised	
  pre-­‐training	
  

Unsupervised	
  pre-­‐
training	
  
•  Work	
  bottom-­‐up	
  

–  Train	
  hidden	
  layer	
  1.	
  
Then	
  fix	
  its	
  parameters.	
  

–  Train	
  hidden	
  layer	
  2.	
  
Then	
  fix	
  its	
  parameters.	
  

–  …	
  
–  Train	
  hidden	
  layer	
  n.	
  

Then	
  fix	
  its	
  parameters.	
  
Supervised	
  fine-­‐tuning	
  
Backprop	
  and	
  update	
  all	
  
parameters	
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Deep	
  Network	
  Training	
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�  Idea	
  #3:	
  
1.  Unsupervised	
  layer-­‐wise	
  pre-­‐training	
  
2.  Supervised	
  fine-­‐tuning	
  

�  Idea	
  #2:	
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  layer-­‐wise	
  pre-­‐training	
  
2.  Supervised	
  fine-­‐tuning	
  

�  Idea	
  #1:	
  
1.  Supervised	
  fine-­‐tuning	
  only	
  



Comparison	
  on	
  MNIST	
  

1.0	
  

1.5	
  

2.0	
  

2.5	
  

Shallow	
  Net	
   Idea	
  #1	
  
(Deep	
  Net,	
  no-­‐
pretraining)	
  	
  

Idea	
  #2	
  
(Deep	
  Net,	
  

supervised	
  pre-­‐
training)	
  

Idea	
  #3	
  
(Deep	
  Net,	
  

unsupervised	
  pre-­‐
training)	
  

%	
  
Er

ro
r	
  

37	
  

Training	
  

•  Results	
  from	
  Bengio	
  et	
  al.	
  (2006)	
  on	
  	
  
MNIST	
  digit	
  classification	
  task	
  

•  Percent	
  error	
  (lower	
  is	
  better)	
  	
  



Comparison	
  on	
  MNIST	
  

1.0	
  

1.5	
  

2.0	
  

2.5	
  

Shallow	
  Net	
   Idea	
  #1	
  
(Deep	
  Net,	
  no-­‐
pretraining)	
  	
  

Idea	
  #2	
  
(Deep	
  Net,	
  

supervised	
  pre-­‐
training)	
  

Idea	
  #3	
  
(Deep	
  Net,	
  

unsupervised	
  pre-­‐
training)	
  

%	
  
Er

ro
r	
  

38	
  

Training	
  

•  Results	
  from	
  Bengio	
  et	
  al.	
  (2006)	
  on	
  	
  
MNIST	
  digit	
  classification	
  task	
  

•  Percent	
  error	
  (lower	
  is	
  better)	
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Training	
  

In	
  2010,	
  a	
  record	
  on	
  a	
  hand-­‐writing	
  
recognition	
  task	
  was	
  set	
  by	
  standard	
  supervised	
  
backpropagation	
  (our	
  Idea	
  #1).	
  

	
  
How?	
  A	
  very	
  fast	
  implementation	
  on	
  GPUs.	
  

	
  
See	
  Ciresen	
  et	
  al.	
  (2010)	
  



Deep	
  Learning	
  

•  Goal:	
  learn	
  features	
  at	
  different	
  levels	
  of	
  
abstraction	
  

•  Training	
  can	
  be	
  tricky	
  due	
  to…	
  
– Nonconvexity	
  
– Vanishing	
  gradients	
  

•  Unsupervised	
  layer-­‐wise	
  pre-­‐training	
  can	
  
help	
  with	
  both!	
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2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT ) by iterating the following equations from t = 1

to T :
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where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:
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Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition	
  of	
  the	
  RNN:	
  inputs: x = (x1, x2, . . . , xT ), xi � RI

hidden units: h = (h1, h2, . . . , hT ), hi � RJ

outputs: y = (y1, y2, . . . , yT ), yi � RK

nonlinearity: H
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2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT ) by iterating the following equations from t = 1

to T :
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where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:
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Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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where we define h
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= x. The network outputs y
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition	
  of	
  the	
  RNN:	
  inputs: x = (x1, x2, . . . , xT ), xi � RI

hidden units: h = (h1, h2, . . . , hT ), hi � RJ

outputs: y = (y1, y2, . . . , yT ), yi � RK

nonlinearity: H
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2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT ) by iterating the following equations from t = 1

to T :
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where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:
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Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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outputs: y = (y1, y2, . . . , yT ), yi � RK

nonlinearity: H

x2 

h2 

y2 

x3 

h3 

y3 

x4 

h4 

y4 

x5 

h5 

y5 



Recurrent	
  Neural	
  Networks	
  (RNNs)	
  

•  If	
  T=1,	
  then	
  we	
  have	
  a	
  standard	
  
feed-­‐forward	
  neural	
  net	
  with	
  
one	
  hidden	
  layer	
  

•  All	
  of	
  the	
  deep	
  nets	
  from	
  last	
  
lecture	
  (DNN,	
  DBN,	
  DBM)	
  
required	
  fixed	
  size	
  inputs/
outputs	
  

45	
  

x1 

h1 

y1 

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT ) by iterating the following equations from t = 1

to T :
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where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
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h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:
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Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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hidden units: h = (h1, h2, . . . , hT ), hi � RJ

outputs: y = (y1, y2, . . . , yT ), yi � RK

nonlinearity: H
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2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT ) by iterating the following equations from t = 1

to T :
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where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,
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by iterating the backward layer from t = T to 1, the forward
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Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
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H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences
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h

n and
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h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,

the backward hidden sequence
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h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
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Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences
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h

n and
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h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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rent neural network (RNN) computes the hidden vector se-
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where the W terms denote weight matrices (e.g. W
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is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b
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is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,

the backward hidden sequence
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h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
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n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b
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is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences
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n and
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n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each y

t

defines a probability distribution over the
K possible states: that is, yk

t

(the k

th element of y
t

) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

� log Pr(z|x) = �
TX
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log y

zt
t

(13)

Which leads to the following error derivatives at the output
layer
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@ŷ
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where ŷ

t

is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input
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rent neural network (RNN) computes the hidden vector se-
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where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b
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is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences
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h

n and
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h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,

the backward hidden sequence
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h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:
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Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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Figure 4.4: Preservation of gradient information by LSTM. As in Fig-
ure 4.1 the shading of the nodes indicates their sensitivity to the inputs at time
one; in this case the black nodes are maximally sensitive and the white nodes
are entirely insensitive. The state of the input, forget, and output gates are
displayed below, to the left and above the hidden layer respectively. For sim-
plicity, all gates are either entirely open (‘O’) or closed (‘—’). The memory cell
‘remembers’ the first input as long as the forget gate is open and the input gate
is closed. The sensitivity of the output layer can be switched on and o↵ by the
output gate without a↵ecting the cell.

4.2 Influence of Preprocessing

The above discussion raises an important point about the influence of prepro-
cessing. If we can find a way to transform a task containing long range con-
textual dependencies into one containing only short-range dependencies before
presenting it to a sequence learning algorithm, then architectures such as LSTM
become somewhat redundant. For example, a raw speech signal typically has a
sampling rate of over 40 kHz. Clearly, a great many timesteps would have to
be spanned by a sequence learning algorithm attempting to label or model an
utterance presented in this form. However when the signal is first transformed
into a 100 Hz series of mel-frequency cepstral coe�cients, it becomes feasible to
model the data using an algorithm whose contextual range is relatively short,
such as a hidden Markov model.

Nonetheless, if such a transform is di�cult or unknown, or if we simply
wish to get a good result without having to design task-specific preprocessing
methods, algorithms capable of handling long time dependencies are essential.

4.3 Gradient Calculation

Like the networks discussed in the last chapter, LSTM is a di↵erentiable function
approximator that is typically trained with gradient descent. Recently, non
gradient-based training methods of LSTM have also been considered (Wierstra
et al., 2005; Schmidhuber et al., 2007), but they are outside the scope of this
book.
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2. NETWORK ARCHITECTURE
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memory cells to store information, is better at finding and ex-
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memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
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n and
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n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,

the backward hidden sequence
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h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:
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Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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function. However we have found that the Long Short-Term
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memory cells to store information, is better at finding and ex-
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H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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n with the forward and backward
sequences
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n and
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n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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is the
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is hidden bias vector) and H is the hidden layer func-
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H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
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memory cell. For the version of LSTM used in this paper [12]
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,
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by iterating the backward layer from t = T to 1, the forward
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
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h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences
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h

n and
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h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b
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is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,

the backward hidden sequence
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h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
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Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT ) by iterating the following equations from t = 1
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where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT ) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)
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is the
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(e.g. b
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is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W
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) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
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function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
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memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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n and
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n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
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Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences
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n and
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n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each y

t

defines a probability distribution over the
K possible states: that is, yk

t

(the k

th element of y
t

) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:
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Which leads to the following error derivatives at the output
layer
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where ŷ

t

is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input

Figure	
  from	
  (Graves	
  et	
  al.,	
  2013)	
  

•  Figure:	
  input/output	
  
layers	
  not	
  shown	
  

•  Same	
  general	
  
topology	
  as	
  a	
  Deep	
  
Bidirectional	
  RNN,	
  
but	
  with	
  LSTM	
  units	
  
in	
  the	
  hidden	
  layers	
  

•  No	
  additional	
  
representational	
  
power	
  over	
  DBRNN,	
  
but	
  easier	
  to	
  learn	
  in	
  
practice	
  



Deep	
  Bidirectional	
  LSTM	
  (DBLSTM)	
  

61	
  

Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each y
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When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input
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Expressive Capabilities of ANNs 
l  Boolean functions: 

l  Every Boolean function can be represented by network with single hidden layer 
l  But might require exponential (in number of inputs) hidden units 

l  Continuous functions: 
l  Every bounded continuous function can be approximated with arbitrary small 

error, by network with one hidden layer [Cybenko 1989; Hornik et al 1989] 
l  Any function can be approximated to arbitrary accuracy by a network with two 

hidden layers [Cybenko 1988].  
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Using ANN to  
hierarchical representation 

Good Representations are hierarchical 

•  In Language: hierarchy in syntax and semantics 
– Words->Parts of Speech->Sentences->Text 
– Objects,Actions,Attributes...-> Phrases -> Statements -> Stories 

•  In Vision: part-whole hierarchy 
– Pixels->Edges->Textons->Parts->Objects->Scenes 
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“Deep” learning: learning hierarchical 
representations 

•  Deep Learning: learning a hierarchy of internal representations 
•  From low-level features to mid-level invariant representations, 

to object identities 
•  Representations are increasingly invariant as we go up the 

layers 
•  using multiple stages gets around the specificity/invariance 

dilemma 
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Trainable	
  
Feature	
  
Extractor	
  

Trainable	
  
Feature	
  
Extractor	
  

Trainable	
  
Classifier	
  

Learned	
  Internal	
  Representa9on	
  



Filtering+NonLinearity+Pooling = 1 
stage of a Convolutional Net 

•  [Hubel & Wiesel 1962]:  
– simple cells detect local features 
– complex cells “pool” the outputs of simple cells within a retinotopic 

neighborhood.  
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pooling	
  subsampling	
  

“Simple	
  cells”	
  
“Complex	
  cells”	
  

Mul9ple	
  
convolu9ons	
  

Re9notopic	
  Feature	
  Maps	
  



Convolu'ons,	
  
Filtering	
  

Pooling	
  
Subsampling	
  

Convolu'ons,	
  
Filtering	
   Pooling	
  

Subsampling	
  

Convolu'ons,	
  
Filtering	
   Convolu'ons,	
  

Classifica'on	
  

Convolutional Network: Multi-Stage 
Trainable Architecture 

Hierarchical	
  Architecture	
  
Representations are more global, more invariant, and more 
abstract as we go up the layers 

Alternated	
  Layers	
  of	
  Filtering	
  and	
  Spa'al	
  Pooling	
  
Filtering detects conjunctions of features 
Pooling computes local disjunctions of features 

Fully	
  Trainable	
  
All the layers are trainable 
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input	
  
1@32x32	
  

Layer	
  1	
  
6@28x28	
  

Layer	
  2	
  
6@14x14	
  

Layer	
  3	
  
12@10x10	
   Layer	
  4	
  

12@5x5	
  

Layer	
  5	
  
100@1x1	
  

10	
  

5x5	
  
convolu9on	
  

5x5	
  
convolu9on	
  
	
  

5x5	
  
convolu9on	
  
	
  

2x2	
  
pooling/	
  
subsampling	
  

2x2	
  
pooling/	
  
subsampling	
  

Layer	
  6:	
  10	
  

Convolutional Net Architecture 
for Hand-writing recognition 

l  Convolutional net for handwriting recognition  (400,000 synapses) 
l  Convolutional layers (simple cells): all units in a feature plane share the same weights 
l  Pooling/subsampling layers (complex cells): for invariance to small distortions. 
l  Supervised gradient-descent learning using back-propagation 
l  The entire network is trained end-to-end.  All the layers are trained simultaneously. 
l  [LeCun et al. Proc IEEE, 1998] 
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How to train? 
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HandwriOen	
  Digit	
  Dataset	
  MNIST:	
  60,000	
  training	
  samples,	
  10,000	
  test	
  samples	
  

Application:  
MNIST Handwritten Digit Dataset 
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C LAS S IFIER DEFORMATION PREPROCES S ING ERROR	
  (% ) Reference
linea r	
  c la s s ifie r	
  (1-­‐la yer	
  NN) none 12.00 LeC un	
  et	
  a l.	
  1998
linea r	
  c la s s ifie r	
  (1-­‐la yer	
  NN) des kewing 8.40 LeC un	
  et	
  a l.	
  1998
pa irwis e 	
  linea r	
  c la s s ifie r des kewing 7.60 LeC un	
  et	
  a l.	
  1998
K-­‐nea res t-­‐ne ig hbors ,	
  (L2) none 3.09 Kenneth	
  Wilder,	
  U .	
  C hicago
K-­‐nea res t-­‐ne ig hbors ,	
  (L2) des kewing 2.40 LeC un	
  et	
  a l.	
  1998
K-­‐nea res t-­‐ne ig hbors ,	
  (L2) des kew,	
  c lean,	
  blur 1 .80 Kenneth	
  Wilder,	
  U .	
  C hicago
K-­‐NN	
  L3,	
  2 	
  pixe l	
   jitte r des kew,	
  c lean,	
  blur 1 .22 Kenneth	
  Wilder,	
  U .	
  C hicago
K-­‐NN,	
  s hape 	
  context	
  m a tching s hape 	
  context	
  fea ture 0.63 Be long ie 	
  e t	
  a l.	
   IEEE 	
  PAMI	
  2002
40	
  PCA	
  + 	
  quadra tic 	
  c la s s ifie r none 3.30 LeC un	
  et	
  a l.	
  1998
1000	
  RB F	
  + 	
  linea r	
  c la s s ifie r none 3.60 LeC un	
  et	
  a l.	
  1998
K-­‐NN,	
  Tangent	
  D is tance s ubs am p	
  16x16	
  pixe ls 1 .10 LeC un	
  et	
  a l.	
  1998
S VM,	
  Gaus s ian	
  Kerne l none 1.40
S VM	
  deg 	
  4 	
  polynom ia l des kewing 1.10 LeC un	
  et	
  a l.	
  1998
Reduced	
  S et	
  S VM	
  deg 	
  5 	
  poly des kewing 1.00 LeC un	
  et	
  a l.	
  1998
V irtua l	
  S VM	
  deg -­‐9 	
  poly	
   Affine none 0.80 LeC un	
  et	
  a l.	
  1998
V-­‐S VM,	
  	
  2 -­‐pixe l	
   jitte red none 0.68 DeCos te 	
  and	
  S cholkopf,	
  MLJ	
  2002
V-­‐S VM,	
  	
  2 -­‐pixe l	
   jitte red des kewing 0.56 DeCos te 	
  and	
  S cholkopf,	
  MLJ	
  2002
2-­‐la yer	
  NN,	
  300	
  HU ,	
  MS E none 4.70 LeC un	
  et	
  a l.	
  1998
2-­‐la yer	
  NN,	
  300	
  HU ,	
  MS E ,	
   Affine none 3.60 LeC un	
  et	
  a l.	
  1998
2-­‐la yer	
  NN,	
  300	
  HU des kewing 1.60 LeC un	
  et	
  a l.	
  1998
3-­‐la yer	
  NN,	
  500+ 150	
  HU none 2.95 LeC un	
  et	
  a l.	
  1998
3-­‐la yer	
  NN,	
  500+ 150	
  HU 	
   Affine none 2.45 LeC un	
  et	
  a l.	
  1998
3-­‐la yer	
  NN,	
  500+ 300	
  HU ,	
  C E ,	
  reg none 1.53 H inton,	
  unpublis hed,	
  2005
2-­‐la yer	
  NN,	
  800	
  HU ,	
  C E none 1.60 S im a rd	
  e t	
  a l.,	
   IC DAR	
  2003
2-­‐la yer	
  NN,	
  800	
  HU ,	
  C E 	
   Affine none 1.10 S im a rd	
  e t	
  a l.,	
   IC DAR	
  2003
2-­‐la yer	
  NN,	
  800	
  HU ,	
  MS E E la s tic none 0.90 S im a rd	
  e t	
  a l.,	
   IC DAR	
  2003
2-­‐la yer	
  NN,	
  800	
  HU ,	
  C E E la s tic none 0.70 S im a rd	
  e t	
  a l.,	
   IC DAR	
  2003
C onvolutiona l	
  net	
  LeNet-­‐1 s ubs am p	
  16x16	
  pixe ls 1 .70 LeC un	
  et	
  a l.	
  1998
C onvolutiona l	
  net	
  LeNet-­‐4 none 1.10 LeC un	
  et	
  a l.	
  1998
C onvolutiona l	
  net	
  LeNet-­‐5 , none 0.95 LeC un	
  et	
  a l.	
  1998
C onv.	
  net	
  LeNet-­‐5 , Affine none 0.80 LeC un	
  et	
  a l.	
  1998
Boos ted	
  LeNet-­‐4 Affine none 0.70 LeC un	
  et	
  a l.	
  1998
C onv.	
  net,	
  C E 	
   Affine none 0.60 S im a rd	
  e t	
  a l.,	
   IC DAR	
  2003
C om v	
  net,	
  C E 	
   E la s tic none 0.40 S im a rd	
  e t	
  a l.,	
   IC DAR	
  2003

Results on MNIST Handwritten 
Digits 
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Application: ANN for Face Reco. 
l  The model 
 

l  The learned hidden unit 
weights 
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Face Detection with a 
Convolutional Net 
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Courtesy: Lee and Ng 

Computer vision features 
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SIFT	
   Spin	
  image	
  

HoG	
   RIFT	
  

Textons	
   GLOH	
  

Drawbacks of feature engineering 
1. Needs expert knowledge 
2. Time consuming hand-tuning	




Sparse coding on images 
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  Natural	
  Images	
   Learned	
  bases:	
  	
  “Edges”	
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= 0.8 *                   + 0.3 *                     + 0.5 * 

     x      = 0.8 *       b
36         +  0.3 *        b42          

+ 0.5 *       b65	
  
 [0, 0, … 0.8, …, 0.3, …, 0.5, …] = coefficients (feature representation)  

New	
  example	


Courtesy: Lee and Ng 



Basis (or features) can be learned by 
Optimization 
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Given	
  input	
  data	
  {x(1),	
  …,	
  x(m)},	
  we	
  want	
  to	
  find	
  good	
  
bases	
  {b1,	
  …,	
  bn}:	
  

∑∑ ∑ +−
i

i

i j
j

i
j

i
ab abax 1

)(2
2

)()(
, ||||||||min β

Reconstruc9on	
  error	
   Sparsity	
  penalty	
  

            1||||: ≤∀ jbj Normaliza9on	
  
constraint	
  

Solve by alternating minimization: 
-- Keep b fixed, find optimal a.   
-- Keep a fixed, find optimal b. Courtesy: Lee and Ng 



Learning Feature Hierarchy 
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Input image (pixels) 

“Sparse coding” 
(edges)  

[Related work: Hinton, Bengio, LeCun, and others.]  

DBN	
  (Hinton	
  et	
  al.,	
  2006)	
  with	
  addi9onal	
  sparseness	
  constraint.	
  

Higher layer 
(Combinations  

of edges) 

Courtesy: Lee and Ng 



Convolutional architectures	
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§  	
  Weight	
  sharing	
  by	
  convolu9on	
  (e.g.,	
  
	
  [Lecun	
  et	
  al.,	
  1989])	
  

§  	
  “Max-­‐pooling”	
  
	
   	
  Invariance	
  	
  
	
   	
  Computa9onal	
  efficiency	
  
	
   	
  Determinis9c	
  and	
  feed-­‐forward	
  
	
  
§  	
  One	
  can	
  develop	
  convolu9onal	
  Restricted	
  
Boltzmann	
  machine	
  (CRBM).	
  

§  	
  One	
  can	
  define	
  probabilis.c	
  max-­‐pooling	
  
that	
  combine	
  bo5om-­‐up	
  and	
  top-­‐down	
  
informa.on.	
  

convolu9on	
  filter	


Detec9on	
  layer	


maximum	
  2x2	
  grid	
  

Max-­‐pooling	
  layer	


Detec9on	
  layer	


Max-­‐pooling	
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Input	


convolu9on	
  

convolu9on	
  

maximum	
  2x2	
  grid	
  

max	


conv	


conv	


max	


Courtesy: Lee and Ng 



Convolutional Deep Belief 
Networks 

l  Bottom-up (greedy), layer-wise training 
l  Train one layer (convolutional RBM) at a time. 

l  Inference (approximate) 
l  Undirected connections for all layers (Markov net) 
    [Related work: Salakhutdinov and Hinton, 2009] 
l  Block Gibbs sampling or mean-field 
l  Hierarchical probabilistic inference 
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Courtesy: Lee and Ng 



Unsupervised learning of object-
parts 
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Faces	
   Cars	
   Elephants	
   Chairs	
  

Courtesy: Lee and Ng 



Weaknesses & Criticisms 
l  Learning everything. Better to encode prior knowledge about 

structure of images.  

 A: Compare with machine learning vs. linguists debate in 
NLP. 

 

l  Results not yet competitive with best engineered systems. 

 A: Agreed. True for some domains.  
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Courtesy: Lee and Ng 



Tutorials	
  

•  LSTMs	
  
– Christopher	
  Olah’s	
  blog	
  
– http://colah.github.io/posts/2015-­‐08-­‐
Understanding-­‐LSTMs/	
  	
  

•  Convolutional	
  Neural	
  Networks	
  
– Andrej	
  Karpathy,	
  CS231n	
  Notes	
  
– http://cs231n.github.io/convolutional-­‐networks/	
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