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Class Registration
 IF YOU ARE ON THE WAITING LIST: This class is now fully 

subscribed. You may want to consider the following options: 

 Take the class when it is offered again in the Spring semester; 

 Come to the first several lectures and see how the course develops. We will 
admit as many students from the waitlist as we can, once we see how many 
registered students drop the course during the first two weeks. 
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Machine Learning 10-701
 Class webpage:

 http://www.cs.cmu.edu/~mgormley/courses/10701-f16/
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The instructors 
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Brynn Edmunds
 Previous Research

 Medical Physics with specific interest in 
Radiotherapy and Radiation Oncology
 Examination of DVH parameters for prostate 

treatments
 Comparing clinicians with different training to 

look for treatment variability

 Currently: ML Assistant Instructor
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 Devendra Chaplot
 Office Hour: Friday 11:00am -12:00pm
 Location: GHC 5412
 Interests: Concept Graph Learning, 

Computational models of human 
learning, Reinforcement Learning
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Siddharth Goyal
Office Hour: Tue 4:00pm -5:00pm
Location: GHC 5

th
floor common area 

Interests: Bayesian optimization,  
Reinforcement learning
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Hemank Lamba

Office Hours: Tuesday, 11 to Noon

Location:  TBD

Research
• Graph Mining
• Data Mining
• Anomaly Detection
• Social Good Applications
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Hyun Ah Song
Office hour: Friday 1pm-2pm
Office: GHC 8003
Interests: time series analysis
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Petar Stojanov

Office Hours: Wednesday, 4:30 to 5:30pm
(starting next week)  

Location:  TBD

Research
• Transfer Learning 
• Domain Adaptation 
• Multitask Learning 
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Logistics
 Text book

 Chris Bishop, Pattern Recognition and Machine Learning (required)
 Kevin Murphy, Machine Learning, a probabilistic approach
 Tom Mitchell,  Machine Learning
 David Mackay,  Information Theory, Inference, and Learning Algorithms

 Mailing Lists: 
 To contact the instructors: 10701-instructors@cs.cmu.edu 
 Class announcements list: 10701-announce@cs.cmu.edu. 

 Piazza …
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Logistics
 5 homework assignments: 35% of grade

 Theory exercises
 Implementation exercises 

 Final project: 35% of grade
 Applying machine learning to your research area

 NLP, IR,, vision, robotics, computational biology …

 Outcomes that offer real utility and value
 Search all the wine bottle labels, 
 An iPhone app for landmark recognition

 Theoretical and/or algorithmic work 
 a more efficient approximate inference algorithm
 a new sampling scheme for a non-trivial model …

 3-member team to be formed in the first two weeks, proposal, mid-way report,  poster & 
demo, final report.

 One Midterm: 30%
 Theory exercises and/or analysis. Dates already set (no “ticket already booked”, “I am in a 

conference”, etc. excuse …)

 Policies …
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Apoptosis + Medicine

What is Learning

Grammatical rules
Manufacturing procedures
Natural laws
…

Inference: 
what does this mean?
Any similar article?
…

Learning is about seeking a predictive and/or executable understanding of 
natural/artificial subjects, phenomena, or activities from …
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Machine Learning (ML)
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A short definition

 Study of algorithms and systems that
• improve their performance P
• at some task T
• with experience E

well-defined learning task: <P,T,E>
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Elements of Modern ML
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ML methodologies, system 
paradigms, & hardware infrastructure
 New 

mathematical 
tools

 New theory and 
algorithms

 Moore’s Law New system 
architecture

BSP

MapReduce
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Where Machine Learning is being 
used or can be useful?

Speech recognition

Information retrieval

Computer vision

Robotic control

Planning

Games

Evolution

Pedigree
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Amazing 
Breakthroughs                         .
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Paradigms of Machine Learning
 Supervised Learning

 Given                     ,  learn                         ,  s.t.    

 Unsupervised Learning
 Given                     ,  learn                         ,  s.t.    

 Semi-supervised Learning 
 Reinforcement Learning

 Given

learn                                      ,  s.t.       

 Active Learning
 Given                 ,  learn                                   ,   s.t. 

 Transfer learning 
 Deep xxx …

 iiD YX ,  ii XY f :)f(     jjD YX        new 

 iD X  ii XY f :)f(     jjD YX        new 

 game trace/realsimulator/ rewards,,actions,envD

rea
are




,:utility
,:policy   321 aaa ,,game real new,env 

)(G~ D  jD Y policy, ),(G' all )f( and )(G'~new D
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Machine Learning - Theory
For the learned F(; )

 Consistency (value, pattern, …)
 Bias versus variance
 Sample complexity
 Learning rate
 Convergence
 Error bound
 Confidence
 Stability
 …

PAC Learning Theory

# examples (m)

representational 
complexity (H)

error rate ()

failure probability ()

(supervised concept learning)
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Why machine learning?

1B+ USERS
30+ PETABYTES

645 million users
500 million tweets / day

100+ hours video 
uploaded every minute

32 million 
pages
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Growth of Machine Learning
 Machine learning already the preferred approach to

 Speech recognition, Natural language processing
 Computer vision
 Medical outcomes analysis
 Robot control
 …

 This ML niche is growing (why?)

All software 
apps.

ML apps.
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Growth of Machine Learning
 Machine learning already the preferred approach to

 Speech recognition, Natural language processing
 Computer vision
 Medical outcomes analysis
 Robot control
 …

 This ML niche is growing
 Improved machine learning algorithms 
 Increased data capture, networking
 Software too complex to write by hand
 New sensors / IO devices
 Demand for self-customization to user, environment

All software 
apps.

ML apps.
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Summary: 
What is Machine Learning

Machine Learning seeks to develop theories and computer systems for

 representing;
 classifying, clustering, recognizing, organizing;
 reasoning under uncertainty;
 predicting;
 and reacting to
 …
complex, real world data, based on the system's own experience with data, 
and (hopefully) under a unified model or mathematical framework, that

 can be formally characterized and analyzed 
 can take into account human prior knowledge
 can generalize and adapt across data and domains
 can operate automatically and autonomously
 and can be interpreted and perceived by human.
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Inference
Prediction
Decision-Making under uncertainty
…

 Statistical Machine Learning
 Function Approximation: F( |)?
 Density Estimation
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Classification
 sickle-cell anemia 
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Function Approximation
 Setting:

 Set of possible instances X
 Unknown target function f: XY
 Set of function hypotheses H={ h | h: XY }

 Given:
 Training examples {<xi,yi>} of unknown target function f

 Determine:
 Hypothesis h ∈ H that best approximates f
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Density Estimation
 A Density Estimator learns a mapping from a set of attributes 

to a Probability
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Basic Probability Concepts
 A sample space S is the set of all possible outcomes of a 

conceptual or physical, repeatable experiment. (S can be finite 
or infinite.)

 E.g., S may be the set of all possible outcomes 
of a dice roll: 

 E.g., S may be the set of all possible nucleotides 
of a DNA site: 

 E.g., S may be the set of all possible positions time-space positions 
of a aircraft on a radar screen: 

 GC,T,A,S

 61,2,3,4,5,S

},{},{},{ o
max  036000 RS
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Random Variable
 A random variable is a function that associates a unique 

numerical value (a token) with every outcome of an 
experiment. (The value of the r.v. will vary from trial to trial as 
the experiment is repeated) 
 Discrete r.v.:

 The outcome of a dice-roll
 The outcome of reading a nt at site i: 

 Binary event and indicator variable:
 Seeing an "A" at a site X=1, o/w X=0. 
 This describes the true or false outcome a random event.
 Can we describe richer outcomes in the same way? (i.e., X=1, 2, 3, 4, for being A, C, G, 

T) --- think about what would happen if we take expectation of X.

 Unit-Base Random vector
Xi=[Xi

A, Xi
T, Xi

G, Xi
C]', Xi=[0,0,1,0]'  seeing a "G" at site i 

 Continuous r.v.:
 The outcome of recording the true location of an aircraft: 
 The outcome of observing the measured location of an aircraft



S X()

iX

trueX
obsX
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Random Variable



S X()

 Notational convention

 Univariate

 Multivariate (random vector)
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Discrete Prob. Distribution
 (In the discrete case), a probability distribution P on S (and 

hence on the domain of X ) is an assignment of a non-negative 
real number P(s) to each sS (or each valid value of x) such that 
sSP(s)=1. (0P(s) 1)
 intuitively, P(s) corresponds to the frequency (or the likelihood) of getting s in the 

experiments, if repeated many times
 call s= P(s) the parameters in a discrete probability distribution

 A probability distribution on a sample space is sometimes called 
a probability model, in particular if several different distributions 
are under consideration
 write models as M1, M2, probabilities as P(X|M1), P(X|M2)
 e.g., M1 may be the appropriate prob. dist. if X is from "fair dice", M2 is for the 

"loaded dice". 
 M is usually a two-tuple of {dist. family, dist. parameters}
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 Bernoulli distribution: Ber(p)

 Multinomial distribution: Mult(1,)

 Multinomial (indicator) variable:

 .   1   ,    w.p.1
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 Multinomial distribution: Mult(n,)

 Count variable:

Discrete Distributions

 









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


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Density Estimation
 A Density Estimator learns a mapping from a set of attributes 

to a Probability

 Often know as parameter estimation if the distribution form is 
specified
 Binomial, Gaussian …

 Three important issues:

 Nature of the data (iid, correlated, …)
 Objective function (MLE, MAP, …)
 Algorithm (simple algebra, gradient methods, EM, …)
 Evaluation scheme (likelihood on test data, predictability, consistency, …)
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Density Estimation Schemes

Data

),,( 1
1
1

nxx 

),,( 1 n
MM xx 



),,( 2
1
2

nxx 

Learn
parameters

Maximum likelihood

Bayesian

Conditional likelihood

Margin 

… 

Score 
param

510

1510



310

Algorithm

Analytical

Gradient

EM

Sampling

… 
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Parameter Learning from iid Data
 Goal: estimate distribution parameters  from a dataset of N

independent, identically distributed (iid), fully observed, 
training cases

D = {x1, . . . , xN}

 Maximum likelihood estimation (MLE)
1. One of the most common estimators
2. With iid and full-observability assumption, write L() as the likelihood of the data:

3. pick the setting of parameters most likely to have generated the data we saw:

);,,()( ,  NxxxPL 21

 



N

i i

N

xP

xPxPxP

1

21

);(

);(,),;();(



 

)(maxarg* 


L )(logmaxarg 


L
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Example: Bernoulli model
 Data: 

 We observed N iid coin tossing: D={1, 0, 1, …, 0}

 Representation:
Binary r.v:

 Model: 

 How to write the likelihood of a single observation xi ? 

 The likelihood of datasetD={x1, …,xN}:

ii xx
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Maximum Likelihood Estimation
 Objective function: 

 We need to maximize this w.r.t. 

 Take derivatives wrt 

 Sufficient statistics
 The counts,                                          are sufficient statistics of data D

)log()(log)(log)|(log);(   11 hh
nn nNnDPD thl

0
1










hh nNnl

N
nh

MLE 



i

iMLE x
N
1


or

Frequency as 
sample mean 

,  where,  i ihh xnn
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Overfitting
 Recall that for Bernoulli Distribution, we have

 What if we tossed too few times so that we saw zero head?
We have                   and we will predict that the probability of 
seeing a head next is zero!!! 

 The rescue: "smoothing"
 Where n' is know as the pseudo- (imaginary) count

 But can we make this more formal?

tailhead

head
head
ML nn

n





 ,0head
ML


'
'

nnn
nn

tailhead

head
head
ML 


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
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Bayesian Parameter Estimation
 Treat the distribution parameters  also as a random variable
 The a posteriori distribution of  after seem the data is:

This is Bayes Rule

likelihood marginal
priorlikelihoodposterior 









dpDp
pDp

Dp
pDpDp

)()|(
)()|(

)(
)()|()|(

The prior p(.) encodes our prior knowledge about the domain
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Frequentist Parameter Estimation 
Two people with different priors p() will end up with 
different estimates p(|D).

 Frequentists dislike this “subjectivity”.
 Frequentists think of the parameter as a fixed, unknown 

constant, not a random variable.
 Hence they have to come up with different "objective" 

estimators (ways of computing from data), instead of using 
Bayes’ rule.
 These estimators have different properties, such as being “unbiased”, “minimum 

variance”, etc.
 The maximum likelihood estimator, is one such estimator.
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Discussion

 or p(), this is the problem!

Bayesians know it
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Discussion

 or p(), this is the problem!

Bayesians know it
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Bayesian estimation for Bernoulli 
 Beta distribution:  

 When x is discrete

 Posterior distribution of  : 

 Notice the isomorphism of the posterior to the prior, 
 such a prior is called a conjugate prior
  and  are hyperparameters (parameters of the prior) and correspond to the 

number of “virtual” heads/tails (pseudo counts)
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Bayesian estimation for 
Bernoulli, con'd 
 Posterior distribution of  :

 Maximum a posteriori (MAP) estimation: 

 Posterior mean estimation:

 Prior strength: A=+
 A can be interoperated as the size of an imaginary data set from which we obtain 

the pseudo-counts
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Effect of Prior Strength
 Suppose we have a uniform prior (==1/2), 

and we observe
 Weak prior A = 2. Posterior prediction:

 Strong prior A = 20. Posterior prediction:

 However, if we have enough data, it washes away the prior. 
e.g.,                                         .  Then the estimates under 
weak and strong prior are            and            ,  respectively, 
both of which are close to 0.2
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Continuous Prob. Distribution
 A continuous random variable X can assume any value in an 

interval on the real line or in a region in a high dimensional 
space
 A random vector X=[x1, x2, …, xn]T usually corresponds to a real-valued 

measurements of some property, e.g., length, position, …

 It is not possible to talk about the probability of the random variable assuming a 
particular value --- P(x) = 0

 Instead, we talk about the probability of the random variable assuming a value 
within a given interval, or half interval



 Arbitrary Boolean combination of basic propositions 

   , ,baXP 

    xXPxXP ,
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Continuous Prob. Distribution
 The probability of the random variable assuming a value within 

some given interval from a to b is defined to be the area under 
the graph of the probability density function between a and b.

 Probability mass:                                             

note that 

 Cumulative distribution function (CDF):

 Probability density function (PDF): 
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 Uniform Probability Density Function

 Normal (Gaussian) Probability Density Function

 The distribution is symmetric, and is often illustrated as a bell-shaped curve. 
 Two parameters,  (mean) and  (standard deviation), determine the location and shape of the distribution.
 The highest point on the normal curve is at the mean, which is also the median and mode.
 The mean can be any numerical value: negative, zero, or positive.

 Multivariate Gaussian

Continuous Distributions
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Example 2: Gaussian density
 Data: 

 We observed N iid real samples: 
D={-0.1, 10, 1, -5.2, …, 3}

 Model: 

 Log likelihood:

 MLE: take derivative and set to zero:
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MLE for a multivariate-Gaussian
 It can be shown that the MLE for µ and Σ is

where the scatter matrix is

 The sufficient statistics are nxn and nxnxn
T.

 Note that XTX=nxnxn
T may not be full rank (eg. if N <D), in which case ΣML is not 

invertible
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Bayesian estimation

 Normal Prior:  

 Joint probability: 

 Posterior:
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Bayesian estimation: unknown µ, known σ

 The posterior mean is a convex combination of the prior and the MLE, with 
weights proportional to the relative noise levels.

 The precision of the posterior 1/σ2
N is the precision of the prior 1/σ2

0 plus one 
contribution of data precision 1/σ2 for each observed data point.

 Sequentially updating the mean
 µ∗ = 0.8 (unknown),  (σ2)∗ = 0.1 (known)

 Effect of single data point

 Uninformative (vague/ flat) prior, σ2
0 →∞
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Summary
 Machine Learning is Cool and Useful!!

 Learning scenarios:
 Data
 Objective function
 Frequentist and Bayesian

 Density estimation
 Typical discrete distribution
 Typical continuous distribution (recitation)
 Conjugate priors

© Eric Xing @ CMU, 2006-2016 56



Some suggestions …
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How ML facilitates Applications 
(say, NLP) 

 …
 Question Answering

 Machine Translation

 Language Modeling
 POS tagging & Parsing

 Name Entity Recognition 

 Sentiment Analysis

 Topic Clustering

Linguistic 
Theory:
Syntax, 

Semantics …

CRF, RNN, SVM, 
LSA, HMM
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One way …
 …

 Question Answering

 Machine Translation

 Language Modeling
 POS tagging & Parsing

 Name Entity Recognition 

 Sentiment Analysis

 Topic Clustering
LDA
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Maybe highway …?

Deep 
Learning!

 …
 Question Answering

 Machine Translation

 Language Modeling
 POS tagging & Parsing

 Name Entity Recognition 

 Sentiment Analysis

 Topic Clustering
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Solution = deep domain knowledge + 
sounds methodology   

 Topic Clustering

 Sentiment Analysis

 POS tagging

 Name Entity Recognition

 Parsing

 Machine Translation

 Question Answering

 …

 Topic models/Latent space 
models

 Structured input/output 
predictive models

 Spectrum models
 Deep network models 
 Distance metric
 Convex and non-convex 

optimization algorithms
 Monte Carlo algorithms  
 Distributed ML systems
 Consistency/identifiability/co

nvergence theories 
 … 
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