School of Computer Science
Carnegie Mellon

10-701 Introduction to Machine Learning

Deep Learning

Readings: Matt Gormley
Bishop Ch. 4.1.7, Ch. 5 Lecture 13
Murphy Ch. 16.5, Ch. 28 October 19, 2016

Mitchell Ch. 4

Reminders

e Homework 3:
— due 10/24/16

Outline

* Deep Neural Networks (DNNs)
— Three ideas for training a DNN
— Experiments: MNIST digit classification
— Autoencoders
— Pretraining
* Recurrent Neural Networks (RNNs)
— Bidirectional RNNs
— Deep Bidirectional RNNs
— Deep Bidirectional LSTMs
— Connection to forward-backward algorithm
* Convolutional Neural Networks (CNNs)
— Convolutional layers
— Pooling layers
— Image recognition

PRE-TRAINING FOR DEEP NETS

= VE(fo(xi),Y;)

Training ldea #1: No pre-training

Idea #1: (Just like a shallow network)
® Compute the supervised gradient by backpropagation.
® Take small steps in the direction of the gradient (SGD)

Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5
v 2.0
o
=
Ll
X

1.5

1.0

Shallow Net Idea #1 ldea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training)

Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5

. 2.0
o
| :I I
Ll
R
1.5 -
1.0 I I | |
Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) 8

Training ldea #1: No pre-training

Idea #1: (Just like a shallow network)
® Compute the supervised gradient by backpropagation.
® Take small steps in the direction of the gradient (SGD)

* What goes wrong?

A. Gets stuckin local optima
* Nonconvex objective
* Usually start at a random (bad) point in parameter space

B. Gradientis progressively getting more dilute
* “Vanishing gradients”

Problem A:

Trainin ,
5 Nonconvexity

* Where does the nonconvexity come from?

* Even asimple quadratic z = xy objective is
nonconvex:

10

Problem A:

Trainin ,
5 Nonconvexity

* Where does the nonconvexity come from?

* Even asimple quadratic z = xy objective is
nonconvex:

Stochastic Gradient

Stochastic Gradient

Stochastic Gradient

Stochastic Gradient
..........

of the nearest hill...

onconvexi

Problem A:
Nonconvexity

Training

Stochastic Gradient
Descent...

... climbs to the top
of the nearest hill...

...which might not ¥~
lead to the top of
the mountain

Problem B:

raining Vanishing Gradients
The gradient for an edge * '
at the base of the T
network depends on the "™ W =0 & U=
gradients of many edges B%
above it im0 (o) - (o
2 »
LN
The chain rule multiplies vwewe o) Ca) - (s
many of these partial | ’
derivatives together & e o

Problem B:

Trainin
e Vanishing Gradients

The gradient for an edge > K
at the base of the —
network depends on the ™=« & & — &=

gradients of many edges
b1 bz cee bE
The chain rule multiplies vwewe o) (&) - (s

above it dden ayr
many of these partial %

derivatives together o (B N x

)

Problem B:

fraining Vanishing Gradients
The gradient for an edge > o1 5

at the base of the — «,
network depends on the "=+ W& & & &=
gradients of many edges 0.3

above it e Lyer

W N
lzm‘l 0.2_=7
The chain rule multiplies vwewe o) (&) - (s

many of these partial M7

derivatives together & . D -

Training ldea #1: No pre-training

Idea #1: (Just like a shallow network)
® Compute the supervised gradient by backpropagation.
® Take small steps in the direction of the gradient (SGD)

* What goes wrong?

A. Gets stuckin local optima
* Nonconvex objective
* Usually start at a random (bad) point in parameter space

B. Gradientis progressively getting more dilute
* “Vanishing gradients”

20

ldea #2: Supervised

Trainin
ning Pre-training

Idea #2: (Two Steps)
® Train each level of the model in a greedy way
® Then use our original idea

1. Supervised Pre-training
— Use labeled data

— Work bottom-up
Train hidden layer 1. Then fix its parameters.
Train hidden layer 2. Then fix its parameters.

Train hidden layer n. Then fix its parameters.
2. Supervised Fine-tuning
— Use labeled data to train following “Idea #1”

— Refine the features by backpropagation so that they become
tuned to the end-task

S—— ldea #2: Supervised
: Pre-training

Idea #2: (Two Steps)
® Train each level of the model in a greedy way

® Then use our original idea

Output

22

Training

Output

Hidden Layer 2

Hidden Layer 1

ldea #2: Supervised
Pre-training

ldea #2: Supervised

Traini
raining Pre-training

ldea #2: Supervised

T ini ° °
anne Pre-training

Output y
/,\
Hidden Layer 3 Cy Cy Cg
==
Hidden Layer 2 by b, be
==
Hidden Layer 1 a, ay &p

Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5

. 2.0
o
| :I I
Ll
R
1.5 -
1.0 I I | |
Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training)

Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5

. 2.0
o
| :I I
Ll
R
1.5 -
1.0 I I | |
Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training)

ldea #3: Unsupervised

Trainin
ning Pre-training

Idea #3: (Two Steps)
® Use our original idea, but pick a better starting point
® Train each level of the model in a greedy way

1. Unsupervised Pre-training
— Use unlabeled data

— Work bottom-up
Train hidden layer 1. Then fix its parameters.
Train hidden layer 2. Then fix its parameters.

Train hidden layer n. Then fix its parameters.
2. Supervised Fine-tuning
— Use labeled data to train following “Idea #1”

— Refine the features by backpropagation so that they become
tuned to the end-task

28

The solution:
Unsupervised pre-training

Unsupervised pre-
training of the first layer:

* What should it predict?

e What else do we
observe?

Output y

* The input! /,\

The solution:
Unsupervised pre-training

Unsupervised pre-
training of the first layer:

* What should it predict?

e What else do we
observe?

* The input! W

Hidden Layer a & ap

This topology defines an m
Auto-encoder.

Auto-Encoders

Key idea: Encourage z to give small reconstruction error:
— X’ is the reconstruction of x
— Loss = || x - DECODER(ENCODER(X)) ||?

— Train with the same backpropagation algorithm for 2-layer
Neural Networks with x_ as both input and output.

ampotr [% % % v

DECODER: x’=h(W’z) W
wor @ O - @

ENCODER: z = h(Wx) m

Slide adapted from Raman Arora

The solution:
Unsupervised pre-training

Unsupervised pre-
training
* Work bottom-up

— Train hidden layer 1.
Then fix its parameters. : : : :
“Input” X4 X Xg Xu

— Train hidden layer 2.
Then fix its parameters. W

— coe Hidden Layer a & 8

— Train hidden layer n. m
Then fix its parameters.

Input Xy X X3 Xu

The solution:
Unsupervised pre-training

Unsupervised pre-

training
* Work bottom-up v) (=) - (&
— Train hidden layer 1. @%
Then fix its parameters.HiddenLayer . B . &
— Train hidden layer 2.
Then fix its parameters. B%
— eee Hidden Layer a a, ap

— Train hidden layer n.

Then fix its parameters.
Input X4 X Xg X

The solution:
Unsupervised pre-training

. b1’ bz, bF,
Unsupervised pre-
training B%
* Work bottom-up igenier (&) (e - (e
— Train hidden layer 1. @%
Then fix its parameters. \ 5 . &
— Train hidden layer 2. y '
Then fix its parameters.
— Hidden Layer -0 a ap

— Train hidden layer n.

Then fix its parameters.
Input X4 X Xg X

The solution:
Unsupervised pre-training

Unsupervised pre- y
training /f\
* Work bottom-up N B - &
— Train hidden layer 1.
Then fix its parameters.
— Train hidden layer 2. weniover (g) -~ (&
Then fix its parameters. B%
— Train hidden layer n. tdenoyer (e ® v &
Then fix its parameters. m
Supervised fine-tuning
Backprop and update all = 5 2 - @

parameters

Deep Network Training

Idea #1:

1l

Supervised fine-tuning only

Idea #2:

1l

Supervised layer-wise pre-training

2. Supervised fine-tuning

Idea #3:

1. Unsupervised layer-wise pre-training
2. Supervised fine-tuning

36

Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5

. 2.0
o
| :I I
Ll
R
1.5 -
1.0 I I | |
Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) 5,

Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5

. 2.0
o
| j I
Ll
R
1.5 -
1.0 i | : L
Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) s

Is layer-wise pre-training

Training

always necessary?

In 2010, arecord on a hand-writing
recognition task was set by standard supervised
backpropagation (our Idea #1).

How? A very fast implementation on GPUs.

See Ciresen et al. (2010)

Deep Learning

* Goal: learn features at different levels of
abstraction

* Training can be tricky due to...
— Nonconvexity
— Vanishing gradients

* Unsupervised layer-wise pre-training can
help with both!

RECURRENT NEURAL NETWORKS

Recurrent Neural Networks (RNNs)

inputs: x = (x1,22,...,27),2; € R’
hidden units: h = (hy, ho,...,h7),hi € R’

outputs: y = (y1,¥2,---,yr), ¥i € R™
nonlinearity: H

Definition of the RNN:
hy = H Wenze + Whnhi—1 + bp)
Yt — Whyht + by

Recurrent Neural Networks (RNNs)

inputs: x = (21, Z2,...,z7),2; € RY | Definition of the RNN:
hidden units: h = (hy, ko, ..., hy), hi € R | bt = H (Wenze + Whnhi—1 + by)

outputs: y = (y1,¥2,-.-,yr), % € R® | yr = Wpyhe + by,
nonlinearity: H

Recurrent Neural Networks (RNNs)

inputs: x = (21, Z2,...,z7),2; € RY | Definition of the RNN:
hidden units: h = (hy, ko, ..., hy), hi € R | bt = H (Wenze + Whnhi—1 + by)

outputs: y = (y1,¥2,-.-,yr), % € R® | yr = Wpyhe + by,
nonlinearity: H

Recurrent Neural Networks (RNNs)

Definition of the RNN:
he = H(Wenxy + Whnhi—1 + bp)
Yt = Whyht + by

inputs: x = (x1,x2,...,27),2; € R!
hidden units: h = (h1, ha,...,hr), h; € R’

outputs: y = (y1,¥2,...,yr),yi € R®
nonlinearity: H

45

Recurrent Neural Networks (RNNs)

inputs: x = (1, %2, ..., z7),2; € RT | Definition of the RNN:
hidden units: h = (h, ho, ..., he),hi € R7 | e = H (Wenxy + Whnhi—1 + bp)

outputs: y = (y1,¥2,-.-,yr), % € R® | yr = Whyhe + by,
nonlinearity: H

46

Recurrent neural
network:

cangider’
BPTT: e
1. Unroll the W
computation
over time

2. Run
backprop
through the
resulting feed-

- forward
X,

network

inputs:

hidden units:

outputs

nonlinearity:

Bidirectional RNN

Recursive Definition:

X = ($17$27 . JxT)axi S RI N N
R~ Bo=H(W,po+ Woph+bp

%
:y:(ylawa--ny),yiERK ht:H(Wx%xt_FW(ﬁ% t—{—l"‘b(ﬁ

Bidirectional RNN

Recursive Definition:

inputs: x = (z1,22,...,27),T; e R! N N
% p—
hidden units: h and (H hy="H (Wwﬁxt + Wﬁﬁ fria+ bﬁ)

— —
outputs: y = (y1,y2,-..,yr),yi €R* | he=H (Wx%xt + Wos hia + b%)

nonlinearity:

X

> ¢
yt:Wﬁyht—'—W(ﬁyht_*_by

< < < <
r+++

Bidirectional RNN

Recursive Definition:

inputs: x = (z1,22,...,27),T; e R! N N
% p—
hidden units: h and (H hy="H (Wwﬁxt + Wﬁﬁ fria+ bﬁ)

— —
outputs: y = (y1,y2,-..,yr),yi €R* | he=H (Wx%xt + Wos hia + b%)

nonlinearity:

X

> ¢
yt:Wﬁyht—'—W(ﬁyht_*_by

< < < <
r+++

Bidirectional RNN

Recursive Definition:

inputs: x = (z1,22,...,27),%; € R N —
he=H (Wxﬁfﬂt +Woo hir + bﬁ)

%
hidden units: h and E
— —
outputs: y = (y1,¥2,...,yr), 4 €ER* | hi=™H (Wml’t + Wos by + b%)

nonlinearity:

X

— —
ytZWﬁyht-l-W%yht-l—by

rl /|

51

Deep RNNSs

inputs: x = (21,22, ...,27),T; € RI Recursive Definition:

outputs: y = (y1,¥2,---,yr),¥i € R™ P =M (Whn-1pnhy ™ 4+ Whapn by + b}Y)

nonlinearity: H

Y = WhNyhiV + by

- Yt Yt [

s Lt—1 Lt Lt41 - - -

: 52
Figure from (Graves et al., 2013)

Deep Bidirectional RNNs

inputs: x = (r1,22,...,27),%; € RI

outputs: y = (y1,92,...,yr), ¥ € R®
nonlinearity: H

Figure from (Graves et al., 2013)

53

Long Short-Term Memory (LSTM)

Motivation:

* Standard RNNs have trouble learning long
distance dependencies

e LSTMs combat this issue

Long Short-Term Memory (LSTM)

Motivation:
* Vanishing gradient problem for Standard RNNs

* Figure shows sensitivity (darker = more sensitive) to the input at
time t=1

Qutputs ’ Q | [..f { . .)
'._l-. -K._‘ ~ ‘ 4 ‘ “A
-) - | - - - !

¥ 4 'y P o i A

Figure from (Graves, 2012)

55

Long Short-Term Memory (LSTM)

Motivation:
e LSTM units have arich internal structure

* The various “gates” determine the propagation of information
and can choose to “remember” or “forget” information

TITTITTY

over ‘* -0 ‘* ‘*O‘* Q

e b b4

Time

Figure from (Graves, 2012)

Long Short-Term Memory (LSTM)

57

Long Short-Term Memory (LSTM)

Tt Lt

L
/7

it = 0 (Waize + Whihe—1 + Weici—1 + b;)

ft =0 Wypze + Whrhi—1 + Weper—1 + by)
ct = frci—1 + iy tanh (Wiexy + Wihchi—1 + be)
or = 0 (Waoxs + Whohi—1 + Weocr + by)

h: = o tanh(cy)
Figure from (Graves et al., 2013)

58

Long Short-Term Memory (LSTM)

59

* Figure: input/output
layers not shown

* Same general
topology as a Deep
Bidirectional RNN,

Deep Bidirectional LSTM (DBLSTM)
but with LSTM units

T %

% \T in the hidden layers
/

¥

T

A

i * No additional
/ representational
power over DBRNN,
- but easier to learn in

T practice

How important is this
particular architecture?

T

Jozefowicz et al. (2015)
evaluated 10,000

Deep Bidirectional LSTM (DBLSTM)
different LSTM-like

T %

%‘ \T architectures and
/

g

A

that worked just as
well on several tasks.

N
/ found several variants

—»

T

CONVOLUTIONAL NEURAL NETS

Expressive Capabilities of ANNs | ¢¢

e Boolean functions:

Every Boolean function can be represented by network with single hidden layer
But might require exponential (in number of inputs) hidden units

e Continuous functions:

Every bounded continuous function can be approximated with arbitrary small
error, by network with one hidden layer [Cybenko 1989; Hornik et al 1989]

Any function can be approximated to arbitrary accuracy by a network with two
hidden layers [Cybenko 1988].

© Eric Xing @ CMU, 2006-2011 63

Using ANN to

hierarchical representation

Trainable
Feature
Extractor

Good Representations are hierarchical

Trainable
Feature
Extractor

Trainable
Classifier

- In Language: hierarchy in syntax and semantics
— Words->Parts of Speech->Sentences->Text

— Objects,Actions,Attributes...-> Phrases -> Statements -> Stories

- In Vision: part-whole hierarchy
— Pixels->Edges->Textons->Parts->0Objects->Scenes

© Eric Xing @ CMU, 2006-2011

64

o000
“Deep” learning: learning hierarchical | s¢::
representations oo
Trainable Trainable .
Feature Feature |b—» Trainable _
Classifier
Extractor Extractor

Learned Internal Representation
- Deep Learning: learning a hierarchy of internal representations

- From low-level features to mid-level invariant representations,
to object identities

- Representations are increasingly invariant as we go up the
layers

- using multiple stages gets around the specificity/invariance
dilemma

© Eric Xing @ CMU, 2006-2011 65

Filtering+NonLinearity+Pooling = 1
stage of a Convolutional Net

- [Hubel & Wiesel 1962]:

— simple cells detect local features

— complex cells “pool” the outputs of simple cells within a retinotopic

neighborhood. “Simple cells”
“Complex cells”

pooling subsampling

Multiple
convolutions \ /
Retinotopic Feature Maps

© Eric Xing @ CMU, 2006-2011 66

Convolutional Network: Multi-Stage

Trainable Architecture

Pooling

Convolutions, .
Subsampling

Filtering

Convolutions,
Classification

@ Hierarchical Architecture

Convolutions,
Filtering

Pooling

» Representations are more global, more inva?&#tP'¥Ad more
abstract as we go up the layers

@ Alternated Layers of Filtering and Spatial Pooling
» Filtering detects conjunctions of features
» Pooling computes local disjunctions of features

@ Fully Trainable

» All the layers are trainable

© Eric Xing @ CMU, 2006-2011

67

000
Convolutional Net Architecture T
|| | = - ..
for Hand-writing recognition .
1 5 Ler 3 Layer 4 Layer 5
: Layer 1 ayer 100@1x1
osay 6@2808 6@14x14 @100) @sxs "
Layer 6: 10
o,
_—— / —
5x5 2x2 5X5 . 2x2 convolution
convolution pooling/ convolution pooling/

subsampling subsampling

e Convolutional net for handwriting recognition (400,000 synapses)
e Convolutional layers (simple cells): all units in a feature plane share the same weights
e Pooling/subsampling layers (complex cells): for invariance to small distortions.
e Supervised gradient-descent learning using back-propagation
e The entire network is trained end-to-end. All the layers are trained simultaneously.
e [LeCun et al. Proc IEEE, 1998]

© Eric Xing @ CMU, 2006-2011 68

How to train?

To compute all the derivatives, we use a backward sweep called the back-propagation

oE

algorithm that uses the recurrence equation for 75+

Energy

C(Xn, Y)

xnl dE/dXn Y

Wn -
CE dW e

Fn(Xn-1, Wn)

xn-11 | eE/aXn-1
1)

1
Xil 'cE dX
Wi
JE Wit X1, W)
x|-1' | oE/aXi-1
11
x1= :cs dx1
Wi = F1(X0, W1)
JdE/ dw i
xof desired
input X output Y

OFE _ 0C(X,.,Y)

0X, o0Xn

E)E . 8E al"n(xn la"vn)
aX'n.—l o a)(n 8)(n—l

3E I aE 6,‘1n(Xn-—19"Vn)
ow,, 90X, oW,

oF P oF aFn l(xn 29"Vn 1)
axn 2 o axn 1 8/Yn 2

OE _ _ _OE OFn_1(Xn-2,Wn_1)
aw,n—l o aXn—l BH/n—l

Wetc, until we reach the first module.

we now have all the 5+ for i € [1,n).

© Eric Xing @ CMU, 2006-2011 69

Application:

MNIST Handwritten Digit Dataset

Q[TN N R
Q| g [|| =] 9| | w| &
Q= M| 23 N & &
Q= x| M= vV |0\ R o
NENRS2NNCE
Q=[x » =] || 0a] &
OIJTJu,S/u.?ooQ
_AU)J_Ju,S&?ooG‘
.0)2_3u.sb78q
OIRTJurS/en/ooG.

—bheT OO0 N
WO NSNS MYy .8
w3 e D — T % NN
LAk O~ 2R 0N o
8 N~V NiN3JY
NN YN O T
N Y S
W -~ ey N
v N -5 XA~ N\
MY Ty o N

Handwritten Digit Dataset MNIST: 60,000 training samples, 10,000 test samples

70

© Eric Xing @ CMU, 2006-2011

Digits

CLASSIFIER

linear classifier (1-layer NN)
linear classifier (1-layer NN)
pairwise linear classifier
K-nearest-neighbors, (L2)
K-nearest-neighbors, (L2)
K-nearest-neighbors, (L2)
K-NN L3, 2 pixel jitter

K-NN, shape context matching
40 PCA + quadratic classifier
1000 RBF + linear classifier
K-NN, Tangent Distance
SVM, Gaussian Kernel

SVM deg 4 polynomial
Reduced Set SVM deg 5 poly

Virtual SVM deg-9 poly Affine
V-SVM, 2-pixel jittered

V-SVM, 2-pixeljittered

2-layer NN, 300 HU, MSE

2-layer NN, 300 HU, MSE, Affine
2-layer NN, 300 HU

3-layer NN, 500+ 150 HU

3-layer NN, 500+ 150 HU Affine
3-layer NN, 500+ 300 HU, CE, reg

2-layer NN, 800 HU, CE

2-layer NN, 800 HU, CE Affine
2-layer NN, 800 HU, MSE Elastic
2-layer NN, 800 HU, CE Elastic
Convolutional net LeNet-1

Convolutional net LeNet-4

Convolutional net LeNet-5,

Conv. net LeNet-5, Affine
Boosted LeNet-4 Affine
Conv. net, CE Affine
Comv net, CE Elastic

DEFORMATION PREPROCESSING

Results on MNIST Handwritten

ERROR (%)
none 12.00
deskewing 8.40
deskewing 7.60
none 3.09
deskewing 2.40
deskew, clean, blur 1.80
deskew, clean, blur 1.22
shape context feature 0.63
none 3.30
none 3.60
subsamp 16x16 pixels 1.10
none 1.40
deskewing 1.10
deskewing 1.00
none 0.80
none 0.68
deskewing 0.56
none 4.70
none 3.60
deskewing 1.60
none 2.95
none 2.45
none 1.53
none 1.60
none 1.10
none 0.90
none 0.70
subsamp 16x16 pixels 1.70
none 1.10
none 0.95
none 0.80
none 0.70
none 0.60

none
© Eric Xing @ CMU, 2006-2011

0.40

Reference

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

Kenneth Wilder, U. Chicago
LeCun et al. 1998

Kenneth Wilder, U. Chicago
Kenneth Wilder, U. Chicago
Belongie et al. [EEE PAMI 2002
LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998
DeCoste and Scholkopf, MLJ2002
DeCoste and Scholkopf, MLJ2002
LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

Hinton, unpublished, 2005
Simard et al., ICDAR 2003
Simard et al.,, ICDAR 2003
Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

Simard et al., ICDAR 2003
Simard et al., ICDAR 2003

71

Application: ANN for Face Reco.

e [The model e T[he learned hidden unit
weights

left strt rght up

Typical input images

http://www.cs.cmu.edu/~tom /faces.html

© Eric Xing @ CMU, 2006-2011 72

Face Detection with a
Convolutional Net

: 1’*!‘;"‘;.‘
L &

)

H
[
Computer vision features
Nonzet Spin o

- ‘b—-ﬁ

T Fi
V. il el el £ N
ABRNLUE
7
- % RS

g™ P e = 0.4, i = (.3 e
11T\ . | N vl f /) \
» b | f |
A = = %
X %4
- cale
o () Ml o P s it
= gl B octavel
5 « T~ b

Image gradients Keypoint descriptor

SIFT

Orientation Voting

A N \-—Ove\r}apping Blocks

Input Image

> N\ S

Drawbacks of feature engineering
1. Needs expert knowledge
2. Time consuming hand-tuning

BIE
BlE

(e)

ang Ng

I eXl OnS © Eric Xing @ CMU, 2006-2011 OLYUT 1

Sparse coding on images :

\

Natural Images " Learned bases: Edges

New example

=08% b +03% b, +05%

[0, O, ... 0.8, ..., 0.3, ...,0.5, ...] = coefficients (feature representatlon
Courtesy: L eand g
© Eric Xing @ CMU, 2006-2011

Basis (or features) can be learned by
Optimization

Given input data {x{1), ..., xM}, we want to find good
bases {b,, ..., b,}:

») _ N\ ,Op |12 (i)
g 313 = 3, i+ A |

J
Reconstruction error Sparsity penalty
Vi |b =1 Normalization

constraint

Solve by alternating minimization:
-- Keep b fixed, find optimal a.
-- Keep a fixed, find optimal b.

r L nd N
© Eric Xing @ CMU, 2006-2011 Courtesy: Lee a 7(9 9

Learning Feature Hierarchy -

£

Higher layer
! n m (Combinations
’ of edges)
(edges)
CHICHAN
‘ ‘ ‘ ‘ Input image (pixels)

DBN (Hinton et al., 2006) with additional sparseness constraint.

u “Sparse coding”

[Related work: Hinton, Bengio, LeCun, and others.]

o Courtesy: Lee and Ng
© Eric Xing @ CMU, 2006-2011 77

Convolutional architectures

4 Max

Max-pooling layer
maximum 2x2 grid

Detection layer

convolution

J conv

Max-pooling layer
maximum 2x2 grid

Detection layer

convolution
convolution filter

Input

te Xing @ CMU, 2006-2011

Weight sharing by convolution (e.g.,
[Lecun et al., 1989])

“Max-pooling”

Invariance

Computational efficiency
Deterministic and feed-forward

One can develop convolutional Restricted
Boltzmann machine (CRBM).

One can define probabilistic max-pooling

that combine bottom-up and top-down
information.

Courtesy: Lee a%j Ng

Convolutional Deep Belief T
Networks 4

e Bottom-up (greedy), layer-wise training
e Train one layer (convolutional RBM) at a time.

e Inference (approximate)
e Undirected connections for all layers (Markov net)
[Related work: Salakhutdinov and Hinton, 2009]
e Block Gibbs sampling or mean-field
e Hierarchical probabilistic inference

o Courtesy: Lee and Ng
© Eric Xing @ CMU, 2006-2011 79

Unsupervised learning of object-
parts

wye =r [}
.\ .r.f"-:-;l;
VEmbh Bl

© Eric Xing @ CMU, 2006-2011

Weaknesses & Criticisms

e Learning everything. Better to encode prior knowledge about
structure of images.

A:. Compare with machine learning vs. linguists debate in
NLP.

e Results not yet competitive with best engineered systems.

A: Agreed. True for some domains.

o Courtesy: Lee and Ng
© Eric Xing @ CMU, 2006-2011 81

Tutorials

* LSTMs
— Christopher Olah’s blog

* Convolutional Neural Networks
— Andrej Karpathy, CS231n Notes

