School of Computer Science
Carnegie Mellon

10-701 Introduction to Machine Learning

Perceptron &
Neural Networks

Readings: Matt Gormley
Bishop Ch. 4.1.7, Ch. 5 Lecture 12

Mitchell Ch. 4

Reminders

e Homework 3:
— due 10/24/16

Outline

Discriminative vs. Generative
Perceptron

Neural Networks
Backpropagation

DISCRIMINATIVE AND
GENERATIVE CLASSIFIERS

Generative vs. Discriminative

* Generative Classifiers:
— Example: Naive Bayes
— Define a joint model of the observations x and the

labels y: p(x, vy)
— Learning maximizes (joint) likelihood

— Use Bayes’ Rule to classify based on the posterior:
ply|x) = p(x|y)p(y)/p(x)

* Discriminative Classifiers:
— Example: Logistic Regression
— Directly model the conditional: p(y|x)
— Learning maximizes conditional likelihood

Generative vs. Discriminative

Finite Sample Analysis (Ng & Jordan, 2002)

[Assume that we are learning from a finite
training dataset]

If model assumptions are correct: Naive Bayes is a more

efficient learner (requires fewer samples) than Logistic
Regression

If model assumptions are incorrect: Logistic Regression has
lower asymtotic error, and does better than Naive Bayes

pima (continuous)

adult (continuous)

boston (predict if > median price, continuous)

0.45

0.4}

20 40 60

0.5 0.5
0.45} A4S
04
20.35
0.3
- 0.25
0.2% 20 40 60 0% 10 20 30
solid: NB dashed: LR
liver disorders (continuous)
0.5 ' ; 0.5
0.45¢
0.45¢
. _ 0.4
= S
(b} \ Q
0.35|
0.4}
Tl 0.3|
0-3% 20 40 60 0-25

Slide courtesy of William Cohen

120

solid: NB dashed: LR

promoters (discrete)

0.5

error

lymphography (discrete)

0 20 40 60 80
m

100 0

50 100
m

Naive Bayes makes stronger assumptions about the data
but needs fewer examples to estimate the parameters

150

““On Discriminative vs Generative Classifiers:” Andrew Ng
and Michael Jordan, NIPS 2001.

Slide courtesy of William Cohen

Generative vs. Discriminative

Learning (Parameter Estimation)

Naive Bayes:
Parameters are decoupled = Closed form solution for MLE

Logistic Regression:
Parameters are coupled = No closed form solution - must
use iterative optimization techniques instead

Naive Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)

Bernoulli Naive Bayes:
Parameters are probabilities = Beta prior (usually) pushes
probabilities away from zero [one extremes

Logistic Regression:
Parameters are not probabilities > Gaussian prior
encourages parameters to be close to zero

(effectively pushes the probabilities away from zero / one
extremes)

Naive Bayes vs. Logistic Reg.

Features

Naive Bayes:
Features x are assumed to be conditionally independent
given y. (i.e. Naive Bayes Assumption)

Logistic Regression:
No assumptions are made about the form of the features x.
They can be dependent and correlated in any fashion.

THE PERCEPTRON ALGORITHM

dimenzion 3

RTEEEE s EXRE D

Why don’t we drop the

generative model and
try to learn this

hyperplane directly?

Background: Hyperplanes%

—>

Hyperplane (Deﬁnltlon 1):
a H={x:wlx =0}
Hyperplane (Definition 2):
/ O H={x:wx=0
k and r1 = 1}
Half-spaces:

HT ={x:w'x >0 and

&
p—

|
—_

H™ ={x:w'x <0 and z;

L L\
I
W

decision function:

h(x) = sign(6” x)

Why don’t we drop the
generative model and
try to learn this
hyperplane directly?

Online Learning Model

Setup:

* We receive an example (x, y)

* Make a prediction h(x)

* Check for correctness h(x) = y?

Goal:
e Minimize the number of mistakes

Margins %

Definition: The margin of example x w.r.t. a linear sep. w is
the distance from x to the plane w - x = 0 (or the negative if on wrong side)

Definition: The margin y,, of a set of examples S wrt a
linear separator w is the smallest margin over points x € S.

Definition: The margin y of a set of examples S is the
maximum v, over all linear separators w.

Slide from Nina Balcan

Perceptron Algorithm

Data: Inputs are continuous vectors of length K. Outputs are
discrete.

D = {x y1Y wherex ¢ RE andy € {+1, -1}
Prediction: Output determined by hyperplane.
§=ho(x) =sign(0"x) sew-{" o

—1, otherwise
Learning: Iterative procedure:
* while not converged
* receive next example (x, y)
» predicty’ = h(x)
* if positive mistake: add x to parameters
* if negative mistake: subtract x from parameters

Perceptron Algorithm

Learning:

Algorithm 1 Perceptron Learning Algorithm (Batch)

1: procedure PERCEPTRON(D = {(x), ¢y, ..., (x(V) 4N
2 60 > Initialize parameters
3 while not converged do

4 fori e {1,2,..., N} do > For each example
5: § « sign(6'x®) > Predict
6

/

8

if § # y(9) then > If mistake
0 «— 6+ yIx® > Update parameters

return @

Analysis: Perceptron

Perceptron Mistake Bound
Guarantee: If data has margin v and all points inside a ball of
radius R, then Perceptron makes < (R/v)? mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

Slide from Nina Balcan

Analysis: Perceptron

Perceptron Mistake Bound
Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(x(¥), y(D)}I N,

Suppose:
1. Finitessize inputs: ||z(V]| < R
2. Linearly separable data: 90 s.t. ||8"|| = 1 and

Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k< (R/v)’

Analysis: Perceptron

Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.

Ak < |0% V|| < BVE

9%+ Bk

Analysis: Perceptron

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(x() y)} ¥ .

Suppose: | ;
1. Finite size inputs: ||z(V|| < R |'
2. Linearly separable data: 30 s.t. ||@*|| = 1and 1

\

yD(0* - x)) > 4, Vi
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k< (R/v)’

Algorithm 1 Perceptron Learning Algorithm (Online)

i: procedure PERCEPTRON(D = {(x1),y(M), (x(2) 42, ...}

2 0—0,k=1 > Initialize parameters
3 fori € {1,2,...} do > For each example
4: if 4 (%) . x()) < 0 then > If mistake
5 k+D) o gk) 4 (D) (@) > Update parameters
6 kE+—Ek+1
7 return 0

Analysis: Perceptron

Whiteboard:
Proof of Perceptron Mistake Bound

Analysis: Perceptron

Proof of Perceptron Mistake Bound:
Part 1: for some A, Ak < [|o* Y]]

ok+t1) . g* — <g(k> + yIx()g*

by Perceptron algorithm update
— 9k . g* & y (g% - x)
>0 . 9% 4

by assumption
= kD L g* > fry

by induction on & since 81 = 0
= |6V > ky

since [|wl|| X ||u|| > w-uand||§¥]| =1

Cauchy-Schwartz inequality

Analysis: Perceptron

Proof of Perceptron Mistake Bound:
Part 2: for some B, |[0"""V|| < BVE

16 +V|? = [|6%) + 4D x)2
by Perceptron algorithm update
= 18P + (52 IO 2 + 29069 - x)
< [|6W]]* + (y@)?|[xD?
since kth mistake = y(i)(e(k) : x(i)) <0
= [0 + B2
since (y9)?[|x®@]1? = ||x?||?> = R? by assumption and (y(V)? = 1
— |§%+D|2 < kR2
by induction on & since ('1)2 = 0
= |6 V]| < VKR

Analysis: Perceptron

Proof of Perceptron Mistake Bound:
Part 3: Combining the bounds finishes the proof.

ky < ||0% V|| < VER
=k < (R/7)°

The total number of mistakes
must be less than this

Extensions of Perceptron

* Kernel Perceptron
— Choose a kernel K(x’, x)
— Apply the kernel trick to Perceptron
— Resulting algorithm is still very simple

* Structured Perceptron

— Basic idea can also be applied when y ranges
over an exponentially large set

— Mistake bound does not depend on the size of
that set

Summary: Perceptron

Perceptron is a simple linear classifier

Simple learning algorithm: when a mistake
is made, add [subtract the features

For linearly separable and inseparable data,
we can bound the number of mistakes

(geometric argument)

Extensions support nonlinear separators and
structured prediction

RECALL: LOGISTIC REGRESSION

Using gradient ascent for Iine%

classifiers
Key idea behind today’s lecture:
1. Define a linear classifier (logistic regression)
2. Define an objective function (likelihood)

3. Optimize it with gradient descent to learn
parameters

4. Predict the class with highest probability under
the model

Using gradient ascent for Iine%

classifiers
This decision function isn’t Use a differentiable function
differentiable: instead: :
h(X) — Sign(HTX) Pely = 1) = 1+ exp(—0'x)
A l B
y<>1
0.5+
¥ >
= |
()] 1 1 sl | |
-1 -6 -4 -2 Uo 2 4 6
ign(x . . 1
sign(x) logistic(u) =

Using gradient ascent for Iine%

classifiers
This decision function isn’t Use a differentiable function
differentiable: instead: :
h(X) — Sign(HTX) Pely = 1) = 1+ exp(—0'x)
A l B
y<>1
0.5+
¢ —
. |
()] 1 1 sl | |
-1 -6 -4 -2 Uo 2 4 6
ign(x . . 1
sign(x) logistic(u) =

Logistic Regression %

Data: Inputs are continuous vectors of length K. Outputs are
discrete.

D = {xW y N wherex € R andy € {0,1}

Model: Logistic function applied to dot product of
parameters with input vector. 1

pe(y = 1]x) =

1 + exp(—0' %)

Learning: finds the parameters that minimize some

objective function. @* — argmin J(0)
0

Prediction: Output is the most probable class.

y = argmax pg (y|x)
ye{0,1}

NEURAL NETWORKS

Learning highly non-linear functions | ¢

. X=2Y
e f might be non-linear function
e X (vector of) continuous and/or discrete vars
e Y (vector of) continuous and/or discrete vars

The XOR gate % Speech recognition

4000
a head
a hid
. + hod
2] 0 L * had
4 "
o "
a " hut
orp - ;,“ x
X

¢ hawed
2000 { « heard
o heed
< hud
» who'd
~ hood

F2 (Hz}

1000

?0,0 1,0 m
F1 (Ez)

© Eric Xing @ CMU, 2006-2011 36

1000 1400

000
o0
[
Perceptron and Neural Nets
e From biological neuron to artificial neuron (perceptron)
Synapse Inputs
Axon Synapse Dendrites Xy Linear Hard
Axon \@ Combiner Limiter
Output
—) @>@% I
Soma Soma
Dendrites
Synapse " Y2 / @

e Activation function

X

n
2%

i=1

.

+1, if X =z o,
-1, if X <o,

e Artificial neuron networks

supervised learning
gradient descent

© Eric Xing @ CMU, 2006-2011

Input Signals

Input Layer

Threshold

OQutput Signals

Middle Layer

Qutput Layer

37

Connectionist Models

£

e Consider humans:

e Neuron switching time)'v(
~ 0.001 second
e Number of neurons M o
~ 1010
e Connections per neuron S""a”sesj
~ 104-5
. SN
e Scene recognition time QL%
~ 0.1 second 7/\ Lo

e 100 inference steps doesn't seem like enough
—> much parallel computation

e Properties of artificial neural nets (ANN)

e Many neuron-like threshold switching units
e Many weighted interconnections among units
e Highly parallel, distributed processes

© Eric Xing @ CMU, 2006-2011

Dendrites

Nodes

Synapses

(weights)

38

Why is everyone talking

Motivation ,
about Deep Learning?

* Because alot of money isinvestedin it...

— DeepMind: Acquired by Google for $400
million
— DNNResearch: Three person startup

(including Geoff Hinton) acquired by Google
for unknown price tag

— Enlitic, Ersatz, MetaMind, Nervana, Skylab:
Deep Learning startups commanding millions
of VC dollars
* Because it made the front page of the
New York Times

Gssgle

&
N

Ehe New ork Times

Why is everyone talking

Motivation .
about Deep Learning?

1960s Deep learning:

/ — Has won numerous pattern recognition
(11980s competitions

& — Does so with minimal feature

])19905 engineering

‘52006

\

'\", 2016

A Recipe for

Background : :
Machine Learning
1. Given training data: Face Face Not a face
N

2. Choose each of these:
— Decision function

A~ Examples: Linear regression,
y — fg (.’13@) Logistic regression, Neural Network
— Loss function

A Examples: Mean-squared error,
g(y, yz) E R Cross Entropy

A Recipe for

Background _ :
Machine Learning

1. Given training data: 3. Define goal:

{@i Y }is 3

v Jifi=1 0" = argmgin;f(fe(wi),yi)
2. Choose each of these:
— Decision function 4. Train with SGD:
U = fo (33@) (take small steps

opposite the gradient)
— Loss function

(y,y;) €R 00+ = 01 — VU fo(wi), y,)

- n:VE(fo(xi), y;)

= VE(fo(xi),Y;)

Decision

Functions Linear Regression

Output y

Input X1 X2 X3 eoe XM

Decision

FUnctions Logistic Regression

y = he(x) = (8" x)

1
where o(a) =

Output y

1 + exp(—a)

Input X1 x2 X3 eoe XM

Decision
Functions

Output

Input °

Logistic Regression

y = he(x) = 0(0' x)

1
0 where o(a) = -

Decision

FUnctions Logistic Regression

y = he(x) =0(6" x)

1
wherea(a) = ————

N OE [

48

Decision

FUnctions Logistic Regression

y = he(x) = (8" x)

1
where o(a) =

Output y

1 + exp(—a)

Input X1 x2 X3 eoe XM

0000
0000
sss
Neural Network Model o
Inputs
Age Output
0.6
Gender
“Probability of
beingAlive”
Stage
: . D dent
Independent Weights Hiddenl Weijghts va?;cezz l:n

variables ayer
Prediction

© Eric Xing @ CMU, 2006-2011 50

0000
i
“Combined logistic models” °°
Inputs
Age Output
2 0.6
Gender
% “Probability of
beingAlive”
Stage
. , D
Independent Weights Hiddenl Weijghts vaezf; ZZ ;z’een !

variables ayer
Prediction

© Eric Xing @ CMU, 2006-2011 51

0000
0000
o000
o0
o
» Output
S
Q\ 0.6
Gender
8/ “Probability of
. beingAlive”
Stage
. . D dent
Independent Weights Hiddenl Weijghts vaegcelz [een

variables ayer
Prediction

© Eric Xing @ CMU, 2006-2011 52

Gender

Stage

Independent Weights
variables

o000
X XX
L XX
o0
o

\ Output

S
>
>‘/8 “Probability of
- beingAlive”
| Dependent
HiddenL Wel ghtS variable

ayer

Prediction

© Eric Xing @ CMU, 2006-2011

53

coes
Not really, HE:
no target for hidden units... °
Age
0.6
Gender
“Probability of
beingAlive”
Stage
Dependent

Independent — Weights ~ Hiddenl Weights

. variable
variables ayer

Prediction

© Eric Xing @ CMU, 2006-2011 54

Jargon Pseudo-Correspondence |-

e Independent variable = input variable
e Dependent variable = output variable
e Coefficients = “weights”

e Estimates = “targets”

Logistic Regression Model (the sigmoid unit)

0.6

Inputs Output
Gende

“Probability of
r

beingAlive”
Stage 0 i

Independent variables Coefficients Dependent variable

xI, x2, x3 a b, c p Prediction
© Eric Xing @ CMU, 2006-2011 55

Decision
Neural Network

Functions
Output y
Hidden Layer a1 aZ coe aD

Input X1 X2 X3 cee XM

Decision
Neural Network

Functions
[(E) Output (sigmoid)
_ 1
Output y Y= T¥exp(=d)
%\ [(D) Output (linear)
Hidden Layer Z Z; Zp b= Z;—O BJ <]
% (C) Hidden (sigmoid)
% = Trom(ay)® V)
Input X4 X Xg Xu ?

(B) Hidden (linear)
aj = ito i, Vi

[(A) lnzut]

Given x;, V1

Output

Features

Building a Neural Net

58

Output

Hidden Layer

Input

Building a Neural Net

59

Building a Neural Net

uuuuuu

Hidden Layer

|||||

Building a Neural Net

uuuuuu

Hidden Layer

|||||

Output

Hidden Layer

Input

X4

Building a Neural Net

Decision Boundary

* 0 hidden layers: linear classifier

— Hyperplanes

O

O

Example from to Eric Postma via Jason Eisner

63

Decision Boundary

* 1 hidden layer

— Boundary of convex region (open or closed)

2 0% |

Example from to Eric Postma via Jason Eisner

Decision Boundary

* 2 hidden layers
— Combinations of convex regions

Q Q < ‘ .

®ec000’®

Example from to Eric Postma via Jason Eisner 65

Decision

Multi-Class Output

Functions
Output Y oo Yk
Hidden Layer a1 aZ coe aD

Input X1 X2 X3 cee XM

Decision

Functions Deeper Networks

Next lecture:

Decision

Functions Deeper Networks

Next lecture:

Output y
Hidden Layer 2 by b, be
Hidden Layer 1 a, ay &p

Decision
Deeper Networks

Functions

Next lecture:.. y

Making the T

n e u ra I Hidden Layer 3 Cy C; Cg

networks @%

d e e p e r Hidden Layer 2 b, b, be
Hidden Layer 1 a, a 8p

Decision Different Levels of
Functions Abstraction

, Feature representation
* We don’t know

the “right” 3rdblayer
IIO - t V2
levels of Jeets
abstraction
2nd layer

e So let the model

“Object parts”
figure it out! e

1st layer
llEdgeS”

Pixels

/9

Example from Honglak Lee (NIPS 2010)

Decision
Functions

Face Recognition:

— Deep Network
can build up
increasingly
higher levels of
abstraction

— Lines, parts,
regions

Example from Honglak Lee (NIPS 2010)

Different Levels of
Abstraction

Feature representation

3rd layer
“Objects”

2nd layer
“Object parts”

1st layer
llEdgeS”

Pixels

Decision Different Levels of
Functions Abstraction

Feature representation
e tcteincc
el Rl 3rd layer
Oahenn “Objects”

Hidden Layer 3 ,' -'T’ .x -

Output

2nd layer
“Object parts”

Hidden Layer 2

1st layer
llEdgeS”

Hidden Layer 1

Pixels

Example from Honglak Lee (NIPS 2010)

ARCHITECTURES

Neural Network Architectures

Even for a basic Neural Network, there are
many design decisions to make:

1. # of hidden layers (depth)

2. # of units per hidden layer (width)

3. Type of activation function (nonlinearity)
4. Form of objective function

Activation Functions

Neural Network with sigmoid [(F) Loss]
activation functions

J=1(y—y*)?

?

[(E) Output (sigmoid)

Output Y= Texp(—b)

?

(D) Output (linear)
b=3"1"0B5%

Hidden Layer

?

(C) Hidden (sigmoid)
Zj = 1 VJ

1—|—exp(—aj))

?

(B) Hidden (linear)
aj =iy i, Vj

[(A) Inzut]

Given z;, Vi

Activation Functions

Neural Network with arbitrary [f]F)_L(iS(S e]
nonlinear activation functions — W=y

?

f (E) Output (nonlinear)
y =o(b)

Output

?

f (D) Output (linear)
b=31 0B

Hidden Layer

?

(C) Hidden (nonlinear)
Zj = 0<aj)v Vj

?

(B) Hidden (linear)
aj = ity jicis Vj

?

(A) Input
Given i, \]

Activation Functions

So far, we’ve
assumed that the
activation function
(nonlinearity) is
always the sigmoid
function...

77

Activation Functions

* A new change: modifying the nonlinearity
— The logistic is not widely used in modern ANNSs

tanh(x) 5

Alternate 1:
tanh

Slide from William Cohen

Like logistic function but
shifted to range [-1, +1]

O
!

o0 = Gfnet) =

l+e

Understanding the difficulty of training deep feedforward neural networks

Al Stats 2010

— Sigmoid depth 5

80
~— Sigmoid depth 4
700 —— Tanh depth4?
Softsign
| Softsign N
0 Tanh N
2 —— Pre-training
§50
@
g Wy
240 S g Wiad 2 . .
ey . “’”‘HJL,U sigmoid
U4, MMQJ M
\l ”“"“*m» | AL LYW | VS.
30 \ S T i LAV
\‘Jq , M'\.‘.'.Y,.\; .) M ta n h
n\\ W “'"..‘L':-';i.‘-"l-’"” X —
. -4'_1..,.5":“\"“':‘1:\,‘“Tv} . .
= M\”‘w\'r Ao) ."ﬁ'wdﬁ"‘\'\-‘:ﬁrf'ﬁ.‘fﬁ'"x-.'- Ay
My L P
W‘W‘«M&w
10 A A A e
0.0 0.5 1.0 15 2.0 2.
exemples seen le7

Figure from Glorot & Bentio (2010)

Activation Functions

* A new change: modifying the nonlinearity
— reLU often used in vision tasks

max(0, z)

i:xcblb\—'-o—-wmaut
L 1 1 11 L1 _1r 1 1

max(0,w - x + b).

Slide from William Cohen

Alternate 2: rectified linear unit

Linear with a cutoff at zero

(Implementation: clip the gradient
when you pass zero)

L

l+e

o0 = Gfnet) =

Activation Functions

* A new change: modifying the nonlinearity
— reLU often used in vision tasks

12

f(x)

Wl — ey | Alternate 2: rectified linear unit
— 1/(1 + exp(-x))
|
| Soft version: log(exp(x)+1)
| Doesn’t saturate (at one end)
7 |Sparsifies outputs
6 4 -2 0 - 6 8 IXO
o Helps with vanishing gradient

n
101 =2 W X: . l
ner i>::0“"\’ 0 = ofnet) =

l+e
Slide from William Cohen

Objective Functions for NNs

* Regression:

— Use the same objective as Linear Regression
— Quadratic loss (i.e. mean squared error)
* Classification:

— Use the same objective as Logistic Regression
— Cross-entropy (i.e. negative log likelihood)

— This requires probabilities, so we add an additional
“softmax’ layer at the end of our network

Forward Backward
1 dJ
Quadratic J = i(y — y*)? d_y =y—y"
Cross Entropy J = 3" log(y) + (1 — y*) log(1 — y)) _ + (1 *)—1
=Yy 1logly —y)log\l—y)| .- =Y — —Y
Y dy Y y—1

Multi-Class Output

Multi-Class Output

] (F) Loss
Softmax: [J = 35 vk log(yk)]

eXp (bk) [(E) Output (szftmax)]

exp(bk)

Zl:l eXp(bl) ok Z;lexp(bl)

(D) Output (linear)
br = 350 Brjzs Vk

f

Output

[(C) Hidden (nonlinear)
Zj = U(aj>7 Vi

f

Hidden Layer

[(B) Hidden (linear)

M .
aj — Zi:() ajixiv \V/j

f

(A) Input
Given x;, V1

Cross-entropy vs. Quadratic loss

Figure 5: Cross entropy (black, surface on top) and
quadratic (red, bottom surface) cost as a function of two
weights (one at each layer) of a network with two layers,

W, respectively on the first layer and W5 on the second,
output layer.

Figure from Glorot & Bentio (2010)

A Recipe for

Background _ :
Machine Learning

1. Given training data: 3. Define goal:

{@i Y }is 3

v Jifi=1 0" = argmgin;f(fe(wi),yi)
2. Choose each of these:
— Decision function 4. Train with SGD:
U = fo (33@) (take small steps

opposite the gradient)
— Loss function

(y,y;) €R 00+ = 01 — VU fo(wi), y,)

Objective Functions

Matching Quiz: Suppose you are given a neural net with a
single output, y, and one hidden layer.

1) Minimizing sum of squared
errors...

2) Minimizing sum of squared
errors plus squared Euclidean

5) ... MLE estimates of weights assuming
target follows a Bernoulli with
parameter given by the output value

6) ... MAP estimates of weights
assuming weight priors are zero mean

norm of weights... ... gives...
e Gaussian
3) Minimizing cross-entropy...
7) ... estimates with a large margin on
4) Minimizing hinge loss... the training data
8) ... MLE estimates of weights assuming
zero mean Gaussian noise on the output
value
A. 1=5,2=7,3=6,4=8 D. 1=7,2=5,3=6, 4=8
B. 1=5,2=7,3=8, 4=6 E. 1=8,2=6, 3=5, 4=7
C. 1=7,2=5, 3=5, 4=7 F. 1=8,2=6,3=8, 4=6

BACKPROPAGATION

A Recipe for

Background _ :
Machine Learning

1. Given training data: 3. Define goal:

{@i Y }is 3

v Jifi=1 0" = argmgin;f(fe(wi),yi)
2. Choose each of these:
— Decision function 4. Train with SGD:
U = fo (33@) (take small steps

opposite the gradient)
— Loss function

(y,y;) €R 00+ = 01 — VU fo(wi), y,)

Training Backpropagation

* Question 1:
When can we compute the gradients of the
parameters of an arbitrary neural network?

* Question 2:
When can we make the gradient
computation etficient?

Training Chain Rule

5

Training Chain Rule

Training Chain Rule

Given: ¥ = g(u) and u = h(x). /\
Chain Rule:
7 [\
dyz dyz d’LL]
1, k
dxy, Z duj dz’ W

Backpropagation:

1. Instantiate the computation as a directed acyclic graph, where each
intermediate quantity is a node

2. Ateachnode, store (a) the quantity computed in the forward pass
and (b) the partial derivative of the goal with respect to that node’s
intermediate quantity.

3. Initialize all partial derivatives to o.

4. Visit each node in reverse topological order. At each node, add its
contribution to the partial derivatives of its parents

This algorithm is also called automatic differentiation in the reverse-mode

Training Backpropagation
Simple Example: The goal is to compute J = cos(sin(z?) + 3z?)

on the forward pass and the derivative d‘] on the backward pass.

Forward

J = cos(u)
U = U1 + U

up = sin(t)

Training

Simple Example:

Backpropagation

The goal is to compute J = cos(sin(z?) + 3z?)

dJ

on the forward pass and the derivative 7> on the backward pass.

Forward

J = cos(u)
U = Uy + U2

up = sin(t)

Backward
dJ
= —sin(u)
4 ,_dSdu du a4 du - du
du; duduy’ du; dus dudus’ dus
dt dup dt’ dt
df ,_ dJ dup duy _ g
dt dug dt’ dt
dJ dJ dt dt
= ——, — =2
d:v dt dx dx

Training Backpropagation

Output
Case 1:
Logistic
Regression
Input Xy
Forward Backward
dJ _y* (A-y")
J=y"logy+ (1 —y*)log(l—y) | —=—+
(1-y)logll—y) | T =L+
B 1 dj dJdy dy exp(—a)
Y7 + exp(—a) da dyda’ da (exp(—a)+1)2
D
dJ dJ da da
a=)_ 0z, do; ~ dadf; do;
7=0
dJ dJ da da
_ =0,

E - da dr;’ dx;

Training Backpropagation

[(E) Output (silgmoid)

Output y Y~ Trexn(=D)

%\ [(D) Output (linear)
p— D . .
Hidden Layer Z Z; Zp b= Z;—O BJ <]
% (C) Hidden (sigmoid)
% = Trom(ay)® V)
Input X4 X Xg Xu ?

(B) Hidden (linear)
aj = ito i, Vi

[(A) lnzut]

Given x;, V1

Training Backpropagation

(F) Loss
J=35y—y)
?

[(E) Output (sigmoid)
1

Output y Y= Texp(—b)

%\ [(D) Output (linear)
p— D . .
Hidden Layer Z Z; Zp b= ng_o 5]]
% (C) Hidden (sigmoid)
% = Trema) W
Input X Xo Xg XM ?

(B) Hidden (linear)
a; =ity i, Vj

[(A) lnzut]

Givenxz;, V1

J =y " logy + (1 —y")log(l—y)

Training
Case 2: Forward
Neural
Network
B 1
_Fs Y7 T+ exp(—b)
m D
b= Z ﬁij
§=0
B 1
7 1+ exp(—aj)
M
CLj = Z Ode'ZBZ
i=0

Backpropagation

Backward
dJ _y* (1-y")

dy vy y—1

dJ dJdy dy exp(—b)
db ~ dydb’ db (exp(—b) + 1)2
dj dJ db db
dB; — dbdp;’ dB;
dJ dJ db db
Qo dbds dz

dJ dJ dz; dz; = exp(—ay)

j

da; dzjda;’ da; (exp(—a;) + 1)2
dJ o dJ daj daj

dO&j@' daj dOﬁjZ’, dOﬁji

dJ dJ da; da, i
dxz- daj d:cz ’ dazz J

7=0

Training Chain Rule

Given: ¥ = g(u) and u = h(x). /\
Chain Rule:
7 [\
dyz dyz d’LL]
1, k
dxy, Z duj dz’ W

Backpropagation:

1. Instantiate the computation as a directed acyclic graph, where each
intermediate quantity is a node

2. Ateachnode, store (a) the quantity computed in the forward pass
and (b) the partial derivative of the goal with respect to that node’s
intermediate quantity.

3. Initialize all partial derivatives to o.

4. Visit each node in reverse topological order. At each node, add its
contribution to the partial derivatives of its parents

This algorithm is also called automatic differentiation in the reverse-mode

Training Chain Rule

Given: ¥ = g(u) and u = h(x). /\
Chain Rule:
7 [\
dyz dyz d’LL]
1, k
dxy, Z duj dz’ W

Backpropagation:
1. Instantiate the computation as a directed acyclic graph,

2. Ateachnode, store (a) the quantity computed in the forward pass
and (b) the partial derivatives of the goal

3. Initialize all partial derivatives to o.
4. Visit each node in reverse topological order. At each node, add its

contribution to the partial derivatives of its parents

This algorithm is also called automatic differentiation in the reverse-mode

Training
Caco e Forward
Module 5 J =y logy + (1 —y")log(l —y)
B 1
Module 4 AT exp(—b)
D
b= Z Bij
Module 3 o=t
Modul :
odule 2 =
7 1+ exp(—ay)
M
a; = Zozjizr;z
Module 1 =0

Backpropagation

Backward
dJ _y' (=)
dy vy y—1

dJ dJdy dy exp(—b)

db ~ dydb db (exp(—b)+ 1)
dJ dJ db db
dB; dbdB;’ dB;
dJ dJ db db
& My Ay

dJ dJ dz; dz; = exp(—ay)

2

da, - dzj da;’ da; B (exp(—a;) + 1)2

dJ . dJ dCLj daj
dO&j@' - daj dO&j7;7 d&jfi

dJ dJ da; da; i
= = (827
da:z- daj dCUz 7 dCCz J

j=0

- n:VE(fo(xi), y;)

Summary

1. Neural Networks...
— provide a way of learning features
— are highly nonlinear prediction functions

— (can be) a highly parallel network of logistic
regression classifiers

— discover useful hidden representations of the
input
2. Backpropagation...
— provides an efficient way to compute gradients

— is a special case of reverse-mode automatic
differentiation

