
School of Computer Science

The Algorithm and System
Interface of Distributed Machine

Learning
Eric Xing

Lecture 22, November 28, 2016

Machine Learning

10-701, Fall 2016

Reading: see post
© Eric Xing @ CMU, 2006-2016 1

Machine Learning:
-- a view from outside

© Eric Xing @ CMU, 2006-2016 2

Inside ML …

• Nonparametric
Bayesian Models

• Graphical
Models

• Deep Learning
• Sparse Coding

• Spectral/Matrix
Methods

• Regularized
Bayesian Methods • Sparse Structured

I/O Regression
• Large-Margin

• Network switches
• Infiniband

• Network attached storage
• Flash storage

• Server machines
• Desktops/Laptops
• NUMA machines

• GPUs • Cloud compute
(e.g. Amazon EC2)

• Virtual Machines

Hardware and infrastructure

© Eric Xing @ CMU, 2006-2016 3

for (t = 1 to T) {
doThings()

doOtherThings()
}

An ML Program

Model ParameterData

This computation needs to be parallelized!

Solved by an iterative convergent algorithm

© Eric Xing @ CMU, 2006-2016 4

1B+ USERS
30+ PETABYTES

645 million users
500 million tweets / day

100+ hours video
uploaded every minute

32 million
pages

Massive Data

© Eric Xing @ CMU, 2006-2016 5

Issue: When is Big Data useful?
 Negative examples

 “Simple” regression and classification models, with fixed parameter size
 Intuition: the decrease in the variance of the estimator experiences diminishing

returns with more data. At some point, the estimator is simply “good enough” for
practical purposes, and additional data/computation is unnecessary

 Positive examples
 Topic models (used all over internet industry)
 DNNs (Google Brain, many others)
 Collaborative filtering (again, used all over internet industry)
 “Personalized” models
 Practitioners of the above usually increase model size with more data

 Conjecture: how much data is useful really depends on model
size/capacity

© Eric Xing @ CMU, 2006-2016 6

Challenge #1
– Massive Data Scale

Familiar problem: data from 50B devices, data
centers won’t fit into memory of single machine

Source: Cisco Global Cloud
Index

Source: The Connectivist

f (D)

for (t = 1 to T) {
doThings()
parallelUpdate(x,θ)
doOtherThings()

}

© Eric Xing @ CMU, 2006-2016 7

Google Brain
Deep Learning

for images:
1~10 Billion

model parameters

Topic Models
for news article

analysis:
Up to 1 Trillion

model
parameters

Collaborative filtering
for Video recommendation:

1~10 Billion
model

parameters

Multi-task Regression
for simplest whole-

genome analysis:
100 million ~ 1 Billion

model
parameters

Growing Model Complexity

© Eric Xing @ CMU, 2006-2016 8

Issue: Are Big Models useful?
 In theory

 Possibly, but be careful not to
over-extend

 Beware “statistical strength”
 “When you have large

amounts of data, your appetite
for hypotheses tends to get
even larger. And if it’s growing
faster than the statistical
strength of the data, then many
of your inferences are likely to
be false. They are likely to be
white noise.” –Michael Jordan

 In practice
 Some success stories - could

there be theory justification?

 Many topics in topic models
 Capture long-tail effects of

interest; improved real-world
task performance

 Many parameters in DNNs
 Improved accuracy in vision

and speech tasks
 Publicly-visible success (e.g.

Google Brain)

© Eric Xing @ CMU, 2006-2016 9

Challenge #2
– Gigantic Model Size

Big Data needs Big Models to extract understanding
But ML models with >1 trillion params also won’t fit!

Source: University of
Bonn

f(D)

for (t = 1 to T) {
doThings()
parallelUpdate(x,θ)
doOtherThings()

}

© Eric Xing @ CMU, 2006-2016 10

Issue: Inference Algorithms, or
Inference Systems?
 View: focus on inference algorithm

 Scale up by refining the algorithm
 Given fixed computation, finish

inference faster

 A few examples
 Quasi-Newton algorithms for

optimization
 Fast Gibbs samplers for topic

models (Yao et al. 2009, Li et al.
2014, Yuan et al. 2015, Zheng et
al, 2015)

 Locality sensitive hashing for
graphical models (Ahmed et al.
2012)

 View: focus on distributed systems
for inference

 Scale up by using more machines
 Not trivial: real clusters are

imperfect and unreliable; Hadoop
not a fix-all

 A few platforms
 Spark
 GraphLab
 Petuum

© Eric Xing @ CMU, 2006-2016 11

Issue: Theoretical Guarantees
and Empirical Performance
 View: establishing theoretical

consistency of estimators gives
practitioners much-needed
confidence
 Motivated by empirical science,

where guarantees are paramount

 Example: Lasso sparsistency and
consistency (Wainwright 2009)
 Theory predicts how many

samples n needed for a Lasso
problem with p dimensions and k
non-zero elements

 Simulation experiments show very
close match with theory

 Is there a way to analyze more
complex models?

 View: empirical and industrial
evidence can provide a strong
driving force for experimental
research
 Motivated by industrial practice,

particularly at internet companies

 Example: AB testing in industry
 Principled experimental means of

testing new algorithms or feature
engineering; makes use of large
user base for experimentation

 Can show whether an new
algorithm makes a significant
difference to click-through rate,
user adoption, etc.

© Eric Xing @ CMU, 2006-2016 12

Parallelization Strategies
New Model = Old Model +
Update(Data)

(D) (D)

© Eric Xing @ CMU, 2006-2016 13

Parallelization Strategies

Data Parallel

New Model = Old Model +
Update(Data)

 (D)

© Eric Xing @ CMU, 2006-2016 14

Parallelization Strategies

Data Parallel Model Parallel

New Model = Old Model +
Update(Data)

(D) (D)

© Eric Xing @ CMU, 2006-2016 15

There Is No Ideal Distributed System!

 Not quite that easy…
 Two distributed challenges:

 Networks are slow
 “Identical” machines rarely perform equally

Low bandwidth,
High delay

Unequal
performance

0

1000

2000

3000

4000

5000

6000

7000

8000

0 8 16 24 32

Se
co

nd
s

Network waiting time

Compute time

© Eric Xing @ CMU, 2006-2016 16

Issue: How to approach
distributed systems?
 Idealist view

 Start with simplified view of distributed
systems; develop elaborate theory

 Issues being explored:
 Information theoretic lower bounds for

communication (Zhang et al. 2013)
 Provably correct distributed

architectures, with mild assumptions
(Langford et al. 2009, Duchi and
Agarwal 2011)

 How can we build practical solutions
using these ideas?

 Pragmatist view
 Start with real-world, complex

distributed systems, and develop a
combination of theoretical guarantees
and empirical evidence

 Issues being explored:
 Fault tolerance and recovery (Zaharia et

al. 2012, Spark, Li et al. 2014)
 Impact of stragglers and delays on

inference, and robust solutions (Ho et
al. 2013, Dai et al. 2014, Petuum, Li et
al. 2014)

 Scheduling of inference computations
for massive speedups (Low et al. 2012,
GraphLab, Kim et al. 2014, Petuum)

 How can we connect these
phenomena to theoretical inference
correctness and speed?

© Eric Xing @ CMU, 2006-2016 17

• Nonparametric
Bayesian Models

• Graphical
Models

• Sparse Structured
I/O Regression • Sparse Coding

• Spectral/Matrix
Methods

• Regularized
Bayesian Methods • Others• Large-Margin

Machine Learning Models/Algorithms

• Network switches
• Infiniband

• Network attached storage
• Flash storage

• Server machines
• Desktops/Laptops
• NUMA machines

• GPUs • Cloud compute
(e.g. Amazon EC2)

• Virtual Machines

Hardware and infrastructure

Solution:

© Eric Xing @ CMU, 2006-2016 18

• Nonparametric
Bayesian Models

• Graphical
Models

• Sparse Structured
I/O Regression • Sparse Coding

• Spectral/Matrix
Methods

• Regularized
Bayesian Methods • Others• Large-Margin

Machine Learning Models/Algorithms

• Network switches
• Infiniband

• Network attached storage
• Flash storage

• Server machines
• Desktops/Laptops
• NUMA machines

• GPUs • Cloud compute
(e.g. Amazon EC2)

• Virtual Machines

Hardware and infrastructure

Solution:
An Alg/Sys INTERFACE for Big ML

© Eric Xing @ CMU, 2006-2016 19

The Big ML “Stack” - More than
just software

Theory: Degree of parallelism, convergence analysis, sub-sample
complexity …

System: Distributed architecture: DFS, parameter server, task
scheduler…

Model: Generic building blocks: loss functions, structures,
constraints, priors …

Algorithm: Parallelizable and stochastic MCMC, VI, Opt,
Spectrum …

Representation: Compact and informative features

Programming model & Interface: High: Matlab/R
Medium: C/JAVA
Low: MPI

Hardware: GPU, flash storage, cloud …

© Eric Xing @ CMU, 2006-2016 20

Outline: from sequential to parallel,
algorithms and systems
 Optimization Algorithms

 Algorithms:
 Stochastic gradient descent
 Coordinate descent
 Proximal gradient methods: ISTA, FASTA, Smoothing proximal gradient
 ADMM

 Data-parallel
 Model-Parallel

 Markov Chain Monte Carlo Algorithms
 Data-parallel

 Auxiliary Variable Dirichlet Process
 Embarassingly Parallel MCMC

 Distributed System Frameworks (aka, Big Learning systems)
© Eric Xing @ CMU, 2006-2016 21

Sparse Linear Regression

)(
2
1min 2

2
βXβy

β
 

Data fitting Regularization

Data fitting part:
- find β that fits into the data
- Squared loss, logistic loss, hinge loss, etc

Regularization part:
- induces sparsity in β.
- incorporates structured information into the model

© Eric Xing @ CMU, 2006-2016 22

Sparse Linear Regression

)(
2
1min 2

2
βXβy

β
 

Examples of regularization :)(β





J

j
jlasso

1

)(β





G

group
g

gββ
2

)(

)(βtree

)(βoverlap





g

gβ
j

j
2

2
)(where

Sparsity

Structured sparsity
(sparsity + structured information)

© Eric Xing @ CMU, 2006-2016 23

Algorithm I:
Stochastic Gradient Descent
 Consider an optimization problem:

 Classical gradient descent:

 Stochastic gradient descent:
 Pick a random sample di

 Update parameters based on noisy approximation of the true gradient

© Eric Xing @ CMU, 2006-2016 24

 SGD converges almost surely to
a global optimal for convex problems

 Traditional SGD compute gradients based on a single
sample

 Mini-batch version computes gradients based on multiple
samples
 Reduce variance in gradients due to multiple samples
 Multiple samples => represent as multiple vectors => use vector

computation => speedup in computing gradients

Stochastic Gradient Descent

© Eric Xing @ CMU, 2006-2016 25

Other usages:
e.g., SGD for Matrix Factorization
 Matrix factorization problem is given by

 MF approximates A with WHT (W and H are rank-k matrices)
 SGD is shown be effective for MF [Koren and Bell, 2009].

MF SGD update rules are:

 Time complexity per MF SGD iteration is O(|Ω|k)
 Where Ω is number of nonzero elements in matrix A

© Eric Xing @ CMU, 2006-2016 26

Parallel Stochastic Gradient
Descent
 Parallel SGD: Partition data to different workers; all workers

update full parameter vector

 Parallel SGD [Zinkevich et al., 2010]

 PSGD runs SGD on local copy of params in each machine

Input
Data

Input
Data

Input
Data

split Update local copy
of ALL params

Update local copy
of ALL params

aggregate

Update ALL
params

Input
Data

Input
Data

Input
Data

© Eric Xing @ CMU, 2006-2016 27

Hogwild!: Lock-free approach to
PSGD
 MapReduce-like parallel processing frameworks have been a

popular approach for parallel SGD

 However, MapReduce framework is not ideal for iterative
algorithms
 Difficult to express iterative algorithms in MapReduce
 Overhead for fault tolerance
 Overhead of locking or synchronization is a severe bottleneck

 Hogwild! Is a lock-free approach
 It works well when data access is sparse, i.e., a single SGD step affects only a

small number of variables
 If multi processors write a parameter at the same time, break ties at random.

© Eric Xing @ CMU, 2006-2016 28

Hogwild!: Lock-free approach to
PSGD
 Example:

 Sparse SVM

 z is input vector, and y is a label; (z,y) is an elements of E
 Assume that zα are sparse

 Matrix Completion

 Input A matrix is sparse

 Graph cuts

 W is a sparse similarity matrix, encoding a graph

© Eric Xing @ CMU, 2006-2016 29

Hogwild! Algorithm
 Hogwild! algorithm: iterate in parallel for each core

 Sample e uniformly at random from E
 Read current parameter xe; evaluate gradient of function fe
 Sample uniformly at random a coordinate v from subset e
 Perform SGD on coordinate v with small constant step size

 Atomically update single coordinate, no mem-locking
 Hogwild! takes advantage of sparsity in ML problems
 Enables near-linear speedup on various ML problems
 Excellent on single machines, less ideal for distributed

 Atomic update on multi-machine challenging to implement; inefficient and slow
 Delay among machines requires explicit control… why? (see next slide)

© Eric Xing @ CMU, 2006-2016 30

● Theorem: Given lipschitz objective ft and step size ηt,

where

L is a lipschitz constant, and εm and εv are the mean and variance of the delay

● Intuition: distance between current estimate and optimal value decreases
exponentially with more iters – but high variance in the delay εv incurs
exponential penalty

● Distributed systems have much higher delay variance than single machine

The cost of uncontrolled delay –
slower convergence

Dai et al. 2015 (AAAI)

© Eric Xing @ CMU, 2006-2016 31

● Theorem: the variance in the parameter estimate is

where

and represents 5th order or higher terms as a function of the delay εt

● Intuition: variance of the parameter estimate decreases near the optimum, but
delay εt increases parameter variance => instability during convergence

● Distributed systems have much higher average delay than single machine

The cost of uncontrolled delay –
instability during convergence

Dai et al. 2015 (AAAI)

© Eric Xing @ CMU, 2006-2016 32

PSGD with Parameter Server
 Parameter server allows us to parallelize SGD, consisting of

 Shared key-value store
 Synchronization scheme

 Shared key-value store provides easy interface to read/write
shared parameters

 Synchronization scheme determines how parameters are
shared among multiple workers
 Bulk synchronous parallel (e.g., Hadoop)
 Asynchronous parallel [Ahmed et al., 2012]

 Stale synchronous parallel [Ho et al., 2013]

© Eric Xing @ CMU, 2006-2016 33

PSGD with Bounded Async PS
 Stale synchronous parallel supports synchronization with

bounded staleness
 Fastest and the slowest workers are ≤s clocks apart

© Eric Xing @ CMU, 2006-2016 34

Faster and better convergence

© Eric Xing @ CMU, 2006-2016 35

Algorithm II:
Coordinate Descent

Update each regression coefficient in a cyclic manner

1st iteration

1 2 3 J
2st iteration

1 2 3 J

 Pros and cons
 Unlike SGD, CD does not involve learning rate
 If CD can be used for a model, it is often comparable to the state-of-the-art

(e.g. lasso, group lasso)
 However, as sample size increases, time for each iteration also increases

© Eric Xing @ CMU, 2006-2016 36

Example: Coordinate Descent for
Lasso

 Set a subgradient to zero:

 Assuming that , we can derive update rule:


j

j2

22
1minˆ Xβyβ

β

0)( j
T
j tXβyx

1j
T
j
xx









 


),(
jl

ll
T
jj xS yx

Soft thresholding

))((),( xxsignxS

Standardization

© Eric Xing @ CMU, 2006-2016 37

Parallel Coordinate Descent
 Shotgun algorithm [Bradley et al. 2011] proposed parallel

coordinate descent algorithm

 Shotgun algorithm
 Choose parameters to update at random
 Update the selected parameters in parallel
 Iterate until convergence

 When features are nearly independent, Shotgun scales
almost linearly
 Shotgun scales linearly up to , where ρ is the spectral radius of ATA
 For uncorrelated features, ρ=1; for exactly correlated features ρ=d

© Eric Xing @ CMU, 2006-2016 38

Block-greedy Coordinate Descent
 Block-greedy coordinate descent [Scherrer et al., 2012] extends

Greedy-CD, Shortgun, Randomized-CD
 Alg: partition p params into B blocks; iterate:

 Randomly select P blocks
 Greedily select one coordinate per P blocks
 Update each selected coordinate

 Sublinear convergence O(1/k) for separable regularizer r :

 Big-O constant depends on the maximal correlation among the B blocks

 Hence greedily cluster features (blocks) to reduce correlation

© Eric Xing @ CMU, 2006-2016 39

Parallel Coordinate Descent with
Dynamic Scheduler
 STRADS (STRucture-Aware Dynamic Scheduler) [Lee et al.,

2014] is developed to schedule concurrent updates in CD
 STRADS is a general scheduler for ML problems, applicable to CD as well as

other ML algorithms such as Gibbs sampling

 STRADS improves the performance of CD, taking advantage
of two key ideas
 Dependency checking

 update parameters which have a small degree of dependency. Thus, updating nearly
independent parameters generate a small parallelization error

 Priority-based updates
 schedule the frequency of parameter updates based on their contributions to the

decrease of objective function

© Eric Xing @ CMU, 2006-2016 40

Comparison:
p-scheduling vs. u-scheduling

• Priority-based scheduling converged faster than
the baseline with random scheduling

0 500 1000
0.05

0.1

0.15

0.2

0.25

100M features
9 machines

Seconds

O
bj

ec
tiv

e

STRADS
Lasso−RR

Priority-based scheduling +
dep. checker

be
tte

rShotgun scheduling [Bradley et al. 2011]

© Eric Xing @ CMU, 2006-2016 41

Advanced Optimization Tech.
 What if simple methods like SPG, CD are not adequate?

 Advanced techniques at hand
 Complex regularizer: PG
 Complex loss: SPG
 Overlapping loss/regularizer: ADMM

 How to parallelize them? You must understand the MATH
behind the algorithms
 Which module should be at the server
 Which module can be distributed to clients
 …

© Eric Xing @ CMU, 2006-2016 42

Proximal Gradient (a.k.a. forward-
backward splitting, ISTA)

 f: loss term, smooth (continuously differentiable)
 g: regularizer, non-differentiable (e.g. 1-norm)

Proximal gradient
• g represents some simple function

• e.g., 1-norm, constraint C, etc.

Projected gradient
• g represents some constraint

© Eric Xing @ CMU, 2006-2016 43

Parallel (Accelerated) PG
 Bulk Synchronous Parallel Accelerated PG (exact)

 Chen and Ozdaglar (2012, arXiv)

 Asynchronous Parallel (non-accelerated) PG (inexact)
 Li et al. Parameter Server (2014, OSDI)

 General strategy:
1. Compute gradients on workers
2. Aggregate gradients on servers
3. Compute proximal operator on servers
4. Compute momentum on servers
5. Send result wt+1 to workers and repeat

 Can apply Hogwild-style asynchronous updates to non-
accelerated PG, for empirical speedup
 Open question: what about accelerated PG? What happens theoretically and

empirically to accelerated momentum under asynchrony?

© Eric Xing @ CMU, 2006-2016 44

Outline: from sequential to parallel,
algorithms and systems
 Optimization Algorithms

 Algorithms:
 Stochastic gradient descent
 Coordinate descent
 Proximal gradient methods: ISTA, FASTA, Smoothing proximal gradient
 ADMM

 Data-parallel
 Model-Parallel

 Markov Chain Monte Carlo Algorithms
 Data-parallel

 Auxiliary Variable Dirichlet Process
 Embarassingly Parallel MCMC

 Distributed System Frameworks (aka, Big Learning systems)
© Eric Xing @ CMU, 2006-2016 45

Posterior Inference Algorithms:
MCMC and SVI



z

Δ

N

D

Prior

K

Markov Chain Monte Carlo:
Randomly sample each variable in sequence

Stochastic Variational Inference:
Gradient ascent on randomly-chosen variables



z

Δ

N

D

Prior

K

© Eric Xing @ CMU, 2006-2016 46

A Mixed Membership Triangular Model
Q. Ho, J. Yin and E. P. Xing. On Triangular versus Edge Representations - Towards Scalable Modeling of Networks. NIPS 2012.

Role mixed-
membership vectors

Role indicators for
each triple (i,j,k)

Observed 2/3-edge
triangular motifs

Tensor of motif
distributions for each

role combination

θi ~ Dirichlet(α)
si,jk ~ Multinomial(θi)
Bxyz ~ Dirichlet(λ)
Eijk ~ TriangleDistribution(B,si,jk,sj,ik,sk,ij)

Rao-Blackwellized/Collapsed Gibbs
Sampling for inference, with θ and B
integrated out

© Eric Xing @ CMU, 2006-2016 47

Scalable Algorithms

 Parsimonious model: with linear O(K) number of role parameters

 δ-subsampling: down-sample neighborhood of high-degree nodes

 Stochastic algorithms: update small random subset of variables every
iteration

 More recent advancements of stochastic inference:
 Adaptive learning rate [R. Ranganath, C. Wang, D. Blei and E. P. Xing, ICML 2013]
 Variance Reduction [C. Wang, X. Chen, A. Smola and E. P. Xing, NIPS 2013]

© Eric Xing @ CMU, 2006-2016 48

Gibbs Sampling (with -
subsampling) : [Q. Ho, J. Yin and E. P. Xing.. NIPS 2012.]

 Stanford web graph, N ≈ 280,000
 Converged in 500 Gibbs sampling iterations
 Runtime: 18 hours using one processor core

© Eric Xing @ CMU, 2006-2016 49

Stochastic VI MMSB (Gopalan et al,
NIPS 2012) took 8 days using 4 threads

340x speedup!

Gibbs MMTM (Ho et al, NIPS 2012) took
18.5 hours using 1 thread

110x speedup!

SVI : Faster & More Accurate
J. Yin, Q. Ho and E. P. Xing. A Scalable Approach to Probabilistic Latent Space Inference of Large-Scale
Networks. NIPS 2013.

© Eric Xing @ CMU, 2006-2016 50

The Need for Distributed Computation

 Triangular model SVI can handle 1M node networks with 100 roles
in a few hours, on just one machine

 What if we want to analyze 10K roles in a 100M-node network?

 Memory:
 100M * 10K = 1 trillion latent states = 4TB of RAM

 Computation:
 SVI algorithm analyzes 1M nodes and 100 roles in a few hrs on one machine
 100M nodes and 10K roles would require 10K+ hrs on one machine, i.e. yrs!

 Need many machines to satisfy memory and computational
requirements!

© Eric Xing @ CMU, 2006-2016 51

Parallel and Distributed MCMC
 Classic parallel MCMC solutions

 Take multiple chains in parallel, take average/consensus between chains.
 But what if each chain is very slow to converge?
 Need full dataset on each process – no data parallelism!

 Naively run Gibbs sampling in parallel (i.e. parallelize a single MCMC chain)
 Many distributed topic model implementations do this
 But Parallel Gibbs sampling does not reach stationary distribution in general - it is

incorrect! (Gonzalez et al. 2011 AISTATS)
 Correct Parallel GS not possible on “collapsed” models like topic models … what to do?

Chain on core 1

Chain on core 2

Chain on core 3

Not converged Converged

© Eric Xing @ CMU, 2006-2016 52

Solution I: Induced Independence via
Auxiliary Variables [Dubey et al. ICML 2013, UAI 2014],

Auxiliary Variable DP Inference

● Conditioned on the restaurant allocation, data are distributed
according to P independent Dirichlet process

● Each processor performs local collapsed Gibbs sampling on
the independent DPs

● For the global parameters perform MH to migrate clusters
across processors
● Select a cluster ‘c’ and a processor ‘p’
● Propose: move ‘c’ to ‘p’
● Acceptance ratio depends on cluster size

● Can be done asynchronously in parallel without affecting
performance

© Eric Xing @ CMU, 2006-2016 53

Auxiliary Variable Model for DP
● AV model (left) completely equivalent to standard DP (right)

● Intuition: open up opportunity to parallelize MCMC via model reformulation

© Eric Xing @ CMU, 2006-2016 54

Correct Parallel MCMC via
Auxiliary variable mixtures

● Idea: Dirichlet Mixture of Dirichlet processes are Dirichlet
processes

DP on Processor 1

DP on Processor P

Dirichlet Mixture over
Processor DPs 1...P

© Eric Xing @ CMU, 2006-2016 55

Solution II: Embarrassingly Parallel
(but correct) MCMC [Neiswanger, et al. UAI 14]

 High-level idea:
 Run MCMC in parallel on data subsets; no communication between machines.
 Combine samples from machines to construct full posterior distribution samples.

 Objective: recover full posterior distribution

 Definitions:
 Partition data into M subsets
 Define m-th machine’s “subposterior” to be

 Subposterior: “The posterior given a subset of the observations with an underweighted
prior”.

© Eric Xing @ CMU, 2006-2016 56

Embarassingly Parallel MCMC
 Algorithm

1. For m=1…M independently in parallel, draw samples from each subposterior
2. Estimate subposterior density product (and thus the

full posterior) by “combining subposterior samples”

 “Combine subposterior samples” via nonparametric estimation
1. Given T samples from each subposterior :

 Construct Kernel Density Estimate (Gaussian kernel, bandwidth h):

2. Combine subposterior KDEs:

 where

© Eric Xing @ CMU, 2006-2016 57

Embarassingly Parallel MCMC
 Theoretical guarantee: the nonparametric estimator generated

by subposterior combination is consistent:

 Simulations:
 More subposteriors

= tighter estimates
 EPMCMC recovers

correct parameter
 Naïve subposterior

averaging does not!

© Eric Xing @ CMU, 2006-2016 58

Outline: from sequential to parallel,
algorithms and systems
 Optimization Algorithms

 Algorithms:
 Stochastic gradient descent
 Coordinate descent
 Proximal gradient methods: ISTA, FASTA, Smoothing proximal gradient
 ADMM

 Data-parallel
 Model-Parallel

 Markov Chain Monte Carlo Algorithms
 Data-parallel

 Auxiliary Variable Dirichlet Process
 Embarassingly Parallel MCMC

 Distributed System Frameworks (aka, Big Learning systems)
© Eric Xing @ CMU, 2006-2016 59

The systems interface of Big
Learning
 Parallel Optimization and MCMC algorithms = “algorithmic

interface” to Big Learning
 Reusable building blocks to solve large-scale inferential challenges in Big Data

and Big Models

 What about the systems (hardware, software platforms) to
execute the algorithmic interface?
 Hardware: CPU clusters, GPUs, Gigabit ethernet, Infiniband

 Behavior nothing like single machine – what are the challenges?

 Software platforms: Hadoop, Spark, GraphLab, Petuum
 Each with their own “execution engine” and unique features
 Different pros and cons for different data-, model-parallel styles of algorithms

© Eric Xing @ CMU, 2006-2016 60

Why need new Big ML systems?
MLer’s view

 Focus on
 Correctness
 fewer iteration to converge,

 but assuming an ideal system, e.g.,
 zero-cost sync,
 uniform local progress

for (t = 1 to T) {
doThings()

parallelUpdate(x,θ)
doOtherThings()

}

θ
θ θ

θ
θ

θ θ θ

θθ
θ θθ

Parallelize over
worker threads

Share global model
parameters via RAM

0

1000

2000

3000

4000

5000

6000

7000

8000

0 8 16 24 32

Se
co

nd
s

Compute vs Network
LDA 32 machines (256 cores)

Network waiting time

Compute time

61
© Eric Xing @ CMU, 2006-2016 61

Why need new Big ML systems?
Systems View:

 Focus on
 high iteration throughput (more iter per sec)
 strong fault-tolerant atomic operations,

 but assume ML algo is a black box
 ML algos “still work” under different execution

models
 “easy to rewrite” in chosen abstraction

Non-uniform
convergence

Dynamic
structures

Error
tolerance

Agonistic of ML properties and objectives in system
design

1

1

1

1

2

2

2

2

3

3

3

3

1

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6or

Synchronization model

Programming model

Shotgun with 2 machines
Single machine (shooting algorithm)

Shotgun with 4 machines flies away!

62
© Eric Xing @ CMU, 2006-2016 62

Why need new Big ML systems?
MLer’s view

 Focus on
 Correctness
 fewer iteration to converge,

 but assuming an ideal system, e.g.,
 zero-cost sync,
 uniform local progress

Oversimplify systems issues
 need machines to perform

consistently
 need lots of synchronization
 or even try not to communicate at all

Systems View:
 Focus on

 high iteration throughput (more iter per sec)
 strong fault-tolerant atomic operations,

 but assume ML algo is a black box
 ML algos “still work” under different execution

models
 “easy to rewrite” in chosen abstraction

Oversimplify ML issues and/or
ignore ML opportunities
 ML algos “just work” without proof
 Conversion of ML algos across

different program models (graph
programs, RDD) is easy

for (t = 1 to T) {
doThings()
parallelUpdate(x,θ)
doOtherThings()

}

1

1

1

1

2

2

2

2

3

3

3

3

1

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6or

63
© Eric Xing @ CMU, 2006-2016 63

for (t = 1 to T) {
doThings()
parallelUpdate(x,θ)
doOtherThings()

}

θ
θ θ

θ
θ

θ θ θ

θθ
θ θθ

Parallelization Strategy
ML on

epoch 1
ML on

epoch 1
ML on

epoch 2
ML on

epoch 2
ML on

epoch 3
ML on

epoch 3
ML on

epoch m
ML on

epoch m

Barrier ?

Write
outcome to

KV store

Write
outcome to

KV store

Write
outcome to
KV store

Write
outcome to
KV store

Write
outcome to
KV store

Write
outcome to
KV store

Write
outcome to
KV store

Write
outcome to
KV store

Collect
outcomes and
aggregate

Collect
outcomes and
aggregate

Do nothingDo nothing Do nothingDo nothing Do nothingDo nothing 0

1000

2000

3000

4000

5000

6000

7000

8000

0 8 16 24 32

Se
co

nd
s

Network waiting time

Compute time

© Eric Xing @ CMU, 2006-2016 64

A Dichotomy of Data and Model
in ML Programs

Data Parallelism Model Parallelism

© Eric Xing @ CMU, 2006-2016 65

ML Computation vs. Classical
Computing Programs

ML Program:
optimization-centric and
iterative convergent

Traditional Program:
operation-centric and
deterministic

© Eric Xing @ CMU, 2006-2016 66

Traditional Data Processing
needs operational correctness

Example: Merge sort

Sorting
error: 2
after 5

Error persists and is
not corrected

© Eric Xing @ CMU, 2006-2016 67

ML Algorithms can Self-heal

© Eric Xing @ CMU, 2006-2016 68

Intrinsic Properties of ML Programs

 ML is optimization-centric, and admits an iterative convergent
algorithmic solution rather than a one-step closed form solution
 Error tolerance: often robust against limited

errors in intermediate calculations

 Dynamic structural dependency: changing correlations
between model parameters critical to efficient parallelization

 Non-uniform convergence: parameters
can converge in very different number of steps

 Whereas traditional programs are transaction-centric, thus only
guaranteed by atomic correctness at every step

 How do existing platforms (e.g., Spark, GraphLab) fit the above?

© Eric Xing @ CMU, 2006-2016 69

Why not Hadoop?

Naïve MapReduce not best for ML

● Hadoop can execute iterative-convergent, data-parallel ML...
o map() to distribute data samples i, compute update Δ(Di)
o reduce() to combine updates Δ(Di)
o Iterative ML algo = repeat map()+reduce() again and again

● But reduce() writes to HDFS before starting next iteration’s map() - very slow iterations!

HDFS Bottleneck
Image source: dzone.com

Iteration 1 Iteration 2

© Eric Xing @ CMU, 2006-2016 70

Modern Systems for Big ML
● Just now: basic ideas of data-, model-parallelism in ML

● What systems allow ML programs to be written, executed this way?

© Eric Xing @ CMU, 2006-2016 71

Spark Overview
● General-purpose system for Big Data processing

o Shell/interpreter for Matlab/R-like analytics

● MLlib = Spark’s ready-to-run ML library
o Implemented on Spark’s API

© Eric Xing @ CMU, 2006-2016 72

Spark Overview
● Key feature: Resilient Distributed Datasets (RDDs)

● Data processing = lineage graph of transforms
● RDDs = nodes
● Transforms = edges

Source: Zaharia et al.
(2012)

© Eric Xing @ CMU, 2006-2016 73

Spark Overview
● Benefits of Spark:

● Fault tolerant - RDDs immutable, just re-compute from lineage
● Cacheable - keep some RDDs in RAM

o Faster than Hadoop MR at iterative algorithms
● Supports MapReduce as special case

Source: Zaharia et al.
(2012)

© Eric Xing @ CMU, 2006-2016 74

Spark:
Faster MapR on Data-Parallel

● Spark’s solution: Resilient Distributed Datasets (RDDs)
o Input data → load as RDD → apply transforms → output result
o RDD transforms strict superset of MapR
o RDDs cached in memory, avoid disk I/O

● Spark ML library supports data-parallel ML algos, like Hadoop
o Spark and Hadoop: comparable first iter timings…
o But Spark’s later iters are much faster Source: ebaytechblog.com

© Eric Xing @ CMU, 2006-2016 75

GraphLab Overview
● System for Graph Programming

o Think of ML algos as graph algos

● Comes with ready-to-run “toolkits”
o ML-centric toolkits: clustering, collaborative filtering, topic modeling,

graphical models

© Eric Xing @ CMU, 2006-2016 76

GraphLab Overview
● Key feature: Gather-Apply-Scatter API

o Write ML algos as vertex programs
o Run vertex programs in parallel on each graph node
o Graph nodes, edges can have data, parameters

Source: Gonzalez (2012)

© Eric Xing @ CMU, 2006-2016 77

GraphLab Overview
● GAS Vertex Programs:

o 1) Gather(): Accumulate data, params from my neighbors + edges
o 2) Apply(): Transform output of Gather(), write to myself
o 3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Source: Gonzalez (2012)

© Eric Xing @ CMU, 2006-2016 78

GraphLab Overview
● GAS Vertex Programs:

o 1) Gather(): Accumulate data, params from my neighbors + edges
o 2) Apply(): Transform output of Gather(), write to myself
o 3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Source: Gonzalez (2012)

© Eric Xing @ CMU, 2006-2016 79

GraphLab Overview
● GAS Vertex Programs:

o 1) Gather(): Accumulate data, params from my neighbors + edges
o 2) Apply(): Transform output of Gather(), write to myself
o 3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Source: Gonzalez (2012)

© Eric Xing @ CMU, 2006-2016 80

GraphLab Overview
● Benefits of Graphlab

o Supports asynchronous execution - fast, avoids straggler problems
o Edge-cut partitioning - scales to large, power-law graphs
o Graph-correctness - for ML, more fine-grained than MapR-correctness

Source: Gonzalez (2012)

© Eric Xing @ CMU, 2006-2016 81

GraphLab:
Model-Parallel via Graphs

● GraphLab Graph consistency models
o Guide search for “ideal” model-parallel execution order
o ML algo correct if input graph has all dependencies

● GraphLab supports asynchronous (no-waiting) execution
o Correctness enforced by graph consistency model
o Result: GraphLab graph-parallel ML much faster than Hadoop

Source: Low et al. (2010)
© Eric Xing @ CMU, 2006-2016 82

A New Framework for Large Scale Parallel
Machine Learning
(Petuum.org)

● System for iterative-convergent ML algos
o Speeds up ML via data-, model-parallel insights

● Ready-to-run ML programs
o Earlier release: Topic Model (LDA), Deep Learning (DNN), Matrix Factorization (Collaborative

Filtering), Lasso & Logistic Regression
o

o

● Exploit ML properties, with theoretical guarantees

Data Parallel Model Parallel

© Eric Xing @ CMU, 2006-2016 83

Petuum Overview

● Key modules
o Parameter Server for data-parallel ML algos
o Scheduler for model-parallel ML algos

● “Think like an ML algo”
o ML algo = (1) update equations + (2) run those eqns in some order

© Eric Xing @ CMU, 2006-2016 84

Petuum Overview

● Parameter Server
o Enables efficient data-parallelism: model parameters become global
o Special type of Distributed Shared Memory (DSM)

Petuum
-PS

UpdateVar(i) {
old = y[i]
delta = f(old)
y[i] += delta

}

UpdateVar(i) {
old = PS.read(y,i)
delta = f(old)
PS.inc(y,i,delta)

}

Single
Machine
Parallel

Distributed
with Petuum-PS

(one or more
machines)

Worker 1 Worker 2

Worker 3 Worker 4

© Eric Xing @ CMU, 2006-2016 85

Petuum Overview

● Scheduler
o Enables correct model-parallelism
o Can analyze ML model structure for best execution order

© Eric Xing @ CMU, 2006-2016 86

Lots of Advanced Apps

DNN
Petuum Brain for
mining images, videos,
speech, text, biology

(Med)LDA
Web-scale analysis of
docs, blogs, tweets

Regression
Linear and Logistic for
intent prediction,
stock/future hedging

(N)MF
Collaborative Filtering
for recommending
movies, products

MMTM
Societal/web-scale
network analysis,
community detection

SVM
General-purpose
Classification

Ising
Model power and
sensor grids

SIOR
Genome-wide
association,
stock/future hedging

ADMM
Constrained optimization
for operations research,
logistics management

Kalman
Kalman Filters for
aviation control,
dynamic system
prediction

SC
Sparse Coding for
web-scale, million-
class classification

Metric
Distance Metric
Learning to boost
large-scale
classification

© Eric Xing @ CMU, 2006-2016 87

The Science Behind …

principles, design, and theory

● Key insight: ML algos have special properties
o Error-tolerance, dependency structures, uneven convergence
o How to harness for faster data/model-parallelism?

© Eric Xing @ CMU, 2006-2016 88

Petuum: ML props = 1st-class citizen

● Error tolerance via Stale Sync Parallel Parameter Server (PS)
o System Insight 1: ML algos bottleneck on network comms
o System Insight 2: More caching => less comms => faster execution

More caching (more staleness)
© Eric Xing @ CMU, 2006-2016 89

Petuum: ML props = 1st-class citizen

● Harness Block dependency structure via Scheduler
o System Insight 1: Pipeline scheduler to hide latency
o System Insight 2: Load-balance blocks to prevent stragglers

Blocks in Lasso
Regression problem

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Prioritize Params/Vars
for update

All Parameters and
Variables

Generate Blocks

Blocks of
variables

Check Variable
Dependencies

© Eric Xing @ CMU, 2006-2016 90

Petuum: ML props = 1st-class citizen

● Exploit Uneven Convergence via Prioritizer
o System Insight 1: Prioritize small # of vars => fewer deps to check
o System Insight 2: Great synergy with Scheduler

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Prioritize Params/Vars
for update

All Parameters and
Variables

Generate Blocks

Blocks of
variables

Check Variable
Dependencies

© Eric Xing @ CMU, 2006-2016 91

How to speed up
Data-Parallelism?
 Existing ways are either safe/slow (BSP), or fast/risky (Async)

 Need “Partial” synchronicity
 Spread network comms evenly (don’t sync unless needed)
 Threads usually shouldn’t wait – but mustn’t drift too far apart!

 Need straggler tolerance
 Slow threads must somehow catch up

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

???

BSP Async

Is persistent memory really necessary for ML?
© Eric Xing @ CMU, 2006-2016 92

High-Performance Consistency Models
for Fast Data-Parallelism

Stale Synchronous Parallel (SSP)
• Allow threads to run at their own pace, without synchronization
• Fastest/slowest threads not allowed to drift >S iterations apart
• Threads cache local (stale) versions of the parameters, to reduce network syncing

Q. Ho, J. Cipar, H. Cui, J.-K. Kim, S. Lee, P. B. Gibbons, G. Gibson, G. R.
Ganger and E. P. Xing. More Effective Distributed ML via a Stale
Synchronous Parallel Parameter Server. NIPS 2013.

Iteration0 1 2 3 4 5 6 7 8 9

Thread 1 will always see
these updates

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Threshold 3

Thread 1 may not see
these updates (possible error)

Consequence:
• Asynchronous-like speed, BSP-like ML correctness guarantees
• Guaranteed age bound (staleness) on reads
• Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

© Eric Xing @ CMU, 2006-2016 93

Convergence Theorem

 Goal: minimize convex
(Example: Stochastic Gradient)
 L‐Lipschitz, problem diameter bounded by F2

 Staleness s, using P threads across all machines
 Use step size

 SSP converges according to
 Where T is the number of iterations

 Note the RHS interrelation between (L, F) and (s, P)
 An interaction between theory and systems parameters

 Stronger guarantees on means and variances can also be proven

Difference between
SSP estimate and true optimum

W. Dai, A. Kumar, J. Wei. Q. Ho, G. Gibson and E. P. Xing, High-Performance Distributed ML
at Scale through Parameter Server Consistency Models. AAAI 2015.

© Eric Xing @ CMU, 2006-2016 94

Faster convergence

Theorem: Given L-Lipschitz objective ft and step
size ht,

where

Let observed staleness be
Let its mean, variance be ,

Explanation: the (E)SSP distance between true optima and
current estimate decreases exponentially with more
iterations. Lower staleness mean, variance , improve the
convergence rate. Because ESSP has lower , , it exhibits
faster convergence than normal SSP.

© Eric Xing @ CMU, 2006-2016 95

Steadier convergence
Theorem: the variance in the (E)SSP estimate is

where

and represents 5th order or higher terms in

Explanation: The variance in the (E)SSP parameter estimate
monotonically decreases when close to an optimum.
Lower (E)SSP staleness => Lower variance in parameter =>
Less oscillation in parameter => More confidence in estimate
quality and stopping criterion.
ESSP has lower staleness than SSP => higher quality estimates

© Eric Xing @ CMU, 2006-2016 96

Easy PS Programming
 Put global parameters in PS

Examples:

 Topic Modeling (MCMC)
 Topic-word table

 Matrix Factorization (SGD)
 Factor matrices L, R

 Lasso Regression (CD)
 Coefficients β

 PS supports many classes of
algorithms
 Above are just a few examples

L

R
PS

Topic 1
Topic 2
Topic 3
Topic 4

β

UpdateVar(i) {
old = PS.read(y,i)
delta = f(old)
PS.inc(y,i,delta)

}

© Eric Xing @ CMU, 2006-2016 97

Enjoys Async Speed, But BSP
Guarantee across algorithms

 Massive Data Parallelism

 Effective across different algorithms

LASSO Matrix Fac.LDA
© Eric Xing @ CMU, 2006-2016 98

Challenges in Model Parallelism

A huge number of parameters
(e.g.) J = 100M

N

J

J

Model

=

b0 b1b2 b3

b4 b5

b6 b8b7 b9

b10 b11

G0

G1

• Within group – synchronous
(i.e., sequential) update

• Inter group – asynchronous
update

© Eric Xing @ CMU, 2006-2016 99

 Concurrent updates of may induce errors

Sync

Sequential updates Concurrent updates

Induces parallelization error

Need to check x1
Tx2

before updating
parameters

Model Dependencies in Lasso

© Eric Xing @ CMU, 2006-2016 100

How to Model-Parallel?
 Again, existing ways are either safe but slow, or fast but risky
 Need to avoid processing whole-data just for optimal

distribution
 i.e., build expensive data representation on the whole data
 Compute all variable dependencies

 Dynamic load balance

???

Graph Partition Random Partition

Is full consistency really necessary for ML?
© Eric Xing @ CMU, 2006-2016 101

Structure-Aware Parallelization
(SAP)

data
partition

model
partition

worker

data
partition

model
partition

worker

 Smart model-parallel execution:
 Structure-aware scheduling
 Variable prioritization
 Load-balancing

data
partition

model
partition

worker

 Simple programming:
 Schedule()
 Push()
 Pull()

© Eric Xing @ CMU, 2006-2016 102

Structure-aware Dynamic Scheduler
(STRADS)

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Blocks of variables

Sync.
barrier

Sample Variables
to be Updated ~ p(j)

Check
Variable

Dependency

All Variables

Generate
Blocks of
Variables

STRADS

S. Lee, J.-K. Kim, X. Zheng, Q. Ho, G. Gibson, and E. P. Xing. On Model Parallelization and
Scheduling Strategies for Distributed Machine Learning. NIPS 2014.

• Priority Scheduling

• Block scheduling

[Kumar, Beutel, Ho and Xing, Fugue:
Slow-worker agnostic distributed
learning, AISTATS 2014]

© Eric Xing @ CMU, 2006-2016 103

Let , where P is the number of workers
Let M be the number of features
Let be the spectral radius of X

Explanation: Dynamic scheduling ensures the gap between
the objective at the t-th iteration and the optimal objective is
bounded by , which decreases as . Therefore
dynamic scheduling ensures convergence.

Dynamic Scheduling Leads to
Faster Convergence

Theorem: the difference between the STRARD estimate and the true
optima is

© Eric Xing @ CMU, 2006-2016 104

Dynamic scheduling is close to
ideal

Let be an ideal model-parallel schedule
Let be the parameter trajectory by ideal schedule
Let be the parameter trajectory by dynamic schedule
Let

Explanation: Under dynamic scheduling, algorithmic progress is
nearly as good as ideal model-parallelism. Intuitively, it is because
both ideal and dynamic model-parallelism seek to minimize the
parameter dependencies crossing between workers.

Theorem: After t iterations, we have

© Eric Xing @ CMU, 2006-2016 105

Faster, Better Convergence
across algorithms

 STRADS+SAP achieves better speed and objective

0 500 1000
0.05

0.1

0.15

0.2

0.25

100M features
9 machines

Seconds

O
bj

ec
tiv

e

STRADS
Lasso−RR

0 50 100 150
0.5

1

1.5

2

2.5

80 ranks
9 machines

Seconds

R
M

SE

STRADS
GraphLab

0 1 2 3 4 5
x 104

−3.5

−3

−2.5 x 109

2.5M vocab, 5K topics
32 machines

Seconds

Lo
g−

Li
ke

lih
oo

d

STRADS
YahooLDA

LassoLasso MFMF LDALDA

© Eric Xing @ CMU, 2006-2016 106

Open research topics
● Early days for data-, model-parallelism, and other ML properties

o New properties, principles still undiscovered
o Potential to accelerate ML beyond naive strategies

● Deep analysis of BigML systems limited to few ML algos
o Need efforts at deeper, foundational level

● Major obstacle: lack common formalism for data/model parallelism,
partitioning, and scheduling strategies
o Model of ML execution under error due to imperfect system?
o Model not just “theoretical” ML costs, but also system costs?

© Eric Xing @ CMU, 2006-2016 107

