

10-701 Introduction to Machine Learning

Perceptron & Neural Networks

Readings:

Bishop Ch. 4.1.7, Ch. 5 Murphy Ch. 16.5, Ch. 28 Mitchell Ch. 4 Matt Gormley Lecture 12 October 17, 2016

Reminders

- Homework 3:
 - due 10/24/16

Outline

- Discriminative vs. Generative
- Perceptron
- Neural Networks
- Backpropagation

DISCRIMINATIVE AND GENERATIVE CLASSIFIERS

Generative vs. Discriminative

Generative Classifiers:

- Example: Naïve Bayes
- Define a joint model of the observations ${\bf x}$ and the labels y: $p({\bf x},y)$
- Learning maximizes (joint) likelihood
- Use Bayes' Rule to classify based on the posterior: $p(y|\mathbf{x}) = p(\mathbf{x}|y)p(y)/p(\mathbf{x})$

Discriminative Classifiers:

- Example: Logistic Regression
- Directly model the conditional: $p(y|\mathbf{x})$
- Learning maximizes conditional likelihood

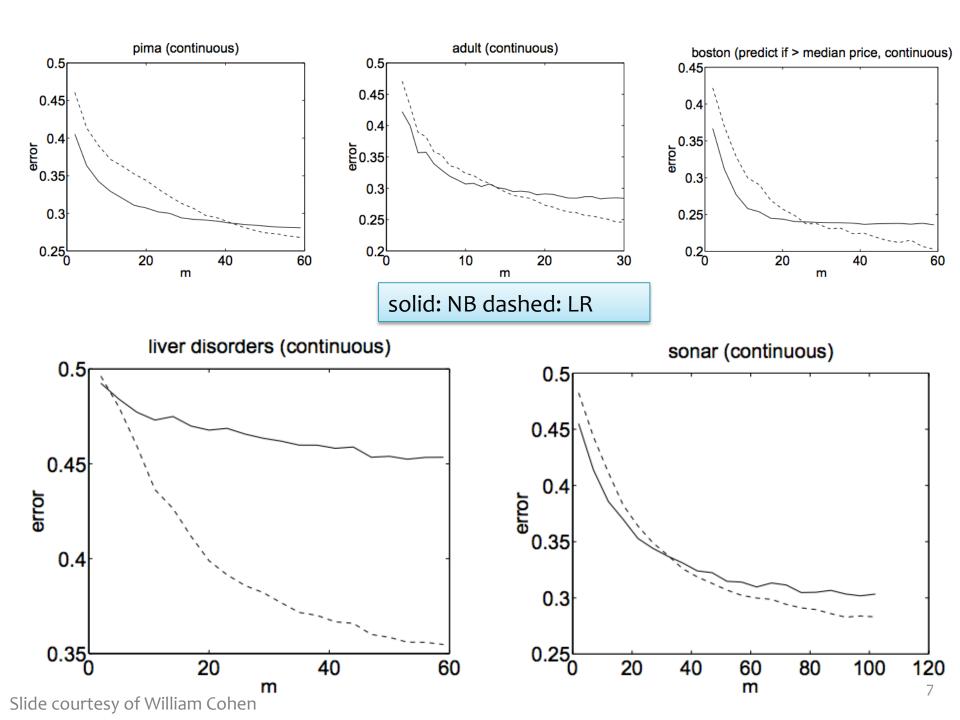
Generative vs. Discriminative

Finite Sample Analysis (Ng & Jordan, 2002)

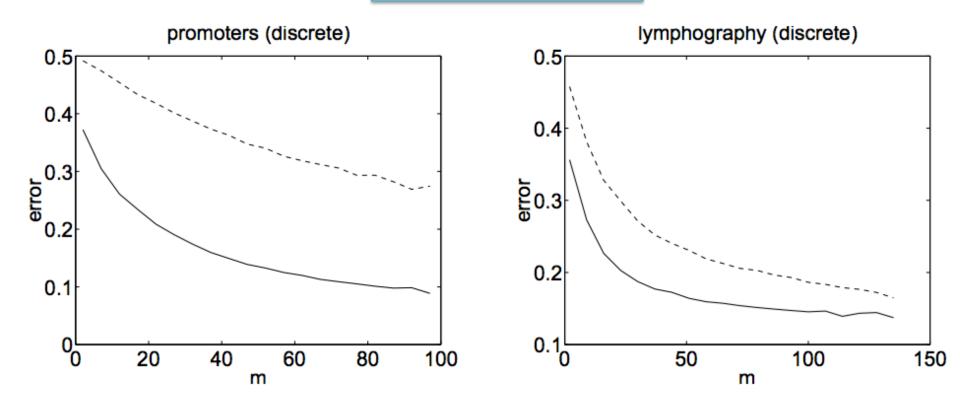
[Assume that we are learning from a finite training dataset]

If model assumptions are correct: Naive Bayes is a more efficient learner (requires fewer samples) than Logistic Regression

If model assumptions are incorrect: Logistic Regression has lower asymtotic error, and does better than Naïve Bayes



solid: NB dashed: LR



Naïve Bayes makes stronger assumptions about the data but needs fewer examples to estimate the parameters

"On Discriminative vs Generative Classifiers:" Andrew Ng and Michael Jordan, NIPS 2001.

Generative vs. Discriminative

Learning (Parameter Estimation)

Naïve Bayes:

Parameters are decoupled > Closed form solution for MLE

Logistic Regression:

Parameters are coupled → No closed form solution – must use iterative optimization techniques instead

Naïve Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)

Bernoulli Naïve Bayes:

Parameters are probabilities \rightarrow Beta prior (usually) pushes probabilities away from zero / one extremes

Logistic Regression:

Parameters are not probabilities

Gaussian prior encourages parameters to be close to zero

(effectively pushes the probabilities away from zero / one extremes)

Naïve Bayes vs. Logistic Reg.

Features

Naïve Bayes:

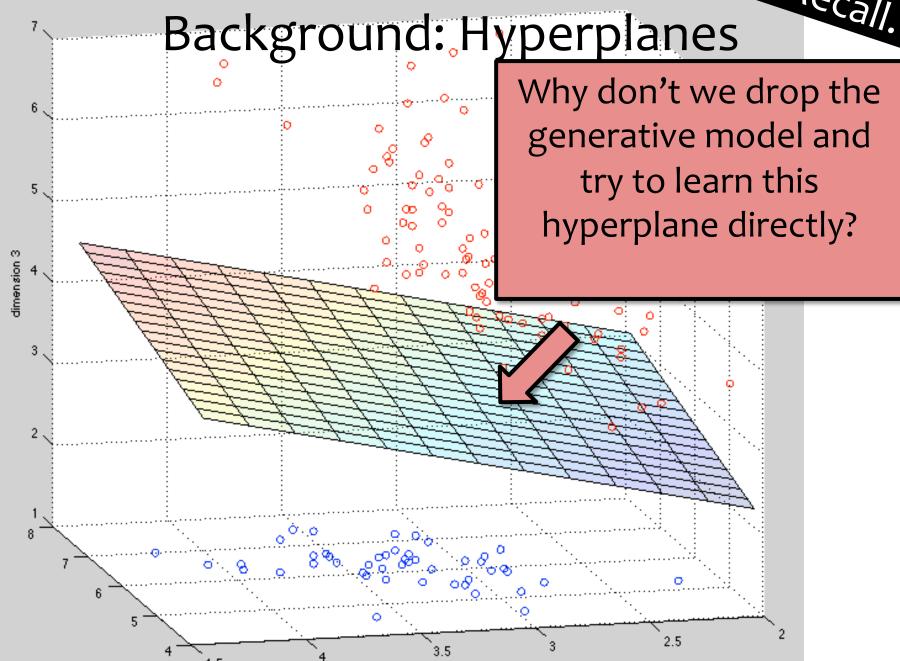
Features x are assumed to be conditionally independent given y. (i.e. Naïve Bayes Assumption)

Logistic Regression:

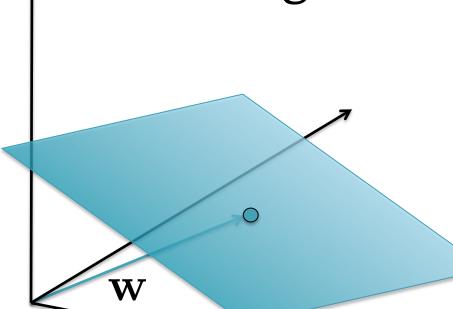
No assumptions are made about the form of the features x. They can be dependent and correlated in any fashion.

THE PERCEPTRON ALGORITHM

Recall...



Background: Hyperplanes



Hyperplane (Definition 1):

$$\mathcal{H} = \{\mathbf{x} : \mathbf{w}^T \mathbf{x} = b\}$$

Hyperplane (Definition 2):

$$\mathcal{H} = \{ \mathbf{x} : \mathbf{w}^T \mathbf{x} = 0 \}$$

and
$$x_1 = 1$$

Half-spaces:

$$\mathcal{H}^+ = \{\mathbf{x} : \mathbf{w}^T \mathbf{x} > 0 \text{ and } x_1 = 1\}$$

$$\mathcal{H}^- = \{\mathbf{x} : \mathbf{w}^T \mathbf{x} < 0 \text{ and } x_1 = 1\}$$

Directly modeling the hyperplane would use a decision function:

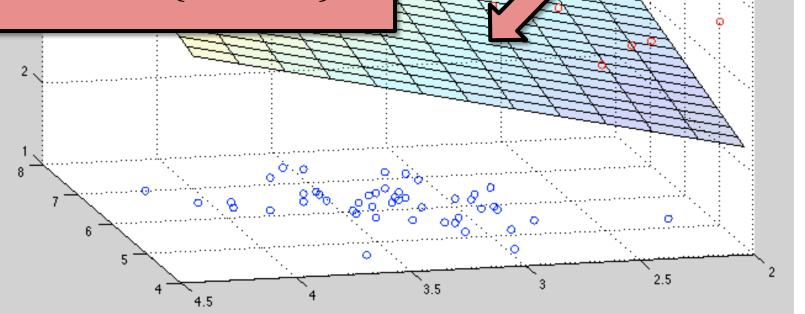
$$h(\mathbf{x}) = \mathsf{sign}(\boldsymbol{\theta}^T \mathbf{x})$$

for:

$$y \in \{-1, +1\}$$

d: Hyperplanes

Why don't we drop the generative model and try to learn this hyperplane directly?



Online Learning Model

Setup:

- We receive an example (x, y)
- Make a prediction h(x)
- Check for correctness h(x) = y?

Goal:

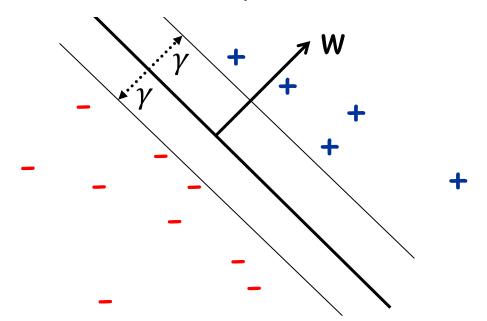
Minimize the number of mistakes

Margins

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x = 0$ (or the negative if on wrong side)

Definition: The margin γ_w of a set of examples S wrt a linear separator w is the smallest margin over points $x \in S$.

Definition: The margin γ of a set of examples S is the maximum γ_w over all linear separators w.



Perceptron Algorithm

Data: Inputs are continuous vectors of length K. Outputs are discrete.

$$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$$
 where $\mathbf{x} \in \mathbb{R}^K$ and $y \in \{+1, -1\}$

Prediction: Output determined by hyperplane.

$$\hat{y} = h_{m{ heta}}(\mathbf{x}) = ext{sign}(m{ heta}^T\mathbf{x})$$
 sign $(a) = egin{cases} 1, & ext{if } a \geq 0 \ -1, & ext{otherwise} \end{cases}$

$$sign(a) = \begin{cases} 1, & \text{if } a \ge 0 \\ -1, & \text{otherwise} \end{cases}$$

Learning: Iterative procedure:

- while not converged
 - receive next example (x, y)
 - **predict** y' = h(x)
 - **if** positive mistake: **add x** to parameters
 - if negative mistake: subtract x from parameters

Perceptron Algorithm

Learning:

Algorithm 1 Perceptron Learning Algorithm (Batch)

```
1: procedure Perceptron(\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\})
          \theta \leftarrow 0
                                                                       ▷ Initialize parameters
2:
          while not converged do
3:
                 for i \in \{1, 2, ..., N\} do
                                                                            ▷ For each example
4:
                       \hat{y} \leftarrow \mathsf{sign}(\boldsymbol{\theta}^T \mathbf{x}^{(i)})
                                                                                               ▷ Predict
5:
                       if \hat{y} \neq y^{(i)} then
                                                                                          ▶ If mistake
6:
                             \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(i)} \mathbf{x}^{(i)}

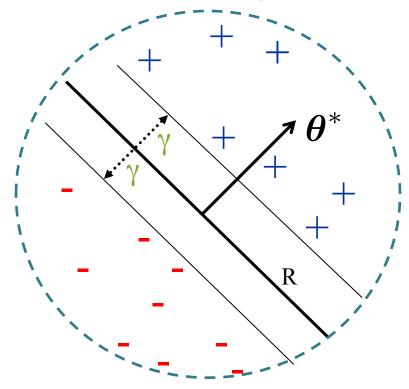
    □ Update parameters

7:
           return \theta
8:
```

Perceptron Mistake Bound

Guarantee: If data has margin γ and all points inside a ball of radius R, then Perceptron makes $\leq (R/\gamma)^2$ mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes; algo is invariant to scaling.)



Perceptron Mistake Bound

Theorem 0.1 (Block (1962), Novikoff (1962)).

Given dataset: $D = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$.

Suppose:

- 1. Finite size inputs: $||x^{(i)}|| \leq R$
- 2. Linearly separable data: $\exists \boldsymbol{\theta}^*$ s.t. $||\boldsymbol{\theta}^*|| = 1$ and $y^{(i)}(\boldsymbol{\theta}^* \cdot \mathbf{x}^{(i)}) \geq \gamma, \forall i$

Then: The number of mistakes made by the Perceptron

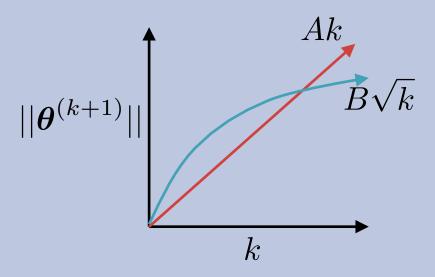
algorithm on this dataset is

$$k \le (R/\gamma)^2$$

Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.

$$|Ak \le ||\boldsymbol{\theta}^{(k+1)}|| \le B\sqrt{k}$$

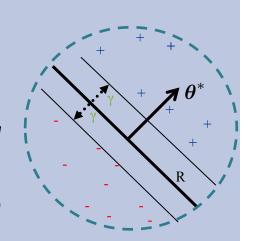


Theorem 0.1 (Block (1962), Novikoff (1962)).

Given dataset: $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$. Suppose:

- 1. Finite size inputs: $||x^{(i)}|| \leq R$
- 2. Linearly separable data: $\exists \pmb{\theta}^*$ s.t. $||\pmb{\theta}^*||=1$ and $y^{(i)}(\pmb{\theta}^*\cdot\mathbf{x}^{(i)})\geq\gamma, \forall i$

Then: The number of mistakes made by the Perceptron algorithm on this dataset is



$$k \le (R/\gamma)^2$$

Algorithm 1 Perceptron Learning Algorithm (Online)

```
1: procedure Perceptron(\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \ldots\})
           \theta \leftarrow 0, k = 1
                                                                              ▷ Initialize parameters
          for i \in \{1, 2, ...\} do
                                                                                   ▷ For each example
3:
                 if y^{(i)}(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)}) < 0 then
                                                                                                 ▶ If mistake
4:
                       \boldsymbol{\theta}^{(k+1)} \leftarrow \boldsymbol{\theta}^{(k)} + y^{(i)} \mathbf{x}^{(i)}

    □ Update parameters

5:
                       k \leftarrow k + 1
6:
           return \theta
7:
```

Whiteboard:

Proof of Perceptron Mistake Bound

Proof of Perceptron Mistake Bound:

Part 1: for some A,
$$Ak \leq ||\boldsymbol{\theta}^{(k+1)}||$$

$$\boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^* = (\boldsymbol{\theta}^{(k)} + y^{(i)} \mathbf{x}^{(i)}) \boldsymbol{\theta}^*$$

by Perceptron algorithm update

$$= \boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^* + y^{(i)} (\boldsymbol{\theta}^* \cdot \mathbf{x}^{(i)})$$

$$\geq \boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^* + \gamma$$

by assumption

$$\Rightarrow \boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^* \ge k\gamma$$

by induction on k since $\theta^{(1)} = \mathbf{0}$

$$\Rightarrow ||\boldsymbol{\theta}^{(k+1)}|| \ge k\gamma$$

since
$$||\mathbf{w}|| \times ||\mathbf{u}|| \ge \mathbf{w} \cdot \mathbf{u}$$
 and $||\theta^*|| = 1$

Cauchy-Schwartz inequality

Proof of Perceptron Mistake Bound:

Part 2: for some B, $||\boldsymbol{\theta}^{(k+1)}|| \leq B\sqrt{k}$

 $\Rightarrow ||\boldsymbol{\theta}^{(k+1)}|| \leq \sqrt{k}R$

$$||\boldsymbol{\theta}^{(k+1)}||^2 = ||\boldsymbol{\theta}^{(k)} + y^{(i)}\mathbf{x}^{(i)}||^2$$
 by Perceptron algorithm update
$$= ||\boldsymbol{\theta}^{(k)}||^2 + (y^{(i)})^2||\mathbf{x}^{(i)}||^2 + 2y^{(i)}(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)})$$

$$\leq ||\boldsymbol{\theta}^{(k)}||^2 + (y^{(i)})^2||\mathbf{x}^{(i)}||^2$$
 since k th mistake $\Rightarrow y^{(i)}(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)}) \leq 0$
$$= ||\boldsymbol{\theta}^{(k)}||^2 + R^2$$
 since $(y^{(i)})^2||\mathbf{x}^{(i)}||^2 = ||\mathbf{x}^{(i)}||^2 = R^2$ by assumption and $(y^{(i)})^2 = 1$
$$\Rightarrow ||\boldsymbol{\theta}^{(k+1)}||^2 \leq kR^2$$
 by induction on k since $(\boldsymbol{\theta}^{(1)})^2 = 0$

Proof of Perceptron Mistake Bound:

Part 3: Combining the bounds finishes the proof.

$$k\gamma \le ||\boldsymbol{\theta}^{(k+1)}|| \le \sqrt{k}R$$
$$\Rightarrow k \le (R/\gamma)^2$$

The total number of mistakes must be less than this

Extensions of Perceptron

Kernel Perceptron

- Choose a kernel K(x', x)
- Apply the kernel trick to Perceptron
- Resulting algorithm is still very simple

Structured Perceptron

- Basic idea can also be applied when y ranges over an exponentially large set
- Mistake bound does not depend on the size of that set

Summary: Perceptron

- Perceptron is a simple linear classifier
- Simple learning algorithm: when a mistake is made, add / subtract the features
- For linearly separable and inseparable data, we can bound the number of mistakes (geometric argument)
- Extensions support nonlinear separators and structured prediction

RECALL: LOGISTIC REGRESSION

Using gradient ascent for linearecall... classifiers

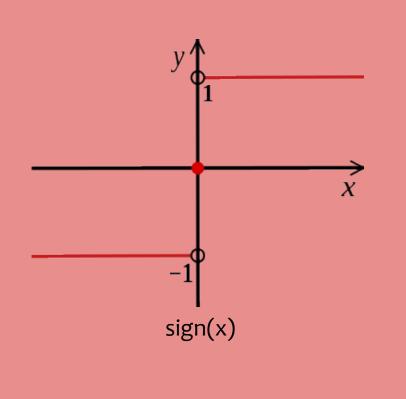
Key idea behind today's lecture:

- Define a linear classifier (logistic regression)
- 2. Define an objective function (likelihood)
- Optimize it with gradient descent to learn parameters
- 4. Predict the class with highest probability under the model

Using gradient ascent for linearecall... classifiers

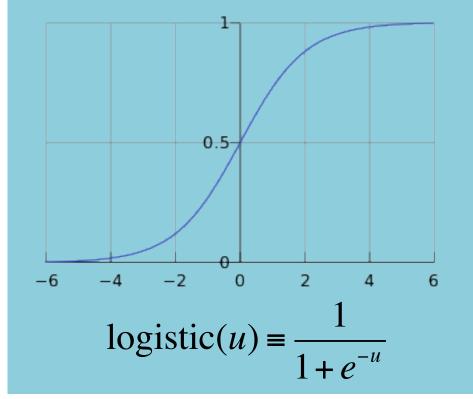
This decision function isn't differentiable:

$$h(\mathbf{x}) = \mathsf{sign}(\boldsymbol{\theta}^T \mathbf{x})$$



Use a differentiable function instead:

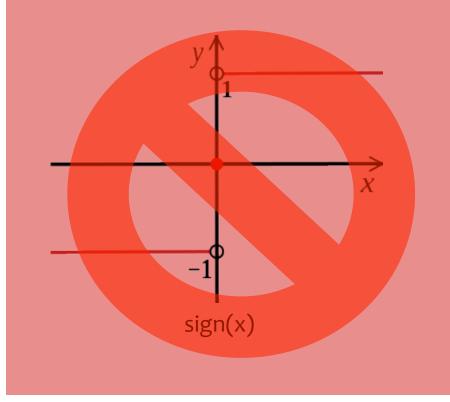
$$p_{\boldsymbol{\theta}}(y=1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$



Using gradient ascent for linearecall... classifiers

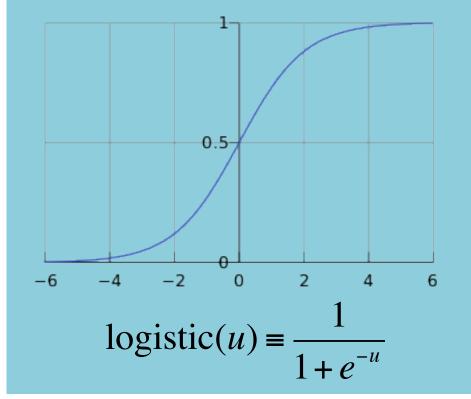
This decision function isn't differentiable:

$$h(\mathbf{x}) = \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x})$$



Use a differentiable function instead:

$$p_{\boldsymbol{\theta}}(y=1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$



Logistic Regression

Data: Inputs are continuous vectors of length K. Outputs are discrete.

$$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$$
 where $\mathbf{x} \in \mathbb{R}^K$ and $y \in \{0, 1\}$

Model: Logistic function applied to dot product of parameters with input vector.

$$p_{\boldsymbol{\theta}}(y=1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$

Learning: finds the parameters that minimize some objective function. ${m heta}^* = \mathop{\rm argmin}_{{m heta}} J({m heta})$

Prediction: Output is the most probable class.

$$\hat{y} = \operatorname*{argmax} p_{\boldsymbol{\theta}}(y|\mathbf{x})$$
$$y \in \{0,1\}$$

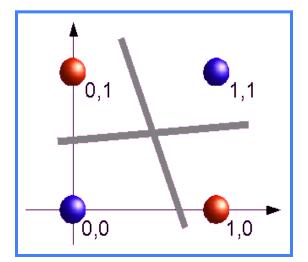
NEURAL NETWORKS

Learning highly non-linear functions

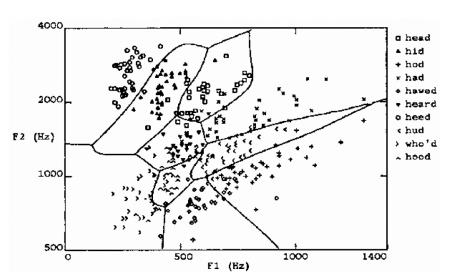
 $f: X \rightarrow Y$

- f might be non-linear function
- X (vector of) continuous and/or discrete vars
- Y (vector of) continuous and/or discrete vars

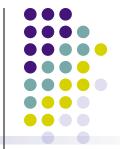
The XOR gate



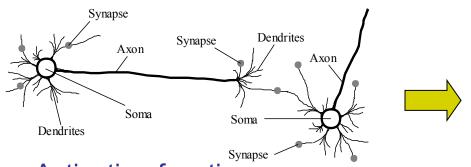
Speech recognition

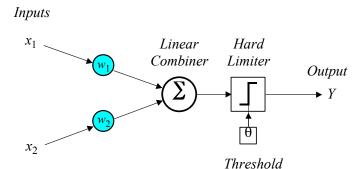


Perceptron and Neural Nets



From biological neuron to artificial neuron (perceptron)

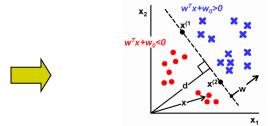




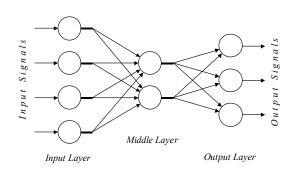
Activation function

$$X = \sum_{i=1}^{n} x_i w_i$$

$$Y = \begin{cases} +1, & \text{if } X \ge \omega_0 \\ -1, & \text{if } X < \omega_0 \end{cases}$$



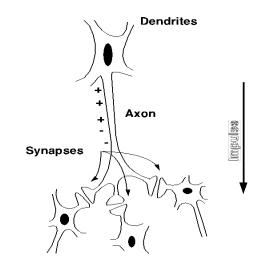
- Artificial neuron networks
 - supervised learning
 - gradient descent

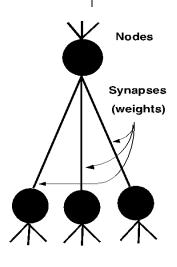


Connectionist Models

Consider humans:

- Neuron switching time
 ~ 0.001 second
- Number of neurons
 ~ 10¹⁰
- Connections per neuron
 ~ 10⁴⁻⁵
- Scene recognition time
 ~ 0.1 second
- 100 inference steps doesn't seem like enough
 → much parallel computation
- Properties of artificial neural nets (ANN)
 - Many neuron-like threshold switching units
 - Many weighted interconnections among units
 - Highly parallel, distributed processes





Motivation

Why is everyone talking about Deep Learning?

- Because a lot of money is invested in it...
 - DeepMind: Acquired by Google for \$400 million

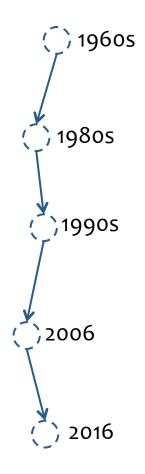
 – DNNResearch: Three person startup (including Geoff Hinton) acquired by Google for unknown price tag

Enlitic, Ersatz, MetaMind, Nervana, Skylab:
 Deep Learning startups commanding millions of VC dollars

 Because it made the front page of the New York Times

Motivation

Why is everyone talking about Deep Learning?



Deep learning:

- Has won numerous pattern recognition competitions
- Does so with minimal feature engineering

This wasn't always the case!

Since 1980s: Form of models hasn't changed much, but lots of new tricks...

- More hidden units
- Better (online) optimization
- New nonlinear functions (ReLUs)
- Faster computers (CPUs and GPUs)

Background

A Recipe for Machine Learning

1. Given training data:

$$\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$$

2. Choose each of these:

Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

Examples: Linear regression, Logistic regression, Neural Network

Examples: Mean-squared error, Cross Entropy

Background

A Recipe for Machine Learning

1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

2. Choose each of these:

Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}},m{y}_i)\in\mathbb{R}$$

3. Define goal:

$$oldsymbol{ heta}^* = rg \min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

4. Train with SGD:

(take small steps opposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

Background

A Recipe for Gradients

1. Given training dat $\int \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r}$

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$
 gradient!

- 2. Choose each of the
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}}, m{y}_i) \in \mathbb{R}$$

Backpropagation can compute this gradient!

And it's a special case of a more general algorithm called reversemode automatic differentiation that can compute the gradient of any differentiable function efficiently!

opposite the gradient)

$$oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

A Recipe for

Goals for Today's Lecture

- 1. Explore a new class of decision functions (Neural Networks)
 - 2. Consider variants of this recipe for training

choose each of these:

Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

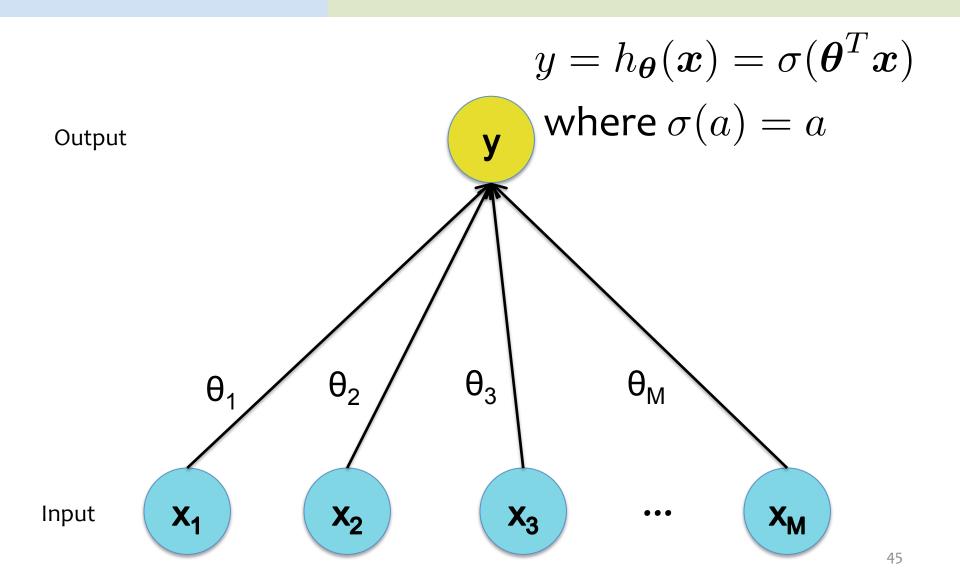
$$\ell(\hat{m{y}}, m{y}_i) \in \mathbb{R}$$

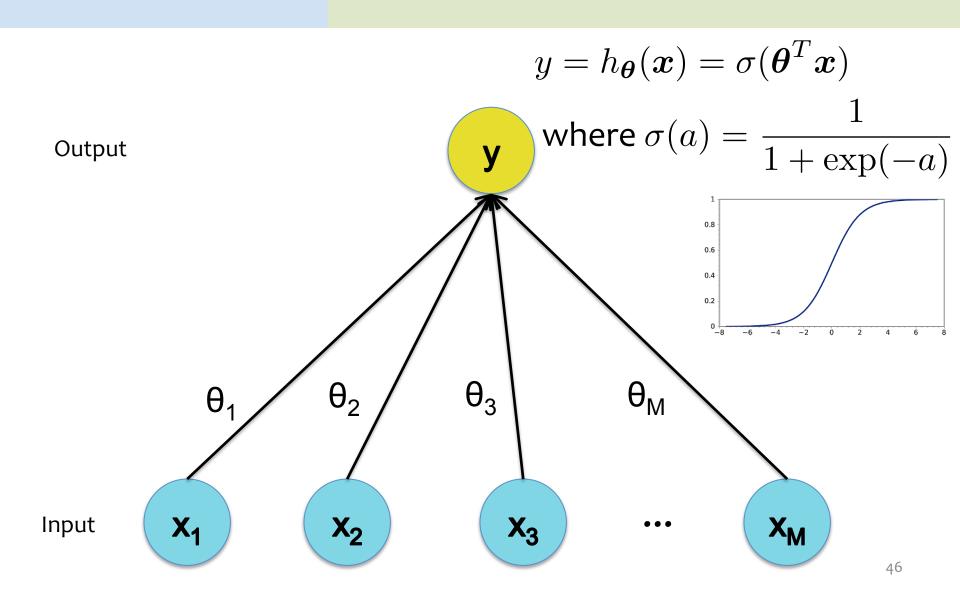
Train with SGD:

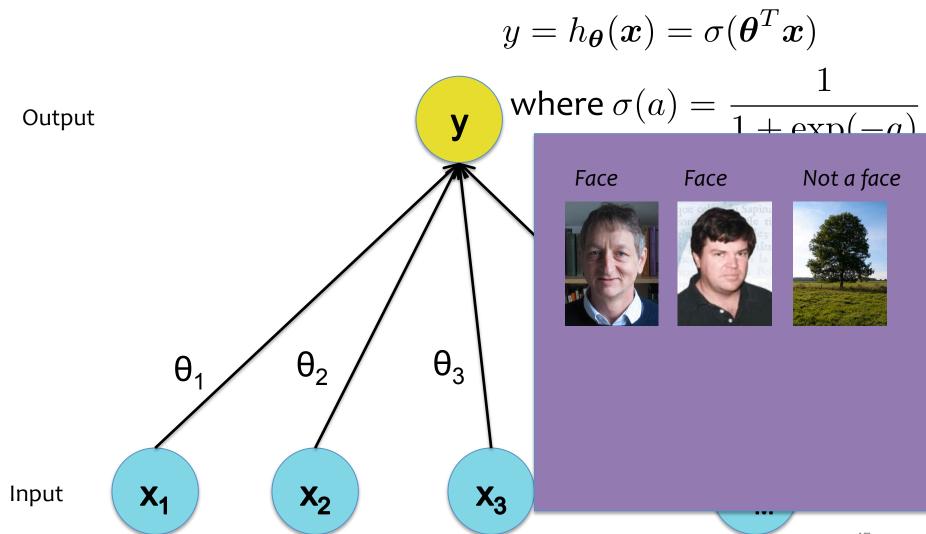
ke small steps
opposite the gradient)

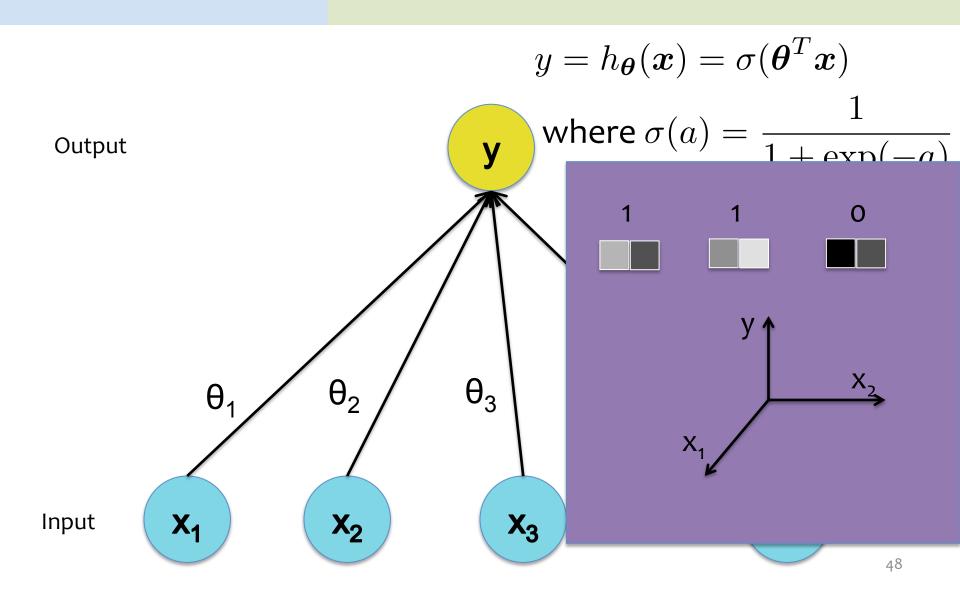
$$oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} - oldsymbol{\eta}_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

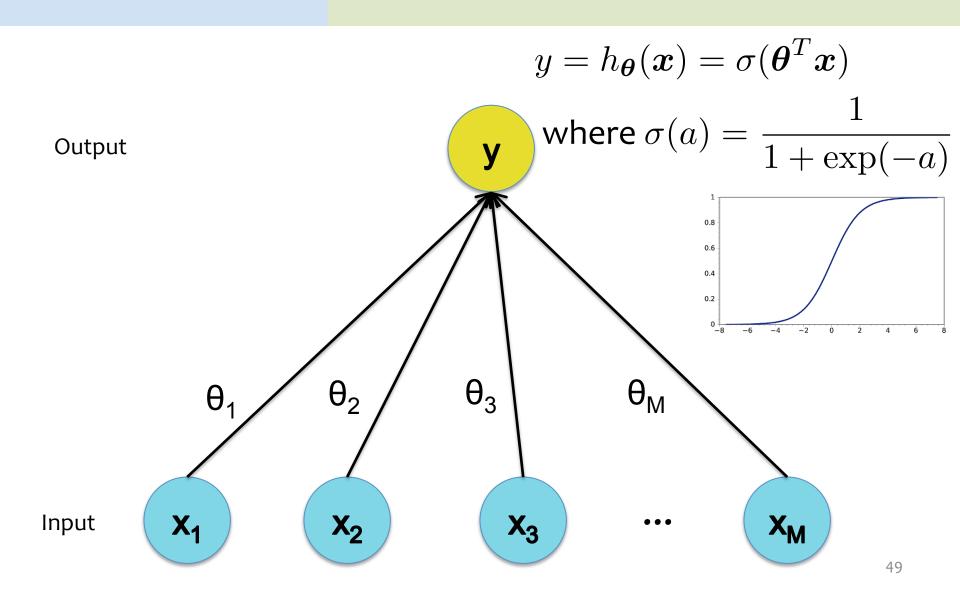
Linear Regression



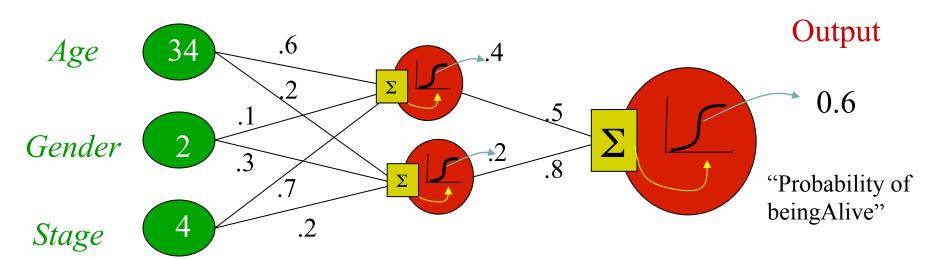








Neural Network Model



Independent variables

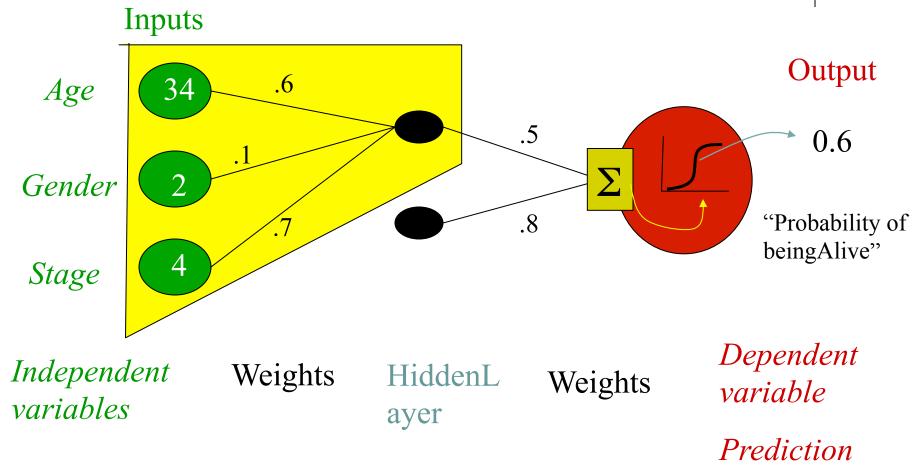
Weights

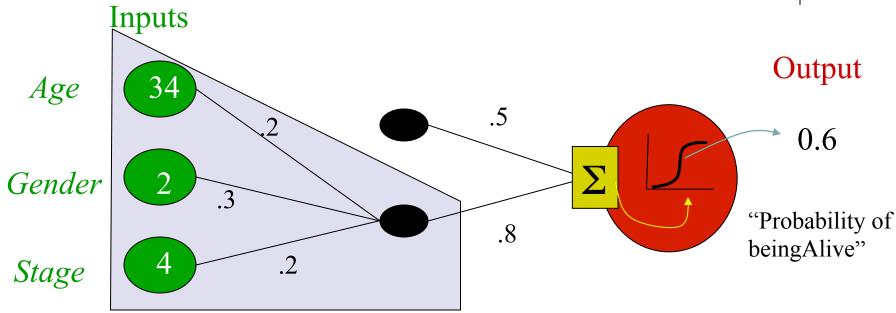
HiddenL ayer

Weights

Dependent variable

"Combined logistic models"





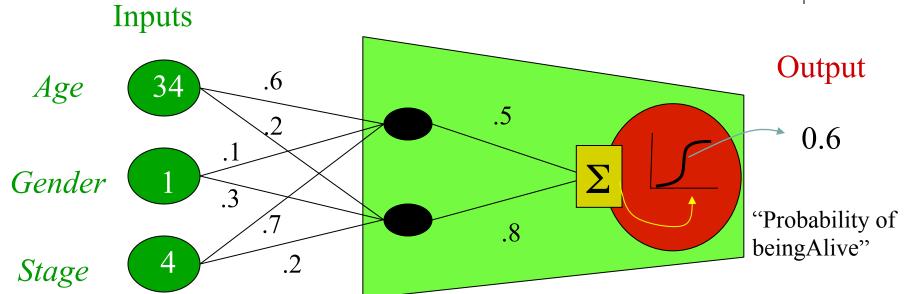
Independent variables

Weights

HiddenL ayer

Weights

Dependent variable



Independent variables

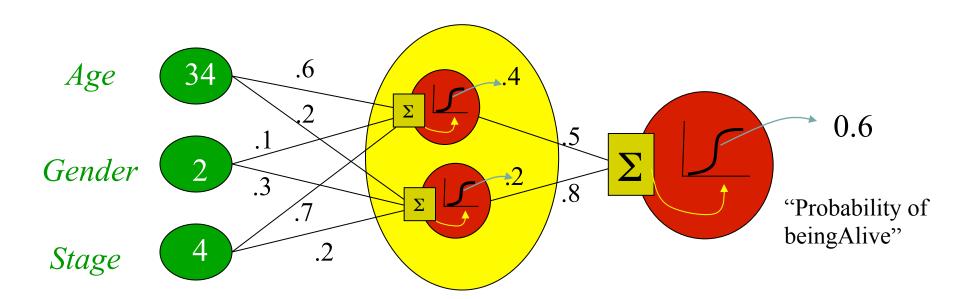
Weights

HiddenL wayer

Weights

Dependent variable

Not really, no target for hidden units...



Independent variables

Weights

HiddenL ayer

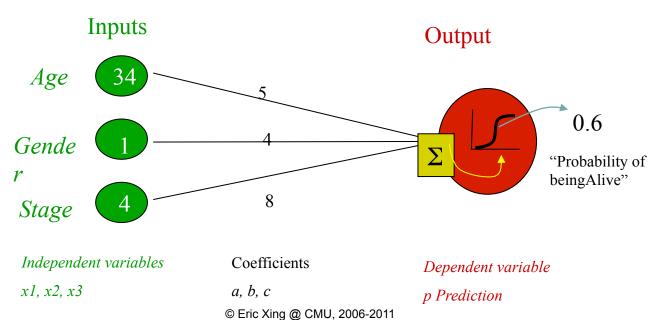
Weights

Dependent variable

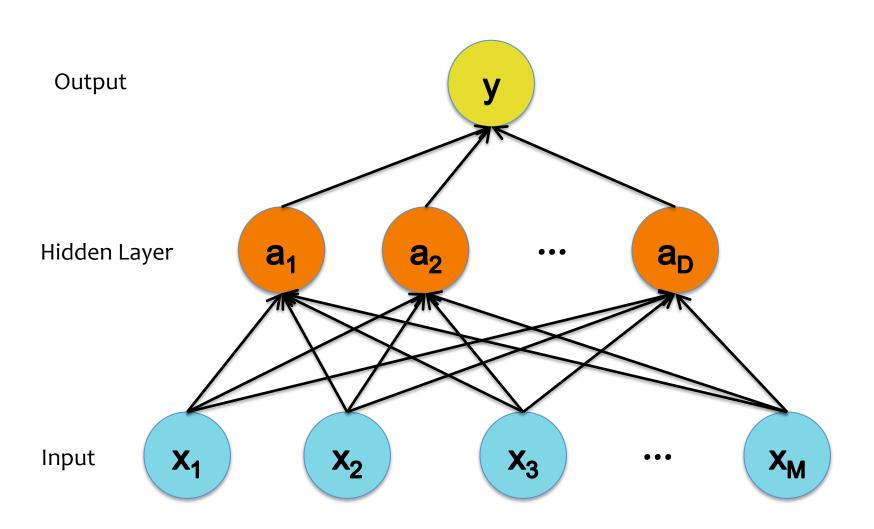
Jargon Pseudo-Correspondence

- Independent variable = input variable
- Dependent variable = output variable
- Coefficients = "weights"
- Estimates = "targets"

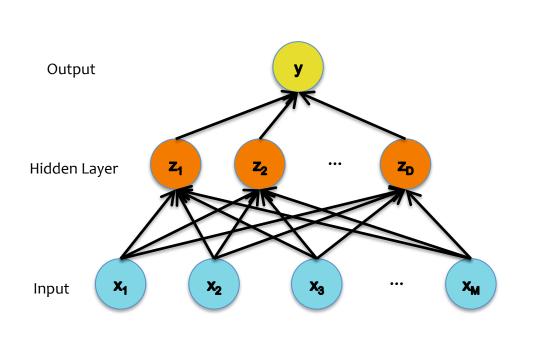
Logistic Regression Model (the sigmoid unit)

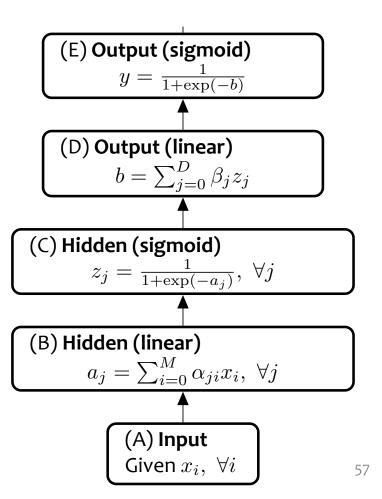


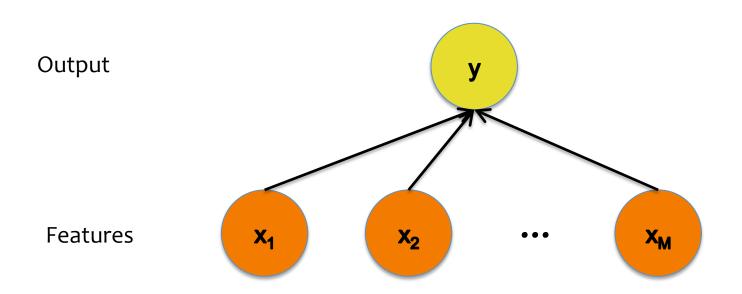
Neural Network

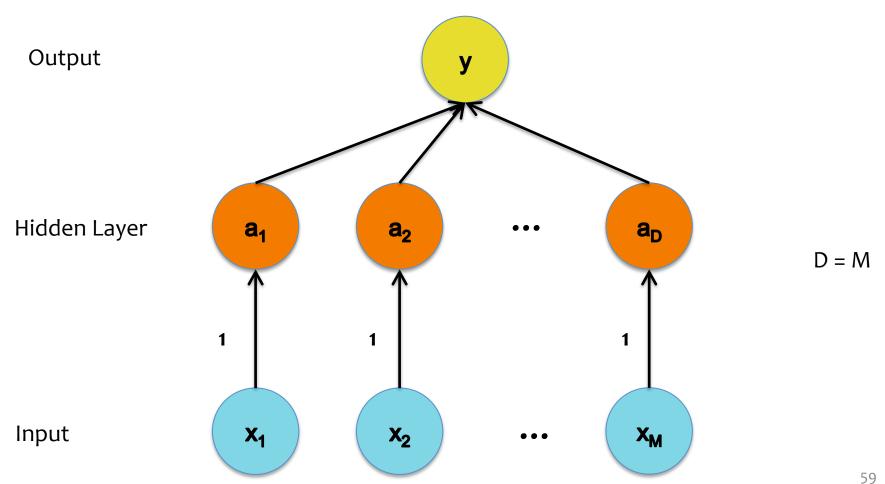


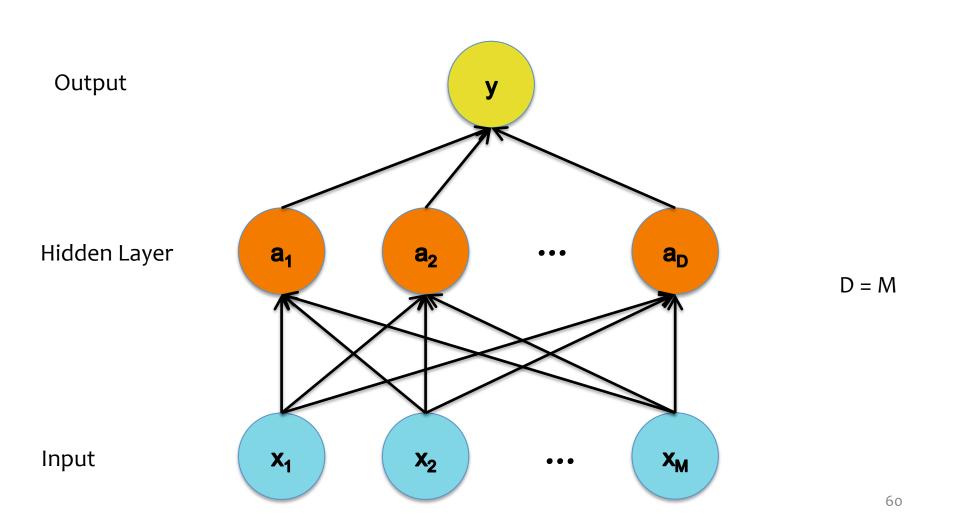
Neural Network

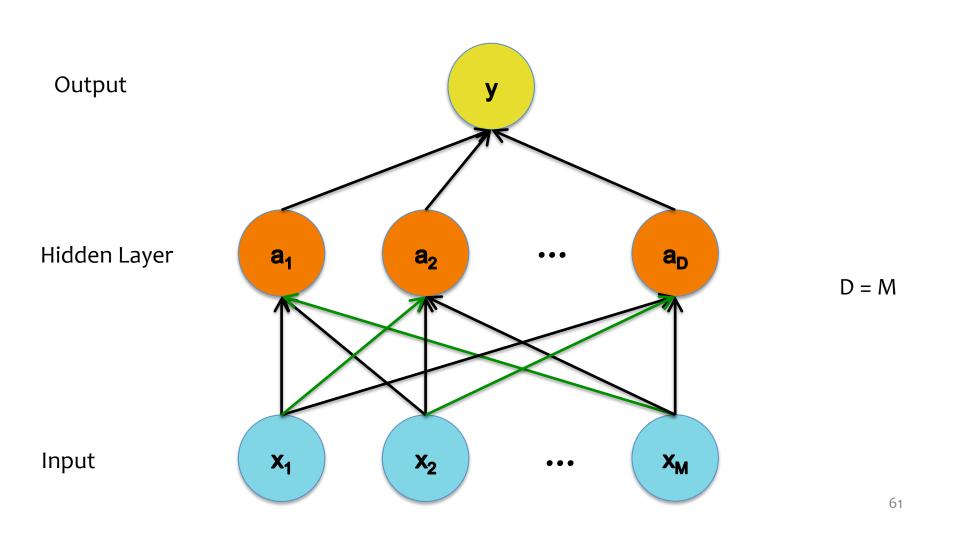


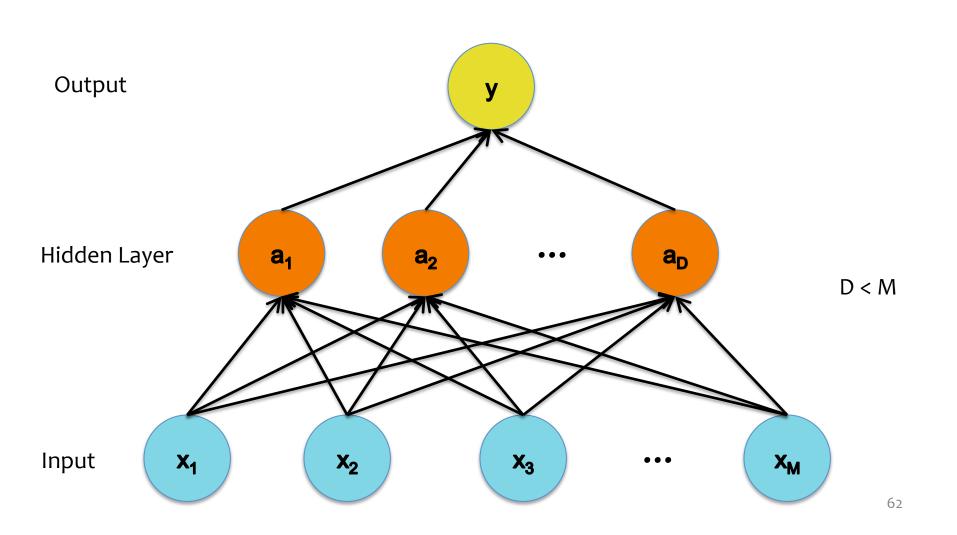






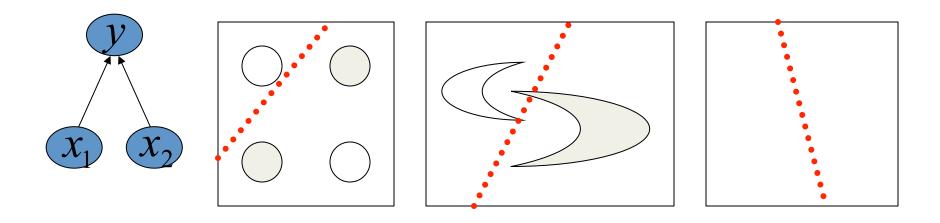






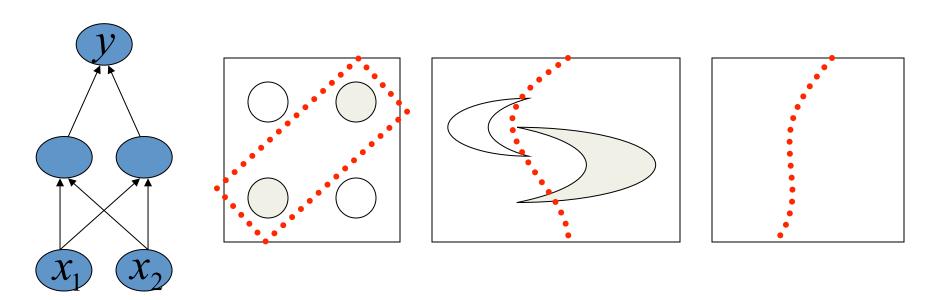
Decision Boundary

- o hidden layers: linear classifier
 - Hyperplanes

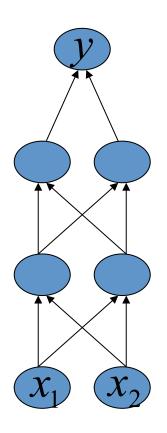


Decision Boundary

- 1 hidden layer
 - Boundary of convex region (open or closed)

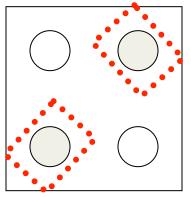


Decision Boundary

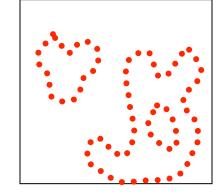


2 hidden layers

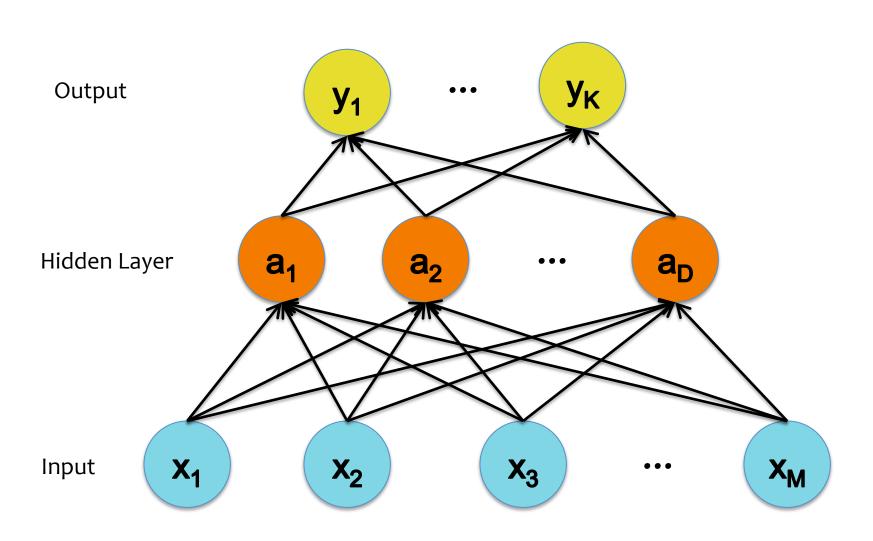
Combinations of convex regions





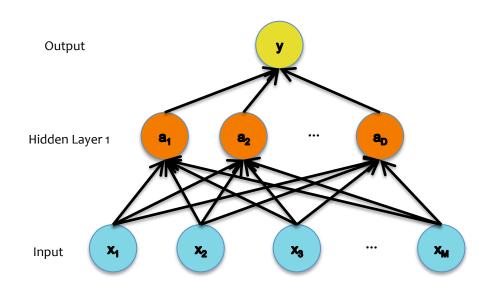


Multi-Class Output



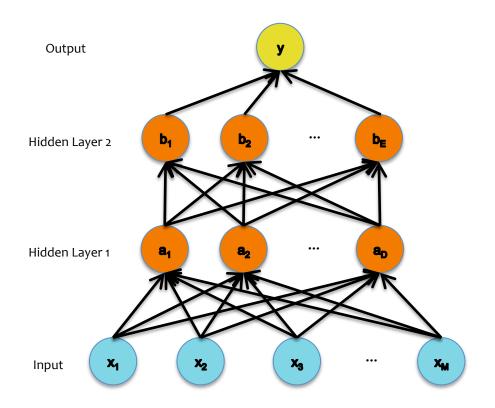
Deeper Networks

Next lecture:

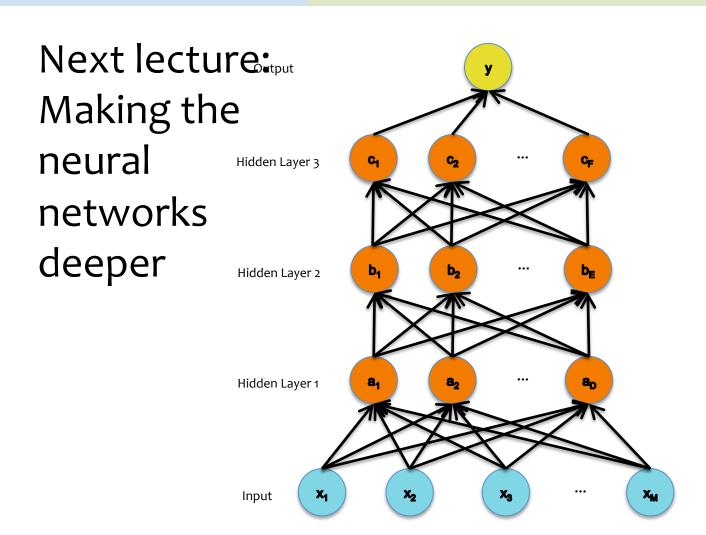


Deeper Networks

Next lecture:



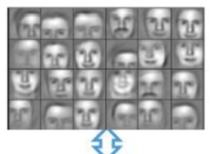
Deeper Networks



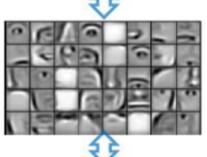
Different Levels of Abstraction

- We don't know the "right" levels of abstraction
- So let the model figure it out!

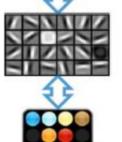
Feature representation



3rd layer "Objects"



2nd layer "Object parts"



1st layer "Edges"

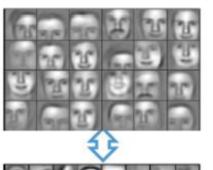
Different Levels of Abstraction

Face Recognition:

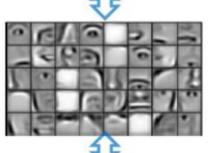
- Deep Network

 can build up
 increasingly
 higher levels of
 abstraction
- Lines, parts, regions

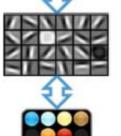
Feature representation



3rd layer "Objects"



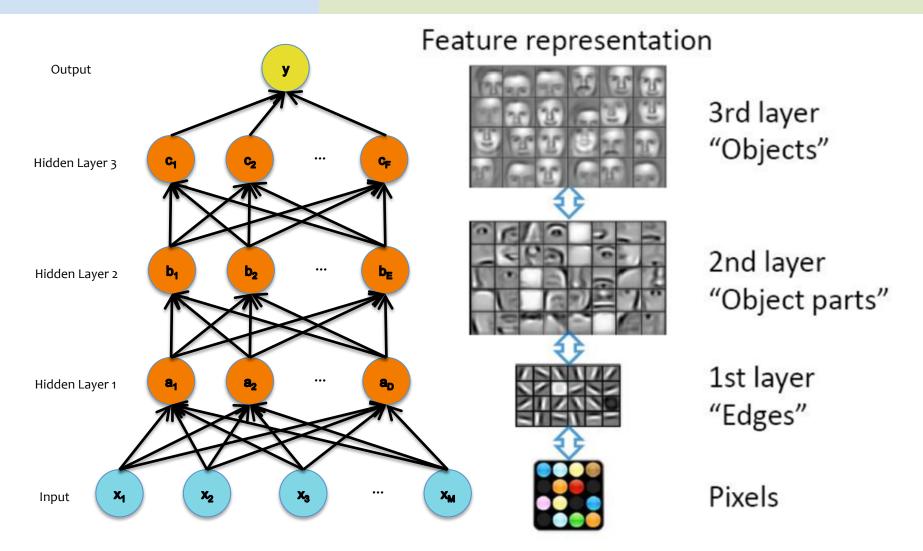
2nd layer "Object parts"



1st layer "Edges"

Pixels

Different Levels of Abstraction



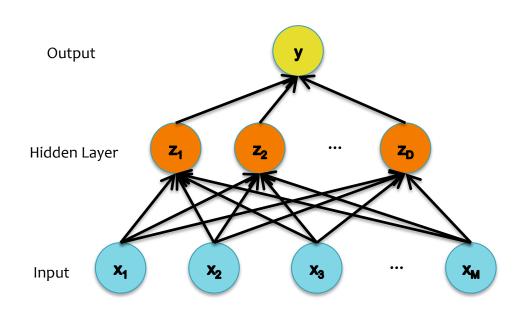
ARCHITECTURES

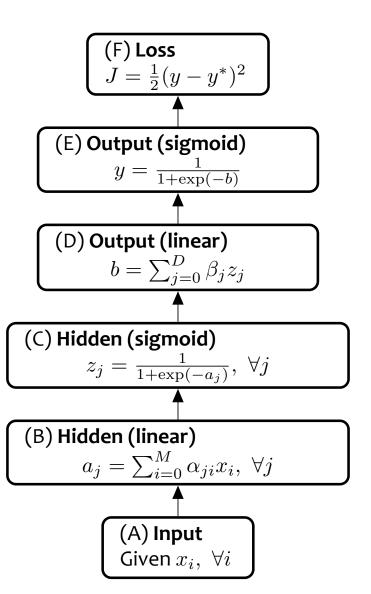
Neural Network Architectures

Even for a basic Neural Network, there are many design decisions to make:

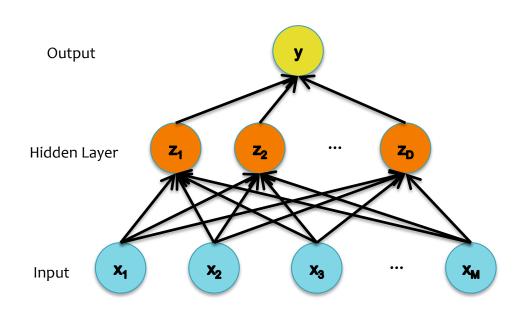
- # of hidden layers (depth)
- 2. # of units per hidden layer (width)
- 3. Type of activation function (nonlinearity)
- 4. Form of objective function

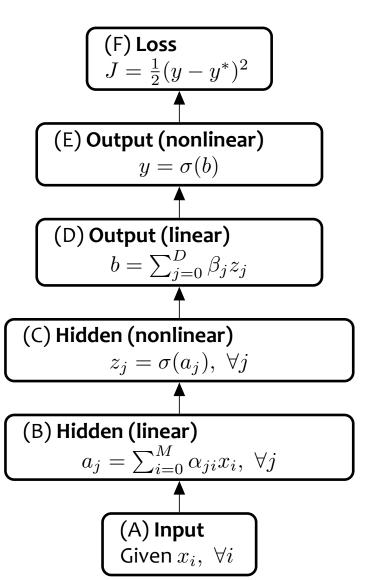
Neural Network with sigmoid activation functions





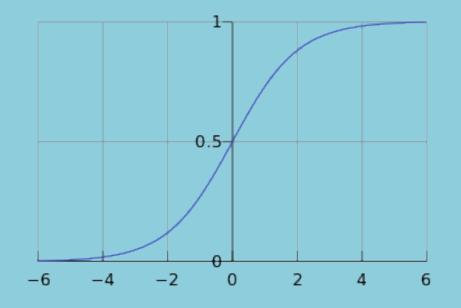
Neural Network with arbitrary nonlinear activation functions



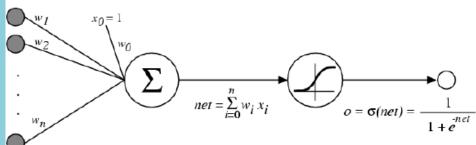


Sigmoid / Logistic Function

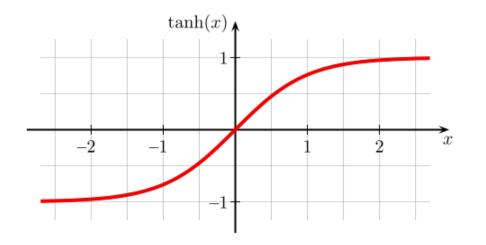
logistic(
$$u$$
) = $\frac{1}{1 + e^{-u}}$



So far, we've assumed that the activation function (nonlinearity) is always the sigmoid function...

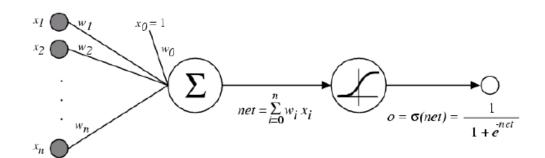


- A new change: modifying the nonlinearity
 - The logistic is not widely used in modern ANNs



Alternate 1: tanh

Like logistic function but shifted to range [-1, +1]



Understanding the difficulty of training deep feedforward neural networks

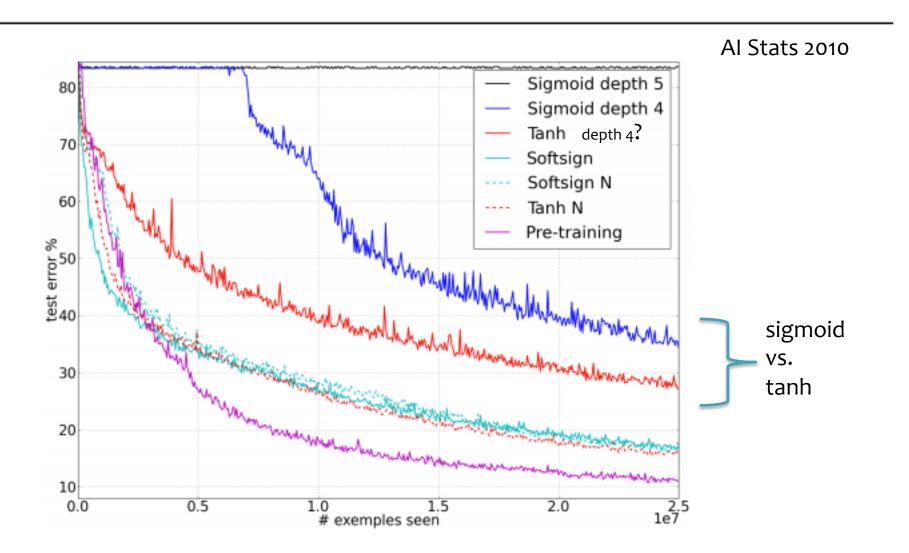
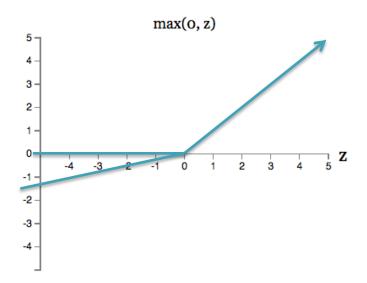


Figure from Glorot & Bentio (2010)

- A new change: modifying the nonlinearity
 - reLU often used in vision tasks

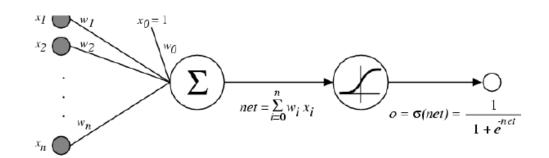


$$\max(0, w \cdot x + b)$$
.

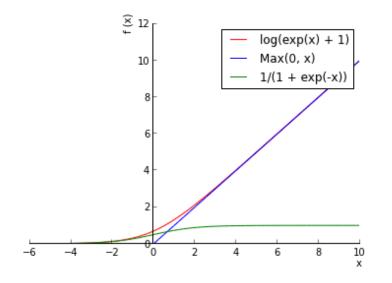
Alternate 2: rectified linear unit

Linear with a cutoff at zero

(Implementation: clip the gradient when you pass zero)



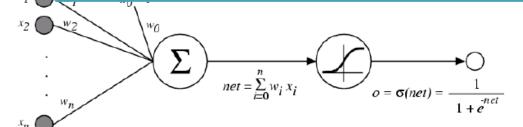
- A new change: modifying the nonlinearity
 - reLU often used in vision tasks



Alternate 2: rectified linear unit

Soft version: log(exp(x)+1)

Doesn't saturate (at one end)
Sparsifies outputs
Helps with vanishing gradient

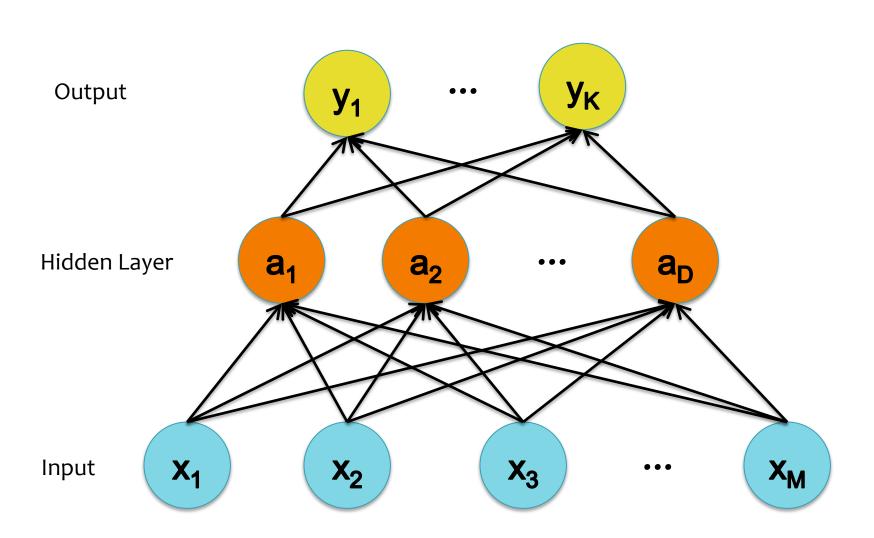


Objective Functions for NNs

- Regression:
 - Use the same objective as Linear Regression
 - Quadratic loss (i.e. mean squared error)
- Classification:
 - Use the same objective as Logistic Regression
 - Cross-entropy (i.e. negative log likelihood)
 - This requires probabilities, so we add an additional "softmax" layer at the end of our network

Forward Backward $J = \frac{1}{2}(y-y^*)^2 \qquad \qquad \frac{dJ}{dy} = y-y^*$ Cross Entropy $J = y^*\log(y) + (1-y^*)\log(1-y) \qquad \frac{dJ}{dy} = y^*\frac{1}{y} + (1-y^*)\frac{1}{y-1}$

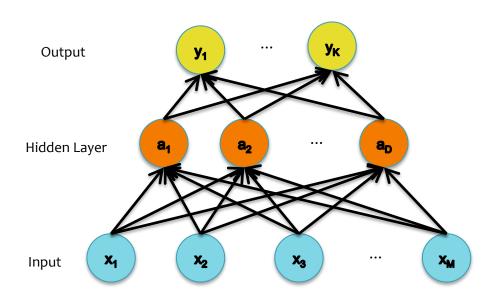
Multi-Class Output

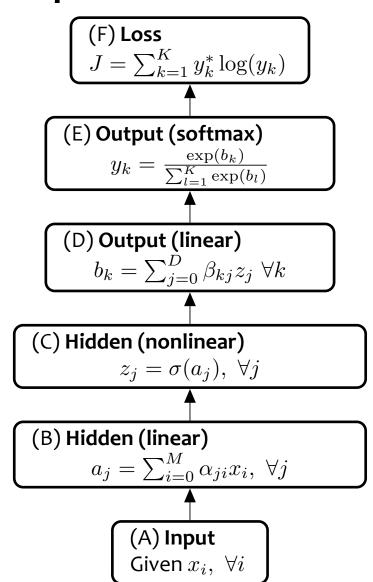


Multi-Class Output

Softmax:

$$y_k = \frac{\exp(b_k)}{\sum_{l=1}^K \exp(b_l)}$$





Cross-entropy vs. Quadratic loss

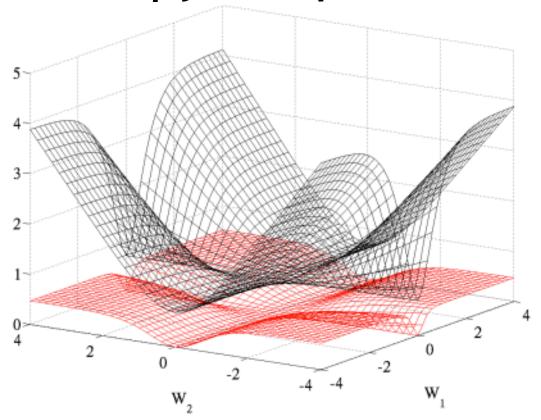


Figure 5: Cross entropy (black, surface on top) and quadratic (red, bottom surface) cost as a function of two weights (one at each layer) of a network with two layers, W_1 respectively on the first layer and W_2 on the second, output layer.

Background

A Recipe for Machine Learning

1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

- 2. Choose each of these:
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

3. Define goal:

$$oldsymbol{ heta}^* = rg \min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

4. Train with SGD:

(take small steps opposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

Objective Functions

Matching Quiz: Suppose you are given a neural net with a single output, y, and one hidden layer.

- 1) Minimizing sum of squared errors...
- 2) Minimizing sum of squared errors plus squared Euclidean norm of weights...
- 3) Minimizing cross-entropy...
- 4) Minimizing hinge loss...

... gives...

6) ... MAP estimates of weights assuming weight priors are zero mean Gaussian

parameter given by the output value

target follows a Bernoulli with

5) ... MLE estimates of weights assuming

- 7) ... estimates with a large margin on the training data
- 8) ... MLE estimates of weights assuming zero mean Gaussian noise on the output value

BACKPROPAGATION

Background

A Recipe for Machine Learning

1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

- 2. Choose each of these:
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

3. Define goal:

$$oldsymbol{ heta}^* = rg \min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

4. Train with SGD:

(take small steps opposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

Backpropagation

Question 1:

When can we compute the gradients of the parameters of an arbitrary neural network?

Question 2:

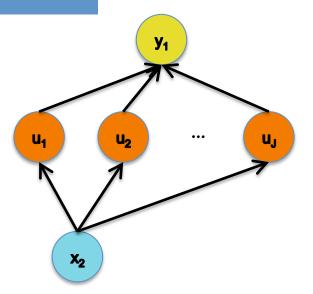
When can we make the gradient computation efficient?

Chain Rule

Given: y = g(u) and u = h(x).

Chain Rule:

$$\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$



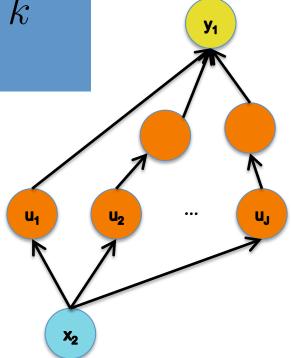
Chain Rule

Given: y = g(u) and u = h(x).

Chain Rule:

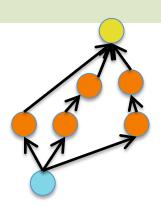
$$\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$

Backpropagation is just repeated application of the chain rule from Calculus 101.



Chain Rule

Given:
$$\mathbf{y} = g(\mathbf{u})$$
 and $\mathbf{u} = h(\mathbf{x})$. Chain Rule:
$$\frac{dy_i}{dx_k} = \sum_{j=1}^J \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$



Backpropagation:

- Instantiate the computation as a directed acyclic graph, where each intermediate quantity is a node
- 2. At each node, store (a) the quantity computed in the forward pass and (b) the **partial derivative** of the goal with respect to that node's intermediate quantity.
- 3. Initialize all partial derivatives to 0.
- 4. Visit each node in **reverse topological order**. At each node, add its contribution to the partial derivatives of its parents

This algorithm is also called automatic differentiation in the reverse-mode

Backpropagation

Simple Example: The goal is to compute $J = \cos(\sin(x^2) + 3x^2)$ on the forward pass and the derivative $\frac{dJ}{dx}$ on the backward pass.

Forward

$$J = cos(u)$$

$$u = u_1 + u_2$$

$$u_1 = sin(t)$$

$$u_2 = 3t$$

$$t = x^2$$

Backpropagation

Simple Example: The goal is to compute $J = \cos(\sin(x^2) + 3x^2)$ on the forward pass and the derivative $\frac{dJ}{dx}$ on the backward pass.

Forward

$$J = cos(u)$$

$$u = u_1 + u_2$$

$$u_1 = sin(t)$$

$$u_2 = 3t$$

$$t = x^2$$

Backward

$$J = cos(u) \qquad \frac{dJ}{du} += -sin(u)$$

$$u = u_1 + u_2$$

$$\frac{du}{du_1} + \frac{dJ}{du} + \frac{dJ}{du} \frac{du}{du_1}, \quad \frac{du}{du_1} = 1$$

$$\frac{dJ}{du_2} + \frac{dJ}{du} \frac{du}{du_2}, \quad \frac{du}{du_2} = 1$$

$$\frac{dJ}{du} + \frac{dJ}{du} \frac{du}{du_2}, \quad \frac{du}{du_2} = 1$$

$$\frac{1}{u_1} = 1$$

$$\frac{dJ}{dt} += \frac{dJ}{du_1} \frac{du_1}{dt}, \quad \frac{du_1}{dt} = \cos(t)$$

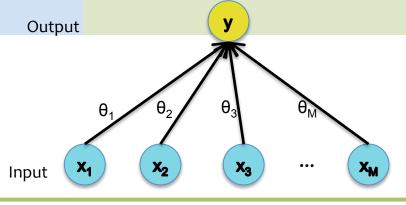
$$u_2 = 3t$$

$$\frac{dJ}{dt} += \frac{dJ}{du_2} \frac{du_2}{dt}, \quad \frac{du_2}{dt} = 3$$

$$\frac{dJ}{dx} += \frac{dJ}{dt}\frac{dt}{dx}, \quad \frac{dt}{dx} = 2x$$

Backpropagation

Case 1: Logistic Regression



Forward

$$J = y^* \log y + (1 - y^*) \log(1 - y)$$

$$y = \frac{1}{1 + \exp(-a)}$$

$$a = \sum_{j=0}^{D} \theta_j x_j$$

Backward

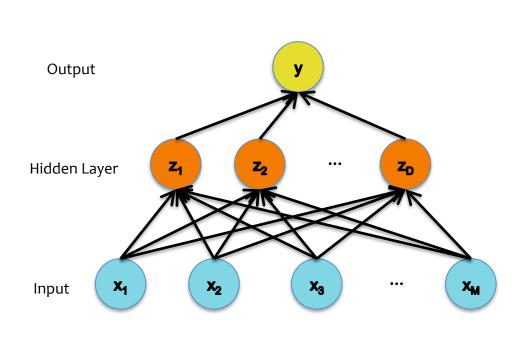
$$J = y^* \log y + (1 - y^*) \log(1 - y) \qquad \frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1 - y^*)}{y - 1}$$

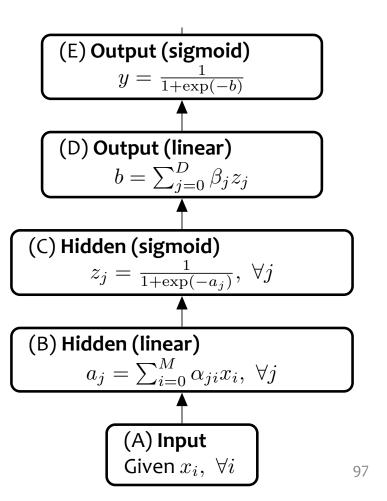
$$\frac{dJ}{da} = \frac{dJ}{dy}\frac{dy}{da}, \frac{dy}{da} = \frac{\exp(-a)}{(\exp(-a) + 1)^2}$$

$$\frac{dJ}{d\theta_j} = \frac{dJ}{da} \frac{da}{d\theta_j}, \ \frac{da}{d\theta_j} = x_j$$

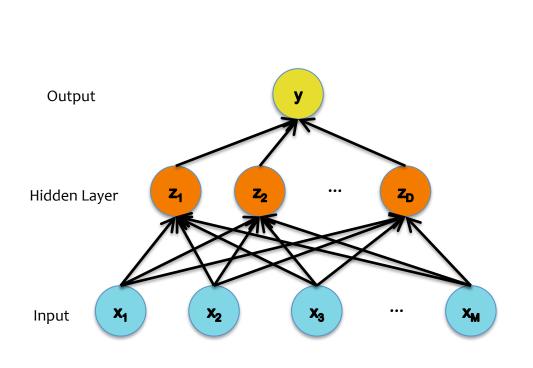
$$\frac{dJ}{dx_i} = \frac{dJ}{da} \frac{da}{dx_i}, \frac{da}{dx_i} = \theta_j$$

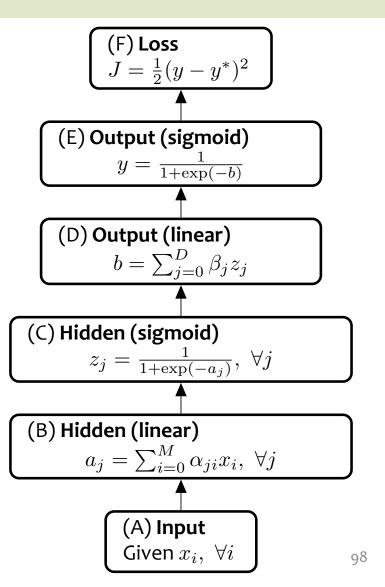
Backpropagation





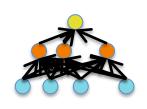
Backpropagation





Backpropagation

Case 2: Neural Network



Forward

$$J = y^* \log y + (1 - y^*) \log(1 - y) \qquad \frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1 - y^*)}{y - 1}$$
$$y = \frac{1}{1 + \exp(-b)} \qquad \frac{dJ}{db} = \frac{dJ}{dy} \frac{dy}{db}, \frac{dy}{db} = \frac{1}{y}$$

$$b = \sum_{j=0}^{D} \beta_j z_j$$

$$z_j = \frac{1}{1 + \exp(-a_j)}$$
$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$

Backward

$$\frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1 - y^*)}{y - 1}$$

$$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \frac{dy}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2}$$

$$\frac{dJ}{d\beta_j} = \frac{dJ}{db}\frac{db}{d\beta_j}, \frac{db}{d\beta_j} = z_j$$

$$\frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \ \frac{db}{dz_j} = \beta_j$$

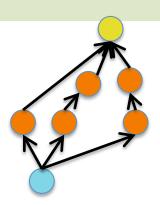
$$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \frac{dz_j}{da_j} = \frac{\exp(-a_j)}{(\exp(-a_j) + 1)^2}$$

$$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \ \frac{da_j}{d\alpha_{ji}} = x_i$$

$$\frac{dJ}{dx_i} = \frac{dJ}{da_j} \frac{da_j}{dx_i}, \ \frac{da_j}{dx_i} = \sum_{i=0}^{D} \alpha_{ji}$$

Chain Rule

Given:
$$m{y} = g(m{u})$$
 and $m{u} = h(m{x})$. Chain Rule:
$$\frac{dy_i}{dx_k} = \sum_{j=1}^J \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$



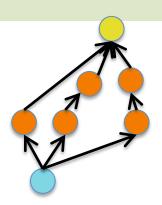
Backpropagation:

- 1. Instantiate the computation as a directed acyclic graph, where each intermediate quantity is a node
- 2. At each node, store (a) the quantity computed in the forward pass and (b) the **partial derivative** of the goal with respect to that node's intermediate quantity.
- 3. Initialize all partial derivatives to o.
- 4. Visit each node in **reverse topological order**. At each node, add its contribution to the partial derivatives of its parents

This algorithm is also called automatic differentiation in the reverse-mode

Chain Rule

Given:
$$m{y} = g(m{u})$$
 and $m{u} = h(m{x})$. Chain Rule:
$$\frac{dy_i}{dx_k} = \sum_{j=1}^J \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$



Backpropagation:

- Instantiate the computation as a directed acyclic graph, where each node represents a Tensor.
- 2. At each node, store (a) the quantity computed in the forward pass and (b) the **partial derivatives** of the goal with respect to that node's Tensor.
- 3. Initialize all partial derivatives to 0.
- 4. Visit each node in **reverse topological order**. At each node, add its contribution to the partial derivatives of its parents

This algorithm is also called automatic differentiation in the reverse-mode

Backpropagation

Case 2:	Forward	Backward
Module 5	$J = y^* \log y + (1 - y^*) \log(1 - y)$	$dy \qquad y \qquad y-1$
Module 4	$y = \frac{1}{1 + \exp(-b)}$	$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \frac{dy}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2}$
Module 3	$b = \sum_{j=0}^{D} \beta_j z_j$	$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \frac{db}{d\beta_j} = z_j$ $\frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \frac{db}{dz_j} = \beta_j$
Module 2	$z_j = \frac{1}{1 + \exp(-a_j)}$	$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \ \frac{dz_j}{da_j} = \frac{\exp(-a_j)}{(\exp(-a_j) + 1)^2}$
Module 1	$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$	$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \frac{da_j}{d\alpha_{ji}} = x_i$ $\frac{dJ}{dx_i} = \frac{dJ}{da_j} \frac{da_j}{dx_i}, \frac{da_j}{dx_i} = \sum_{j=0}^{D} \alpha_{ji}$

102

Background

A Recipe for Gradients

1. Given training dat

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$
 gradient!

- 2. Choose each of the
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}}, m{y}_i) \in \mathbb{R}$$

Backpropagation can compute this gradient!

And it's a special case of a more general algorithm called reversemode automatic differentiation that can compute the gradient of any differentiable function efficiently!

opposite the gradient)

$$oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

Summary

1. Neural Networks...

- provide a way of learning features
- are highly nonlinear prediction functions
- (can be) a highly parallel network of logistic regression classifiers
- discover useful hidden representations of the input

2. Backpropagation...

- provides an efficient way to compute gradients
- is a special case of reverse-mode automatic differentiation