Machine Learning

10-701, Fall 2016

Introduction to ML
and
Density Estimation

Reading: Mitchell: Chap 1,3
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Class Registration

e |[F YOU ARE ON THE WAITING LIST: This class is now fully
subscribed. You may want to consider the following options:

o Take the class when it is offered again in the Spring semester;

o Come to the first several lectures and see how the course develops. We will
admit as many students from the waitlist as we can, once we see how many
registered students drop the course during the first two weeks.
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Machine Learning 10-701

e Class webpage:

http://www.cs.cmu.edu/~mgormley/courses/10701-f16/

E 10-701 Fall 2016 %\ +

& ¢ % www.cs.cmu.edu/~mgormley/courses/ 10 ¢ | (Q Search

About People Schedule Coursework Previous Piazza

10-701, Fall 2016

School of Computer Science

I ntrOd Uctio n to M aChi ne Lea rni ng Carnegie Mellon University

Announcements

» (Class begins on Wednesday, September 7th, 2016. See you then!
® Please let us know if you cannot access Piazza. We encourage you to direct all your questions to Piazza. You can even send a private note to
the instructors.
» [FYOU ARE ON THE WAITING LIST: If the class is fully subscribed, you may want to consider the following options:
¢ Come to the first several lectures and see how the course develops. We will admit as many students from the waitlist as we can, once
we see how many registered students drop the course during the first two weeks.
o Take the class when it is offered again inthe Sprl ng semester;
® The class mailing list is 107
added to the mail group. If you are fur SOMme reason NOT recelwng announcements, plea se let us know.
» If youwish to email only the instructors and TAs, the email is 10701-instructor@cs.cm 1. As mentioned above, we prefer guestions to
be posted on Piazza.

cef@cs.cmuedu. If you are registered for the course or on the waitlist, you have automatically been

Last updated August 31, 2016,

This website is powered by Jekyll and Bootstrap,
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The instructors oo
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Eric P. Xing, PhD, PhD
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Schedule Coursework Prewious Camegle Melion Uy oy
o=
Instructors
Gefice Ho
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Current Students and Postdocs:
Past Students and Postdocs:
Course Administrator [r—— +
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T = Modthew K. Gormil il
GHC 22 T =
Assistant Instructor
Matt Gormley
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Brynn Edmunds Ll
GHC 8110 i
‘email: mgormiey a € dsc cmu ao edu
TAS office: Gates-Hillman Center (GHC) 8227
phone: 412.268.7205 (offe)
Petar Stojanov Research Interests
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Brynn Edmunds

R — — -
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A paay .

e Previous Research
e Medical Physics with specific interest in
Radiotherapy and Radiation Oncology

Examination of DVH parameters for prostate
treatments

Comparing clinicians with different training to
look for treatment variability

e Currently: ML Assistant Instructor
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Devendra Chaplot
Office Hour: Friday 11:00am -12:00pm
Location: GHC 5412

Interests: Concept Graph Learning,
Computational models of human
learning, Reinforcement Learning
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eSiddharth Goyal

oeOffice Hour: Tue, 4:00pm -5:00pm
eLocation: GHC 5 floor common area
einterests: Bayesian optimization,
Reinforcement learning
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Hemank Lamba
Office Hours: Tuesday, 11 to Noon

Location: TBD

Research
* Graph Mining
« Data Mining

 Anomaly Detection
» Social Good Applications
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Hyun Ah Song

Office hour: Friday 1pm-2pm
Office: GHC 8003

Interests: time series analysis
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Petar Stojanov

Office Hours: Wednesday, 4:30 to 5:30pm
(starting next week)

Location: TBD
Research
» Transfer Learning

 Domain Adaptation
* Multitask Learning

© Eric Xing @ CMU, 2006-2016
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Logistics

e [extbook

e Chris Bishop, Pattern Recognition and Machine Learning (required)
e Kevin Murphy, Machine Learning, a probabilistic approach
e Tom Mitchell, Machine Learning

e David Mackay, Information Theory, Inference, and Learning Algorithms

e Mailing Lists:
e To contact the instructors: 10701-instructors@cs.cmu.edu

e Class announcements list: 10701-announce@cs.cmu.edu.

e Piazza...
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Logistics

e 5 homework assignments: 35% of grade

e Theory exercises
e Implementation exercises

e Final project: 35% of grade

e Applying machine learning to your research area
NLP, IR,, vision, robotics, computational biology ...

e Outcomes that offer real utility and value
Search all the wine bottle labels,
An iPhone app for landmark recognition

e Theoretical and/or algorithmic work
a more efficient approximate inference algorithm
a new sampling scheme for a non-trivial model ...

e 3-member team to be formed in the first two weeks, proposal, mid-way report, poster &
demo, final report.

e One Midterm: 30%

e Theory exercises and/or analysis. Dates already set (no “ticket already booked”, “l am in a
conference”, etc. excuse ...)

e Policies ...
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What is Learning -

Learning is about seeking a predictive and/or executable understanding of
natural/artificial subjects, phenomena, or activities from ...

Natural laws

@
o @optosw + Medlcme

Grammatical rules
Manufacturing proced Inference:

what does this mean?
Any similar article?

O
o

© Eric Xing @ CMU, 2006-2016 13



Machine Learning (ML) o
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A short definition

e Study of algorithms and systems that
improve their performance P

at some task T
with experience E

well-defined learning task: <P,T,E>

© Eric Xing @ CMU, 2006-2016
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Elements of Modern ML

* Graphical * MNonparametric  * Regularized ._» Deep Leaming * Spectral/Matrix
Model Models Bayesian Models Bayesian Methods -2r9¢-Margin * Sparse Coding  Methods ° SIE;"RSE Structured
egression

* Coordinate + L-BFGS * Gibbs Sampling + Metropaolis-

A]gorithnls T Descent Hastings

* Tensorflow + PMLIib

- » Mahout * Milib .
Implementations MepReducs)  (BSP) CNTK = MxNet " asyne) (SSP)

Systems

= Network switches = Network attached storage - Server machines - RAM - Cloud compute - Virtual Machines
Pladorm & - Infiniband - Flash storage - DeskiopsiLaptops - Flash (e.g. Amazon EC2)
= NUMA machines - SSD
Hardware Mobile devices

= GPUs

© Eric Xing @ CMU, 2006-2016 16



ML methodologies, system 3
paradigms, & hardware infrastructure | ¢
= New = New theory and = New system = Moore’s Law
mathematical algorithms architecture
tools

Moores law
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Where Machine Learning is being
used or can be useful?

Loocepe: a xiogle word

Ypeech

Robotic control

PS ]
e B in
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Pedigree

Evolution
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Amazing g o
Breakthroughs ' |

Boston Dynamics

2010 2011 2012 2013 2014 Human  ArXiv 2015
© Eric Xing @ CMU, 2006-2016 19



Paradigms of Machine Learning

Supervised Learning
e Given D={X,,Y,}, learn f():Y, =f(X;), st. D™ Z{XJ-} = {Yj}

Unsupervised Learning
e GivenD={X;} , learn f():Y, =f(X,), st. D“ew:{X.} = {Y}
Semi-supervised Learning

Reinforcement Learning
e Given D= {env, actions, rewards, simulator/trace/real game}
licy:e,r ->a
learn po. 1.cy -~ , s.t. {env,new real game}:> a,,a,,ds...
utility:a,e > r

Active Learning

e Given D~G() , lean D™ ~G'()andf() . st D" =G'(),policy,lY, |

Transfer learning
Deep xxx ...

© Eric Xing @ CMU, 2006-2016
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Machine Learning - Theory

For the learned F(; )

Consistency (value, pattern, ...)
Bias versus variance

Sample complexity

Learning rate

Convergence

Error bound

Confidence

Stability

m > %(111|H| +1n(1/4))

© Eric Xing @ CMU, 2006-2016 21



Why machine learning?

L S

20 SO 32 million
bl e e . s v 4 pages
tﬁ(\);‘.a )’ p g
1B+ USERS Vs g
30+ PETABYTES WIKIPEDI A
The Free Encyclopedia
100+ hours video 645 million users
uploaded every minute 500 million tweets / day

© Eric Xing @ CMU, 2006-2016
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Growth of Machine Learning

e Machine learning already the preferred approach to
e Speech recognition, Natural language processing
e Computer vision
e Medical outcomes analysis
e Robot control

All software

e This ML niche is growing (why?)

© Eric Xing @ CMU, 2006-2016
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Growth of Machine Learning

e Machine learning already the preferred approach to
e Speech recognition, Natural language processing
e Computer vision
e Medical outcomes analysis
e Robot control

All software

e This ML niche is growing
e Improved machine learning algorithms
e Increased data capture, networking
e Software too complex to write by hand
e New sensors /|0 devices
e Demand for self-customization to user, environment

© Eric Xing @ CMU, 2006-2016
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Summary: sece
What is Machine Learning o°

Machine Learning seeks to develop theories and computer systems for

e representing;

e classifying, clustering, recognizing, organizing;

e reasoning under uncertainty;

e predicting;

e and reacting to

[ J

complex, real world data, based on the system's own experience with data,
and (hopefully) under a unified model or mathematical framework, that

can be formally characterized and analyzed

can take into account human prior knowledge

can generalize and adapt across data and domains
can operate automatically and autonomously

and can be interpreted and perceived by human.

© Eric Xing @ CMU, 2006-2016 25



Inference
Prediction
Decision-Making under uncertainty

-> Statistical Machine Learning
-> Function Approximation: F( |6)?
- Density Estimation

© Eric Xing @ CMU, 2006-2016 26



Classification o
e sickle-cell anemia
f(:l?,}%,xi, ,QU - :f '_i_"

© Eric Xing @ CMU, 2006-2016
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Function Approximation

e Setting:
e Set of possible instances X

e Unknown target function f: X—>Y
e Set of function hypotheses H={ h | h: X—>Y'}

e Given:

e Training examples {<x,y>} of unknown target function f

e Determine:
e Hypothesis h € H that best approximates f

© Eric Xing @ CMU, 2006-2016 28



Density Estimation

e A Density Estimator learns a mapping from a set of attributes

to a Probability

Input
Attributes

Density |
» Estimator

» Probability

© Eric Xing @ CMU, 2006-2016




Basic Probability Concepts o

e A sample space S is the set of all possible outcomes of a
conceptual or physical, repeatable experiment. (S can be finite
or infinite.)

e E.g., S may be the set of all possible outcomes oy,
of adice roll: S ={1,2,3,4,5,6} Y&

e E.g., S may be the set of all possible nucleotides
of a DNA site: g = {A,T, C,G}

e E.g., S may be the set of all possible positions time-space positions
of a aircraft on a radar screen: S ={0,R 1x{0,360°} x{0,+x}

max

© Eric Xing @ CMU, 2006-2016 30



Random Variable

e A random variable is a function that associates a unique
numerical value (a token) with every outcome of an
experiment. (The value of the r.v. will vary from trial to trial as
the experiment is repeated) X(o)

e Discreter.v.:
The outcome of a dice-roll

The outcome of reading a nt at site i: X,

e Binary event and indicator variable:
Seeing an "A" at a site = X=1, o/w X=0.
This describes the true or false outcome a random event.

Can we describe richer outcomes in the same way? (i.e., X=1, 2, 3, 4, for being A, C, G,
T) --- think about what would happen if we take expectation of X.

e Unit-Base Random vector
X=[XA, X7, Xe, X€], X~[0,0,1,0]' = seeing a "G" at site i
e Continuousr.v.:

The outcome of recording the true location of an aircraft:  x
The outcome of observing the measured location of an aircraft X,

o

© Eric Xing @ CMU, 2006-2016 31




Random Variable

e Notational convention

e Univariate

e Multivariate (random vector)

© Eric Xing @ CMU, 2006-2016
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Discrete Prob. Distribution ot

e (In the discrete case), a probability distribution P on $ (and
hence on the domain of X ) is an assignment of a non-negative
real number P(s) to each s S (or each valid value of x) such that
2. sP(s)=1. (0<P(s) <1)

e intuitively, P(s) corresponds to the frequency (or the likelihood) of getting s in the
experiments, if repeated many times

e call 8= P(s) the parameters in a discrete probability distribution

e A probability distribution on a sample space is sometimes called
a probability model, in particular if several different distributions
are under consideration
e write models as M, M,, probabilities as P(X|M,), P(X|M,)

e e.g9.,, M, may be the appropriate prob. dist. if X is from "fair dice", M, is for the
"loaded dice".

e Mis usually a two-tuple of {dist. family, dist. parameters}

© Eric Xing @ CMU, 2006-2016 33



Discrete Distributions °

e Bernoulli distribution: Ber(p)

[1-6 ifx=0 ) L
P<X>—{9 o1 = PxO=prl-p)

e Multinomial distribution: Mult(1,6)

e Multinomial (indicator) variable:

Xl
X2 X1 =[0]1], and 2X'=1
X3 j€ll.....6] s
X:><4 , where y his
. X1 =1 w.p. 0, 26’]-:1 . = W) ..“:""
X J€l1,..6] \'\‘/ o
..... z
X6 '

p(x(})) = P({X » =1, where j index the dice—face})
=0, :QAXA ><6’CXC ><6’GXG ><(9TXT :H Qkxk ="
k
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Discrete Distributions °

e Multinomial distribution: Mult(n, & A

FILM WOMEN 5T
SHOW PROGHAM PEQPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLIOMN YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR FUBLIC
REST SPENDING TEACHER
. . ACTOR NEW BENNETT
e Count variable mer Soa nnoa
- YORK PLAN NAMPHY
OPERA MONEY STATE
THEATER PROGRAMS FRESIDENT
ACTRESS GOVERNMENT ELEMENTARY
LOVE CONGRESS HAITL
The Williun Rancalph Hearst Fowdation will give $1.25 million te Lineoln Center,

Metropalitan Opera Co, New York Philbarmonie amd Jnilliaed Schoal.  #0ue bowed
felt that we had m real opportunity to make s mark om the fuenre of the performing

1 arts with these an act every hit as important as omr traditional areas of o]
X in health, medical r 1, ecneation ane the sacial serviees” Henrst

President Randolph A. Hearst said Monday in - the Lincaln Center’s

share will be ¢ 00 for jts new | wrhich young artists and e

new pablic The Metropolitan Opera Co. and New York Philharmonic will
where music and the performing arts are

X - E ) Where Z XJ = n g, ;Iilum. w, & kading aupporter of the Lincols
]

Center Comsolidated Coeporate Fuod, will make e wsual sl 5100000 donation,
o
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Density Estimation .

e A Density Estimator learns a mapping from a set of attributes
to a Probability

Input
Attributes

Density |

» Probabili
Estimator robability

Y¥ ¥ YV

e Often know as parameter estimation if the distribution form is
specified
e Binomial, Gaussian ...

e Three important issues:

e Nature of the data (iid, correlated, ...)

e Objective function (MLE, MAP, ...)

e Algorithm (simple algebra, gradient methods, EM, ...)

e Evaluation scheme (likelihood on test data, predictability, consistency, ...)

© Eric Xing @ CMU, 2006-2016
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000
0000
| X XX
| [ | | ::.
Density Estimation Schemes :
A
C > Learn :|> Algorithm Score
parameters param
Data
— Maximum likelihood Analytical 10°°
(Xsee s X) Bayesian Gradient 1073
(X»en s X3) Conditional likelihood EM 105
1 ) Margin Sampling
(Xpp -5 Xy )

© Eric Xing @ CMU, 2006-2016
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Parameter Learning from iid Data | :°

e Goal: estimate distribution parameters ¢ from a dataset of N
independent, identically distributed (iid), fully observed,
training cases

= Xy Xy

e Maximum likelihood estimation (MLE)
1. One of the most common estimators
2. With iid and full-observability assumption, write L(6) as the likelihood of the data:

L(0) = P(X X5,..., Xy 0)
= P(X,;0)P(X,;0),...,P(Xy:6)

=1 Px:0)

3. pick the setting of parameters most likely to have generated the data we saw:

0" =argmax L(0) = = argmax logL(0)

© Eric )ﬁng @ CMU, 2006-2016 38



Example: Bernoulli model .

e Data:
e We observed Niid coin tossing: D={1,0, 1, ..., 0}

e Representation:

Binary r.v: X, = {0’1}

e Model: {1—9 for x=0
P(X) =

¢  forx=1 =  PxX)=0*1-0)""
e How to write the likelihood of a single observation x; ?

P(x)=0"(1-0)""

e The likelihood of datasetD={x, ...,x\}:

- : 1-x; ixi i
PO X |0)=[ [ PO =] [ (0 A-0)) =07 1-0)"
i=1 i=1

© Eric Xing @ CMU, 2006-2016 39
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Maximum Likelihood Estimation ot

e Objective function:
£(0;D)=1logP(D|8)=logf™(1-6)" =n,logd+ (N —n,)logl-0)
e We need to maximize this w.r.t. &

e [ake derivatives wrt @

o¢ _n, N-n
o8 6 1-6

Il

o
D)

=

MLE — W Ouie = Z Xi
f’

Frequency as
sample mean

e Sufficient statistics
e Thecounts, N, ,wheren, = Z X;, are sufficient statistics of data D
|

© Eric Xing @ CMU, 2006-2016 40



P(nib)
Bayesian Parameter Estimation

e Treat the distribution parameters @ also as a random variable
e The a posteriori distribution of 8 after seem the data is:

_pD|o)p@)  p(D]O)p®)
p(D) [ p(DI6)p(O)dO

p(@|D)

This is Bayes Rule

likelithood x prior

posterior = . —
marginal likelthood

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418

The prior p(.) encodes our prior knowledge about the domain

© Eric Xing @ CMU, 2006-2016 41




Overfitting o

e Recall that for Bernoulli Distribution, we have

head
Nnhead n

ML _nhead _I_ntail

e \What if we tossed too few times so that we saw zero head?
We have ¢/*? =0, and we will predict that the probability of

M
seeing a head next is zero!!!

e The rescue: "smoothing”

e Where n'is know as the pseudo- (imaginary) count

head '
nhead __ n +n

ML '
nhead +nta:/ +n'

e But can we make this more formal?
© Eric Xing @ CMU, 2006-2016 42



Frequentist Parameter Estimation | :¢

Two people with different priors p(& will end up with

different estimates p(4D). P[(?/D) “_221’:’4
e Frequentists dislike this “subjectivity”. D)

e Frequentists think of the parameter as a fixed, unknown
constant, not a random variable.

e Hence they have to come up with different "objective”
estimators (ways of computing from data), instead of using
Bayes’ rule.

e These estimators have different properties, such as being “unbiased”, “minimum
variance”, etc.

e The maximum likelihood estimator, is one such estimator.

© Eric Xing @ CMU, 2006-2016 43



Discussion

6 or p(6), this is the problem!

© Eric Xing @ CMU, 2006-2016
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Discussion

6 or p(6), this is the problem!

(YET ANOTHER) HISTORY OF LIFE As Bayesians know it

> GO B

€

HOHO HOHO HOHO HOHO HOHO
APRIORIUS PRAGHATICUS FREQUENTISTUS SAFPIENS BAYESTANIS

© Eric Xing @ CMU, 2006-2016
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Bayesian estimation for Bernoulli | 3¢

2.6
24

e Beta distribution:

2

D@+ ) pus p . L)
PH: 9 — H I_Hﬂ :B ) 9)1—9 ﬂ../ 1
S P T M @ :

e  When x is discrete F(X + 1) = XF(X) =4 |

RERE:
oW —in

PN
oW ||
1

0.2

0 0.1 02 03 04 05 06 07 08 09 1

e Posterior distribution of 4:

P(9| Xl,..., XN): p(xlﬁ"'DXN |9) p(e) oC enh (l—g)nt Xea_l(l_e)ﬂ_l —
e P(Xg5eees Xy )

e Notice the isomorphism of the posterior to the prior,
e such a prior is called a conjugate prior

e «and pare hyperparameters (parameters of the prior) and correspond to the
number of “virtual” heads/tails (pseudo counts)

© Eric Xing @ CMU, 2006-2016 46



Bayesian estimation for T
Bernoulli, con'd oo

e Posterior distribution of 4:

P((g‘ Xla"'a XN) _ p(Xl,..., XN | (9) p(‘g) oc th (l_e)nt Xgafl(l_(g)ﬂfl _ enh+a—1(1_9)nt+ﬂ—1

P P(Xq5eees Xy )

e Maximum a posteriori (MAP) estimation:

@: arg max log P(@| X{5--45 Xy )

e Posterior mean estimation:

Opayes - | (01 D)AO =C[ 0% 0™ (1-0)" " df

e Prior strength: A=a+/f

e A can be interoperated as the size of an imaginary data set from which we obtain
the pseudo-counts

Bata parameters
can be understood
as pseudo-counts

© Eric Xing @ CMU, 2006-2016 47



Effect of Prior Strength

e Suppose we have a uniform prior (a=£=1/2),
and we observe N =(h, =2,n, =8)

e Weak prio@. Posterior prediction: W2 le,/
- - P 1+2 2
p(x=h|n =2,n =8, =a'x2) = +10_O—E5— TV’

e Strong prior A = 20. Posterior prediction:

_ 10}2
p(x=h|n =2,n. =8,a = x20)=@i‘100.40

e However,if w
eg., h =
weak and stro
both of which are close to

and (347000 -

© Eric Xing @ CMU, 2006-2016
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=200,n, =800). Then the estimates under
200 10/-200

respectively,
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Continuous Prob. Distribution ot

e A continuous random variable X can assume any value in an
iInterval on the real line or in a region in a high dimensional
space

e A random vector X=[x, x,, ..., x,]T usually corresponds to a real-valued
measurements of some property, e.g., length, position, ...

e Itis not possible to talk about the probability of the random variable assuming a
particular value --- P(x) =0

e Instead, we talk about the probability of the random variable assuming a value
within a given interval, or half interval
P(X [a,b]),
P(X <X):P(X e[—OO,X])
Arbitrary Boolean combination of basic propositions

© Eric Xing @ CMU, 2006-2016
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Continuous Prob. Distribution ot

e The probability of the random variable assuming a value within
some given interval from a to b is defined to be the area under
the graph of the probability density function between a and b.

»  Probability mass:  p(x e[a,b])= [ p(xdx,

100

note that ijp(x Ydx =1. 90th percent!;__ ]\
“ Tath percentile _

e Cumulative distribution function (CDF): il

Median -

P(x)=P(X <x):J'me(x')dx' 0

20

e Probability density function (PDF):

d
p(x)= ap (x)
Car flow on Liberty Bridge (cooked up!)
_rjp(x)dx =1; p(x)>0,vx
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Continuous Distributions 5

e Uniform Probability Density Function

p(x)=1/(b-a) fora<x<b

=0 elsewhere

e Normal (Gaussian) Probability Density Function

- e —(X—y)2 /252

p(x)=
\/ TO
The distribution is symmetric, and is often illustrated as a bell-shaped curve.
Two parameters, 1 (mean) and o (standard deviation), determine the location and shape of the distribution.

[ ]
[ ]
° The highest point on the normal curve is at the mean, which is also the median and mode.
[ ]

The mean can be any numerical value: negative, zero, or positive. X2

e Multivariate Gaussian ?
|

P,
e st s] | (P
PG AD) e eXp{——(X AT (X - ,,)} (S

[Vax] : ‘
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Example 2: Gaussian density

e Data:

e We observed Niid real samples:
D={-0.1,10,1,-5.2, ..., 3}

e Model: P(x) = (27[0'2)_1/2 exp{— (X — 1)° /202}

e Log likelihood:

N _ 2
£(6;D)=1ogP(D|6) = —Elog(ZﬂO'Z) _lz (*, 2“)
2 2 n=1 O
e MLE: take derivative and set to zero:

0 _ 4,2 _ _1

ou =(1/o )Zn (Xn /U) :> Hye = N Zn (Xn)

ol N 1 1

P :—20_2 —I—ZO_4 Zn(xn—,u)z GI\Z/ILE :ﬁzn(xn_ﬂwm)z
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MLE for a multivariate-Gaussian ot

e It can be shown that the MLE for y and Z is

1 x =| ¥
HuLe :NZ” (Xn) .
1 1 T
RV :Wzn(xn _IUML)(Xn _/uML)T :NS “‘XlT -
X=| 7T

where the scatter matrix is

S= Zn (% = 2t % = ) = (Zn X Xy )_ Nt b

e The sufficient statistics are X x, and  x.x.T.

e Note that X™X=X x x,T may not be full rank (eg. if N <D), in which case %,, is not
invertible
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Bayesian estimation

e Normal Prior:

P(1) = (2702 )

1/2

expl- (1~ )2 1208 |
e Joint probability:

P(X, 1) = (27[02)_'\”2 exp{— 21 5 i(xn - ,u)z}

O na

X (27:05 )_1/2 exp {— (1— 1)’ 1208 }

e Posterior:

P(u|x)= (27[52)_1/2 exp{— (1—[i)° /252}

2 2
where 7= N/o _ 1/0y

21u07

X+
N/o®+1/05 v\%ij'z +1/ 0
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Bayesian estimation: unknown py, knowno | ¢

-1
N/O'2 _ 1/0 — N 1
" O 2 [ j

X + : Gl=|—S+—5
N/o®+1/c5 N/o°+1l/c Zﬂo c° o}

e The posterior mean is a convex combination of the prior and the MLE, with
weights proportional to the relative noise levels.

e The precision of the posterior 1/0? is the precision of the prior 1/02, plus one
contribution of data precision 1/02 for each observed data point.

e Sequentially updating the mean 5
e u*=0.8 (unknown), (0%)*= 0.1 (known)

e Effect of single data point
2 2

Og O
= Uy +(X— fly)—5—>—5 = X— (X~
H /uo ( zuo) 02 +(70 ( IUO) 2 .

e Uninformative (vague/ flat) prior, 2, —«

My — Hy 0
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Summary

e Machine Learning is Cool and Useful!!

e Learning scenarios:

e Data
e Objective function
e Frequentist and Bayesian

e Density estimation
e Typical discrete distribution
e Typical continuous distribution (recitation)
e Conjugate priors
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Some suggestions ... -
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How ML facilitates Applications T
(say, NLP) o3

Question Answering

Machine Translation

Language Modeling
POS tagging & Parsing

* Name Entity Recognition

¢ Sentiment Analysis

® Topic Clustering
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Question Answering

Machine Translation

Language Modeling
POS tagging & Parsing

Name Entity Recognition

¢ Sentiment Analysis
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Maybe highway ...? .

Question Answering

'l Machine Translation

i gé Modelmg
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Solution = deep domain knowledge + | se::
sounds methodology oo

e Topic models/Latent space

® Topic Clustering models

e Structured input/output

¢ Sentiment Analysis
predictive models

® POS tagging e Spectrum models

® Name Entity Recognition  Deep network models

_ e Distance metric
¢ Parsing
e Convex and non-convex

® Machine Translation optimization algorithms

e Monte Carlo algorithms

® Question Answerin
Q 9 e Distributed ML systems

e Consistency/identifiability/co
nvergence theories
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