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Machine Learning: 
-- a view from outside
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Inside ML …

• Nonparametric
Bayesian Models

• Graphical 
Models

• Deep Learning
• Sparse Coding

• Spectral/Matrix
Methods

• Regularized
Bayesian Methods • Sparse Structured

I/O Regression
• Large-Margin

• Network switches
• Infiniband

• Network attached storage
• Flash storage

• Server machines
• Desktops/Laptops
• NUMA machines

• GPUs • Cloud compute
(e.g. Amazon EC2)

• Virtual Machines

Hardware and infrastructure
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for (t = 1 to T) {
doThings()

doOtherThings()
}

An ML Program

Model ParameterData

This computation needs to be parallelized! 

Solved by an iterative convergent algorithm
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1B+ USERS
30+ PETABYTES

645 million users
500 million tweets / day

100+ hours video 
uploaded every minute

32 million 
pages

Massive Data
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Issue: When is Big Data useful?
 Negative examples

 “Simple” regression and classification models, with fixed parameter size
 Intuition: the decrease in the variance of the estimator experiences diminishing 

returns with more data. At some point, the estimator is simply “good enough” for 
practical purposes, and additional data/computation is unnecessary

 Positive examples
 Topic models (used all over internet industry)
 DNNs (Google Brain, many others)
 Collaborative filtering (again, used all over internet industry)
 “Personalized” models
 Practitioners of the above usually increase model size with more data

 Conjecture: how much data is useful really depends on model 
size/capacity
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Challenge #1 
– Massive Data Scale

Familiar problem: data from 50B devices, data 
centers won’t fit into memory of single machine

Source: Cisco Global Cloud 
Index

Source: The Connectivist

f (D)

for (t = 1 to T) {
doThings()
parallelUpdate(x,θ)
doOtherThings()

}
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Google Brain 
Deep Learning 

for images:
1~10 Billion

model parameters

Topic Models 
for news article 

analysis:
Up to 1 Trillion

model
parameters

Collaborative filtering 
for Video recommendation:

1~10 Billion
model

parameters

Multi-task Regression 
for simplest whole-

genome analysis:
100 million ~ 1 Billion

model 
parameters

Growing Model Complexity
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Issue: Are Big Models useful?
 In theory

 Possibly, but be careful not to 
over-extend

 Beware “statistical strength”
 “When you have large 

amounts of data, your appetite 
for hypotheses tends to get 
even larger. And if it’s growing 
faster than the statistical 
strength of the data, then many 
of your inferences are likely to 
be false. They are likely to be 
white noise.” –Michael Jordan

 In practice
 Some success stories - could 

there be theory justification?

 Many topics in topic models
 Capture long-tail effects of 

interest; improved real-world 
task performance

 Many parameters in DNNs
 Improved accuracy in vision 

and speech tasks
 Publicly-visible success (e.g. 

Google Brain)
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Challenge #2 
– Gigantic Model Size

Big Data needs Big Models to extract understanding
But ML models with >1 trillion params also won’t fit!

Source: University of 
Bonn

f(D)

for (t = 1 to T) {
doThings()
parallelUpdate(x,θ)
doOtherThings()

}
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Issue: Inference Algorithms, or 
Inference Systems?
 View: focus on inference algorithm

 Scale up by refining the algorithm
 Given fixed computation, finish 

inference faster

 A few examples
 Quasi-Newton algorithms for 

optimization
 Fast Gibbs samplers for topic 

models (Yao et al. 2009, Li et al. 
2014, Yuan et al. 2015, Zheng et 
al, 2015)

 Locality sensitive hashing for 
graphical models (Ahmed et al. 
2012)

 View: focus on distributed systems 
for inference

 Scale up by using more machines
 Not trivial: real clusters are 

imperfect and unreliable; Hadoop
not a fix-all

 A few platforms
 Spark
 GraphLab
 Petuum
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Issue: Theoretical Guarantees 
and Empirical Performance
 View: establishing theoretical 

consistency of estimators gives 
practitioners much-needed 
confidence
 Motivated by empirical science, 

where guarantees are paramount

 Example: Lasso sparsistency and 
consistency (Wainwright 2009)
 Theory predicts how many 

samples n needed for a Lasso 
problem with p dimensions and k 
non-zero elements

 Simulation experiments show very 
close match with theory

 Is there a way to analyze more 
complex models?

 View: empirical and industrial 
evidence can provide a strong 
driving force for experimental 
research
 Motivated by industrial practice, 

particularly at internet companies

 Example: AB testing in industry
 Principled experimental means of 

testing new algorithms or feature 
engineering; makes use of large 
user base for experimentation

 Can show whether an new 
algorithm makes a significant 
difference to click-through rate, 
user adoption, etc.
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Parallelization Strategies
New Model = Old Model + 
Update(Data)

(D) (D)
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Parallelization Strategies

Data Parallel

New Model = Old Model + 
Update(Data)

 (D)
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Parallelization Strategies

Data Parallel Model Parallel

New Model = Old Model + 
Update(Data)

(D) (D)
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There Is No Ideal Distributed System!

 Not quite that easy…
 Two distributed challenges:

 Networks are slow
 “Identical” machines rarely perform equally

Low bandwidth,
High delay

Unequal
performance

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

0 8 16 24 32 

Se
co

nd
s 

Network waiting time 

Compute time 
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Issue: How to approach 
distributed systems?
 Idealist view

 Start with simplified view of distributed 
systems; develop elaborate theory

 Issues being explored:
 Information theoretic lower bounds for 

communication (Zhang et al. 2013)
 Provably correct distributed 

architectures, with mild assumptions 
(Langford et al. 2009, Duchi and 
Agarwal 2011)

 How can we build practical solutions 
using these ideas?

 Pragmatist view
 Start with real-world, complex 

distributed systems, and develop a 
combination of theoretical guarantees 
and empirical evidence

 Issues being explored:
 Fault tolerance and recovery (Zaharia et 

al. 2012, Spark, Li et al. 2014)
 Impact of stragglers and delays on 

inference, and robust solutions (Ho et 
al. 2013, Dai et al. 2014, Petuum, Li et 
al. 2014)

 Scheduling of inference computations 
for massive speedups (Low et al. 2012, 
GraphLab, Kim et al. 2014, Petuum)

 How can we connect these 
phenomena to theoretical inference 
correctness and speed?
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• Nonparametric
Bayesian Models

• Graphical 
Models

• Sparse Structured
I/O Regression • Sparse Coding

• Spectral/Matrix
Methods

• Regularized
Bayesian Methods • Others• Large-Margin

Machine Learning Models/Algorithms

• Network switches
• Infiniband

• Network attached storage
• Flash storage

• Server machines
• Desktops/Laptops
• NUMA machines

• GPUs • Cloud compute
(e.g. Amazon EC2)

• Virtual Machines

Hardware and infrastructure

Solution:
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• Nonparametric
Bayesian Models

• Graphical 
Models

• Sparse Structured
I/O Regression • Sparse Coding

• Spectral/Matrix
Methods

• Regularized
Bayesian Methods • Others• Large-Margin

Machine Learning Models/Algorithms

• Network switches
• Infiniband

• Network attached storage
• Flash storage

• Server machines
• Desktops/Laptops
• NUMA machines

• GPUs • Cloud compute
(e.g. Amazon EC2)

• Virtual Machines

Hardware and infrastructure

Solution: 
An Alg/Sys INTERFACE for Big ML
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The Big ML “Stack” - More than 
just software

Theory: Degree of parallelism, convergence analysis, sub-sample 
complexity … 

System: Distributed architecture: DFS, parameter server, task 
scheduler…

Model: Generic building blocks: loss functions,  structures, 
constraints, priors …

Algorithm: Parallelizable and stochastic MCMC, VI, Opt, 
Spectrum …

Representation: Compact and informative features

Programming model & Interface: High: Matlab/R
Medium: C/JAVA
Low: MPI

Hardware: GPU, flash storage, cloud …
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Outline: from sequential to parallel, 
algorithms and systems
 Optimization Algorithms

 Algorithms: 
 Stochastic gradient descent
 Coordinate descent
 Proximal gradient methods: ISTA, FASTA, Smoothing proximal gradient
 ADMM

 Data-parallel
 Model-Parallel

 Markov Chain Monte Carlo Algorithms
 Data-parallel

 Auxiliary Variable Dirichlet Process
 Embarassingly Parallel MCMC

 Distributed System Frameworks (aka, Big Learning systems)
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Sparse Linear Regression

)(
2
1min 2

2
βXβy

β
 

Data fitting Regularization

Data fitting part: 
- find β that fits into the data
- Squared loss, logistic loss, hinge loss, etc

Regularization part: 
- induces sparsity in β. 
- incorporates structured information into the model
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Sparse Linear Regression
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Algorithm I:
Stochastic Gradient Descent
 Consider an optimization problem:

 Classical gradient descent:

 Stochastic gradient descent:
 Pick a random sample di

 Update parameters based on noisy approximation of the true gradient 
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 SGD converges almost surely to 
a global optimal for convex problems

 Traditional SGD compute gradients based on a single 
sample

 Mini-batch version computes gradients based on multiple 
samples
 Reduce variance in gradients due to multiple samples
 Multiple samples => represent as multiple vectors => use vector 

computation => speedup in computing gradients

Stochastic Gradient Descent
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Other usages: 
e.g., SGD for Matrix Factorization
 Matrix factorization problem is given by

 MF approximates A with WHT (W and H are rank-k matrices)
 SGD is shown be effective for MF [Koren and Bell, 2009]. 

MF SGD update rules are:

 Time complexity per MF SGD iteration is O(|Ω|k)
 Where Ω is number of nonzero elements in matrix A
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Parallel Stochastic Gradient 
Descent
 Parallel SGD: Partition data to different workers; all workers 

update full parameter vector

 Parallel SGD [Zinkevich et al., 2010]

 PSGD runs SGD on local copy of params in each machine

Input
Data

Input
Data

Input
Data

split Update local copy 
of ALL params

Update local copy 
of ALL params

aggregate

Update ALL 
params

Input
Data

Input
Data

Input 
Data
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Hogwild!: Lock-free approach to 
PSGD
 MapReduce-like parallel processing frameworks have been a 

popular approach for parallel SGD

 However, MapReduce framework is not ideal for iterative 
algorithms
 Difficult to express iterative algorithms in MapReduce
 Overhead for fault tolerance
 Overhead of locking or synchronization is a severe bottleneck

 Hogwild! Is a lock-free approach 
 It works well when data access is sparse, i.e., a single SGD step affects only a 

small number of variables
 If multi processors write a parameter at the same time, break ties at random.
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Hogwild!: Lock-free approach to 
PSGD
 Example: 

 Sparse SVM

 z is input vector, and y is a label; (z,y) is an elements of E 
 Assume that zα are sparse

 Matrix Completion

 Input A matrix is sparse

 Graph cuts

 W is a sparse similarity matrix, encoding a graph
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Hogwild! Algorithm
 Hogwild! algorithm: iterate in parallel for each core

 Sample e uniformly at random from E
 Read current parameter xe; evaluate gradient of function fe
 Sample uniformly at random a coordinate v from subset e
 Perform SGD on coordinate v with small constant step size

 Atomically update single coordinate, no mem-locking
 Hogwild! takes advantage of sparsity in ML problems
 Enables near-linear speedup on various ML problems
 Excellent on single machines, less ideal for distributed

 Atomic update on multi-machine challenging to implement; inefficient and slow
 Delay among machines requires explicit control… why? (see next slide)
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● Theorem: Given lipschitz objective ft and step size ηt,

where

L is a lipschitz constant, and εm and εv are the mean and variance of the delay

● Intuition: distance between current estimate and optimal value decreases 
exponentially with more iters – but high variance in the delay εv  incurs 
exponential penalty

● Distributed systems have much higher delay variance than single machine

The cost of uncontrolled delay –
slower convergence

Dai et al. 2015 (AAAI)
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● Theorem: the variance in the parameter estimate is

where

and       represents 5th order or higher terms as a function of the delay εt

● Intuition: variance of the parameter estimate decreases near the optimum, but 
delay εt increases parameter variance => instability during convergence

● Distributed systems have much higher average delay than single machine

The cost of uncontrolled delay –
instability during convergence

Dai et al. 2015 (AAAI)
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PSGD with Parameter Server
 Parameter server allows us to parallelize SGD, consisting of 

 Shared key-value store
 Synchronization scheme

 Shared key-value store provides easy interface to read/write 
shared parameters 

 Synchronization scheme determines how parameters are 
shared among multiple workers
 Bulk synchronous parallel (e.g., Hadoop)
 Asynchronous parallel [Ahmed et al., 2012]

 Stale synchronous parallel [Ho et al., 2013]
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PSGD with Bounded Async PS
 Stale synchronous parallel supports synchronization with 

bounded staleness
 Fastest and the slowest workers are ≤s clocks apart
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Faster and better convergence
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Algorithm II:
Coordinate Descent

Update each regression coefficient in a cyclic manner

1st iteration

1 2 3 J
2st iteration

1 2 3 J

 Pros and cons
 Unlike SGD, CD does not involve learning rate
 If CD can be used for a model,  it is often comparable to the state-of-the-art

(e.g. lasso, group lasso)
 However, as sample size increases, time for each iteration also increases
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Example: Coordinate Descent for 
Lasso 

 Set a subgradient to zero:

 Assuming that                , we can derive update rule:


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Soft thresholding
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Standardization
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Parallel Coordinate Descent
 Shotgun algorithm [Bradley et al. 2011] proposed parallel 

coordinate descent algorithm

 Shotgun algorithm
 Choose parameters to update at random
 Update the selected parameters in parallel
 Iterate until convergence

 When features are nearly independent, Shotgun scales 
almost linearly 
 Shotgun scales linearly up to            , where ρ is the spectral radius of ATA
 For uncorrelated features, ρ=1; for exactly correlated features ρ=d
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Block-greedy Coordinate Descent
 Block-greedy coordinate descent [Scherrer et al., 2012] extends

Greedy-CD, Shortgun, Randomized-CD
 Alg: partition p params into B blocks; iterate:

 Randomly select P blocks
 Greedily select one coordinate per P blocks
 Update each selected coordinate

 Sublinear convergence O(1/k) for separable regularizer r :

 Big-O constant depends on the maximal correlation among the B blocks

 Hence greedily cluster features (blocks) to reduce correlation
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Parallel Coordinate Descent with 
Dynamic Scheduler
 STRADS (STRucture-Aware Dynamic Scheduler) [Lee et al., 

2014] is developed to schedule concurrent updates in CD
 STRADS is a general scheduler for ML problems, applicable to CD as well as 

other ML algorithms such as Gibbs sampling

 STRADS improves the performance of CD, taking advantage 
of two key ideas
 Dependency checking  

 update parameters which have a small degree of dependency. Thus, updating nearly 
independent parameters generate a small parallelization error

 Priority-based updates  
 schedule the frequency of parameter updates based on their contributions to the 

decrease of objective function
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Comparison: 
p-scheduling vs. u-scheduling 

• Priority-based scheduling converged faster than 
the baseline with random scheduling
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be
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rShotgun scheduling [Bradley et al. 2011]
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Advanced Optimization Tech.
 What if simple methods like SPG, CD are not adequate? 

 Advanced techniques at hand
 Complex regularizer: PG
 Complex loss: SPG
 Overlapping loss/regularizer: ADMM

 How to parallelize them? You must understand the MATH 
behind the algorithms
 Which module should be at the server 
 Which module can be distributed to clients 
 … 
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Proximal Gradient (a.k.a. forward-
backward splitting, ISTA )

 f: loss term, smooth (continuously differentiable)
 g: regularizer, non-differentiable (e.g. 1-norm)

Proximal gradient
• g represents some simple function

• e.g., 1-norm, constraint C, etc.

Projected gradient
• g represents some constraint

© Eric Xing @ CMU, 2006-2016 43



Parallel (Accelerated) PG
 Bulk Synchronous Parallel Accelerated PG (exact)

 Chen and Ozdaglar (2012, arXiv)

 Asynchronous Parallel (non-accelerated) PG (inexact)
 Li et al. Parameter Server (2014, OSDI)

 General strategy:
1. Compute gradients on workers
2. Aggregate gradients on servers
3. Compute proximal operator on servers
4. Compute momentum on servers
5. Send result wt+1 to workers and repeat

 Can apply Hogwild-style asynchronous updates to non-
accelerated PG, for empirical speedup
 Open question: what about accelerated PG? What happens theoretically and 

empirically to accelerated momentum under asynchrony?
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Outline: from sequential to parallel, 
algorithms and systems
 Optimization Algorithms

 Algorithms: 
 Stochastic gradient descent
 Coordinate descent
 Proximal gradient methods: ISTA, FASTA, Smoothing proximal gradient
 ADMM

 Data-parallel
 Model-Parallel

 Markov Chain Monte Carlo Algorithms
 Data-parallel

 Auxiliary Variable Dirichlet Process
 Embarassingly Parallel MCMC

 Distributed System Frameworks (aka, Big Learning systems)
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Posterior Inference Algorithms:
MCMC and SVI



z 

Δ

N

D 

Prior

K

Markov Chain Monte Carlo:
Randomly sample each variable in sequence

Stochastic Variational Inference:
Gradient ascent on randomly-chosen variables



z 

Δ

N

D 

Prior

K
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A Mixed Membership Triangular Model
Q. Ho, J. Yin and E. P. Xing. On Triangular versus Edge Representations - Towards Scalable Modeling of Networks. NIPS 2012.

Role mixed-
membership vectors

Role indicators for 
each triple (i,j,k)

Observed 2/3-edge 
triangular motifs

Tensor of motif 
distributions for each 

role combination

θi ~ Dirichlet(α)
si,jk ~ Multinomial(θi)
Bxyz ~ Dirichlet(λ)
Eijk ~ TriangleDistribution(B,si,jk,sj,ik,sk,ij)

Rao-Blackwellized/Collapsed Gibbs 
Sampling for inference, with θ and B 
integrated out
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Scalable Algorithms

 Parsimonious model: with linear O(K) number of role parameters

 δ-subsampling: down-sample neighborhood of high-degree nodes 

 Stochastic algorithms: update small random subset of variables every 
iteration

 More recent advancements of stochastic inference:
 Adaptive learning rate [R. Ranganath, C. Wang, D. Blei and E. P. Xing, ICML 2013]
 Variance Reduction [C. Wang, X. Chen, A. Smola and E. P. Xing, NIPS 2013]
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Gibbs Sampling (with -
subsampling) : [Q. Ho, J. Yin and E. P. Xing.. NIPS 2012.]

 Stanford web graph, N ≈ 280,000
 Converged in 500 Gibbs sampling iterations
 Runtime: 18 hours using one processor core
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Stochastic VI MMSB (Gopalan et al, 
NIPS 2012) took 8 days using 4 threads

340x speedup!

Gibbs MMTM (Ho et al, NIPS 2012) took 
18.5 hours using 1 thread

110x speedup!

SVI : Faster & More Accurate
J. Yin, Q. Ho and E. P. Xing. A Scalable Approach to Probabilistic Latent Space Inference of Large-Scale 
Networks. NIPS 2013.
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The Need for Distributed Computation

 Triangular model SVI can handle 1M node networks with 100 roles 
in a few hours, on just one machine

 What if we want to analyze 10K roles in a 100M-node network?

 Memory:
 100M * 10K = 1 trillion latent states = 4TB of RAM

 Computation:
 SVI algorithm analyzes 1M nodes and 100 roles in a few hrs on one machine
 100M nodes and 10K roles would require 10K+ hrs on one machine, i.e. yrs!

 Need many machines to satisfy memory and computational 
requirements!
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Parallel and Distributed MCMC
 Classic parallel MCMC solutions

 Take multiple chains in parallel, take average/consensus between chains.
 But what if each chain is very slow to converge?
 Need full dataset on each process – no data parallelism!

 Naively run Gibbs sampling in parallel (i.e. parallelize a single MCMC chain)
 Many distributed topic model implementations do this
 But Parallel Gibbs sampling does not reach stationary distribution in general  - it is 

incorrect! (Gonzalez et al. 2011 AISTATS)
 Correct Parallel GS not possible on “collapsed” models like topic models … what to do?

Chain on core 1

Chain on core 2

Chain on core 3

Not converged Converged
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Solution I: Induced Independence via 
Auxiliary Variables [Dubey et al. ICML 2013, UAI 2014],

Auxiliary Variable DP Inference

● Conditioned on the restaurant allocation, data are distributed 
according to P independent Dirichlet process

● Each processor performs local collapsed Gibbs sampling on 
the independent DPs

● For the global parameters perform MH to migrate clusters 
across processors
● Select a cluster ‘c’ and a processor ‘p’ 
● Propose: move ‘c’ to ‘p’
● Acceptance ratio depends on cluster size

● Can be done asynchronously in parallel without affecting
performance
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Auxiliary Variable Model for DP
● AV model (left) completely equivalent to standard DP (right)

● Intuition: open up opportunity to parallelize MCMC via model reformulation
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Correct Parallel MCMC via 
Auxiliary variable mixtures 

● Idea: Dirichlet Mixture of Dirichlet processes are Dirichlet 
processes

DP on Processor 1

DP on Processor P

Dirichlet Mixture over 
Processor DPs 1...P
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Solution II: Embarrassingly Parallel 
(but correct) MCMC [Neiswanger, et al. UAI 14]

 High-level idea:
 Run MCMC in parallel on data subsets; no communication between machines.
 Combine samples from machines to construct full posterior distribution samples.

 Objective: recover full posterior distribution

 Definitions:
 Partition data into M subsets
 Define m-th machine’s “subposterior” to be 

 Subposterior: “The posterior given a subset of the observations with an underweighted 
prior”.
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Embarassingly Parallel MCMC
 Algorithm

1. For m=1…M independently in parallel, draw samples from each subposterior
2. Estimate subposterior density product                                           (and thus the 

full posterior                 ) by “combining subposterior samples”

 “Combine subposterior samples” via nonparametric estimation
1. Given T samples                    from each subposterior :

 Construct Kernel Density Estimate (Gaussian kernel, bandwidth h):

2. Combine subposterior KDEs:

 where
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Embarassingly Parallel MCMC
 Theoretical guarantee: the nonparametric estimator generated 

by subposterior combination is consistent:

 Simulations:
 More subposteriors

= tighter estimates
 EPMCMC recovers

correct parameter
 Naïve subposterior

averaging does not!
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Outline: from sequential to parallel, 
algorithms and systems
 Optimization Algorithms

 Algorithms: 
 Stochastic gradient descent
 Coordinate descent
 Proximal gradient methods: ISTA, FASTA, Smoothing proximal gradient
 ADMM

 Data-parallel
 Model-Parallel

 Markov Chain Monte Carlo Algorithms
 Data-parallel

 Auxiliary Variable Dirichlet Process
 Embarassingly Parallel MCMC

 Distributed System Frameworks (aka, Big Learning systems)
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The systems interface of Big 
Learning
 Parallel Optimization and MCMC algorithms = “algorithmic 

interface” to Big Learning
 Reusable building blocks to solve large-scale inferential challenges in Big Data 

and Big Models

 What about the systems (hardware, software platforms) to 
execute the algorithmic interface?
 Hardware: CPU clusters, GPUs, Gigabit ethernet, Infiniband

 Behavior nothing like single machine – what are the challenges?

 Software platforms: Hadoop, Spark, GraphLab, Petuum
 Each with their own “execution engine” and unique features
 Different pros and cons for different data-, model-parallel styles of algorithms
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Why need new Big ML systems?
MLer’s view

 Focus on 
 Correctness
 fewer iteration to converge, 

 but assuming an ideal system, e.g., 
 zero-cost sync, 
 uniform local progress

for (t = 1 to T) {
doThings()

parallelUpdate(x,θ)
doOtherThings()

}

θ
θ θ

θ
θ

θ θ θ

θθ
θ θθ

Parallelize over 
worker threads

Share global model 
parameters via RAM
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Why need new Big ML systems?
Systems View:

 Focus on 
 high iteration throughput (more iter per sec)
 strong fault-tolerant atomic operations, 

 but assume ML algo is a black box
 ML algos “still work” under different execution 

models
 “easy to rewrite” in chosen abstraction

Non-uniform 
convergence 

Dynamic 
structures

Error 
tolerance 

Agonistic of ML properties and objectives in system 
design
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Synchronization model

Programming model

Shotgun with 2 machines
Single machine (shooting algorithm)

Shotgun with 4 machines flies away!
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Why need new Big ML systems?
MLer’s view

 Focus on 
 Correctness
 fewer iteration to converge, 

 but assuming an ideal system, e.g., 
 zero-cost sync, 
 uniform local progress

Oversimplify systems issues
 need machines to perform 

consistently
 need lots of synchronization
 or even try not to communicate at all

Systems View:
 Focus on 

 high iteration throughput (more iter per sec)
 strong fault-tolerant atomic operations, 

 but assume ML algo is a black box
 ML algos “still work” under different execution 

models
 “easy to rewrite” in chosen abstraction

Oversimplify ML issues and/or 
ignore ML opportunities
 ML algos “just work” without proof
 Conversion of ML algos across 

different program models (graph 
programs, RDD) is easy

for (t = 1 to T) {
doThings()
parallelUpdate(x,θ)
doOtherThings()

}
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for (t = 1 to T) {
doThings()
parallelUpdate(x,θ)
doOtherThings()

}

θ
θ θ

θ
θ

θ θ θ

θθ
θ θθ

Parallelization Strategy
ML on

epoch 1
ML on

epoch 1
ML on

epoch 2
ML on

epoch 2
ML on

epoch 3
ML on

epoch 3
ML on

epoch m
ML on

epoch m

Barrier ?

Write 
outcome to 
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Write 
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Write 
outcome to 
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Write 
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Write 
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Write 
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A Dichotomy of Data and Model 
in ML Programs

Data Parallelism Model Parallelism
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ML Computation vs. Classical 
Computing Programs 

ML Program:
optimization-centric and 
iterative convergent 

Traditional Program:
operation-centric and 
deterministic 
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Traditional Data Processing 
needs operational correctness

Example: Merge sort

Sorting 
error: 2 
after 5

Error persists and is 
not corrected
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ML Algorithms can Self-heal
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Intrinsic Properties of ML Programs

 ML is optimization-centric, and admits an iterative convergent
algorithmic solution rather than a one-step closed form solution
 Error tolerance: often robust against limited

errors in intermediate calculations

 Dynamic structural dependency: changing correlations 
between model parameters critical to efficient parallelization 

 Non-uniform convergence: parameters
can converge in very different number of steps

 Whereas traditional programs are transaction-centric, thus only 
guaranteed by atomic correctness at every step 

 How do existing platforms (e.g., Spark, GraphLab) fit the above?
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Why not Hadoop?

Naïve MapReduce not best for ML

● Hadoop can execute iterative-convergent, data-parallel ML...
o map() to distribute data samples i, compute update Δ(Di)
o reduce() to combine updates Δ(Di)
o Iterative ML algo = repeat map()+reduce() again and again

● But reduce() writes to HDFS before starting next iteration’s map() - very slow iterations!

HDFS Bottleneck
Image source: dzone.com

Iteration 1 Iteration 2
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Modern Systems for Big ML
● Just now: basic ideas of data-, model-parallelism in ML

● What systems allow ML programs to be written, executed this way?
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Spark Overview
● General-purpose system for Big Data processing

o Shell/interpreter for Matlab/R-like analytics

● MLlib = Spark’s ready-to-run ML library
o Implemented on Spark’s API
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Spark Overview
● Key feature: Resilient Distributed Datasets (RDDs)

● Data processing = lineage graph of transforms
● RDDs = nodes
● Transforms = edges

Source: Zaharia et al. 
(2012)
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Spark Overview
● Benefits of Spark:

● Fault tolerant - RDDs immutable, just re-compute from lineage
● Cacheable - keep some RDDs in RAM

o Faster than Hadoop MR at iterative algorithms
● Supports MapReduce as special case

Source: Zaharia et al. 
(2012)
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Spark: 
Faster MapR on Data-Parallel

● Spark’s solution: Resilient Distributed Datasets (RDDs)
o Input data → load as RDD → apply transforms → output result
o RDD transforms strict superset of MapR
o RDDs cached in memory, avoid disk I/O

● Spark ML library supports data-parallel ML algos, like Hadoop
o Spark and Hadoop: comparable first iter timings…
o But Spark’s later iters are much faster Source: ebaytechblog.com
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GraphLab Overview
● System for Graph Programming

o Think of ML algos as graph algos

● Comes with ready-to-run “toolkits”
o ML-centric toolkits: clustering, collaborative filtering, topic modeling, 

graphical models
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GraphLab Overview
● Key feature: Gather-Apply-Scatter API

o Write ML algos as vertex programs
o Run vertex programs in parallel on each graph node
o Graph nodes, edges can have data, parameters

Source: Gonzalez (2012)
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GraphLab Overview
● GAS Vertex Programs:

o 1) Gather(): Accumulate data, params from my neighbors + edges
o 2) Apply(): Transform output of Gather(), write to myself
o 3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Source: Gonzalez (2012)
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GraphLab Overview
● GAS Vertex Programs:

o 1) Gather(): Accumulate data, params from my neighbors + edges
o 2) Apply(): Transform output of Gather(), write to myself
o 3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Source: Gonzalez (2012)
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GraphLab Overview
● GAS Vertex Programs:

o 1) Gather(): Accumulate data, params from my neighbors + edges
o 2) Apply(): Transform output of Gather(), write to myself
o 3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Source: Gonzalez (2012)
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GraphLab Overview
● Benefits of Graphlab

o Supports asynchronous execution - fast, avoids straggler problems
o Edge-cut partitioning - scales to large, power-law graphs
o Graph-correctness - for ML, more fine-grained than MapR-correctness

Source: Gonzalez (2012)
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GraphLab: 
Model-Parallel via Graphs 

● GraphLab Graph consistency models
o Guide search for “ideal” model-parallel execution order
o ML algo correct if input graph has all dependencies

● GraphLab supports asynchronous (no-waiting) execution
o Correctness enforced by graph consistency model
o Result: GraphLab graph-parallel ML much faster than Hadoop

Source: Low et al. (2010)
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A New Framework for Large Scale Parallel 
Machine Learning
(Petuum.org)

● System for iterative-convergent ML algos
o Speeds up ML via data-, model-parallel insights

● Ready-to-run ML programs
o Earlier release: Topic Model (LDA), Deep Learning (DNN), Matrix Factorization (Collaborative 

Filtering), Lasso & Logistic Regression
o

o

● Exploit ML properties, with theoretical guarantees

Data Parallel Model Parallel
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Petuum Overview

● Key modules
o Parameter Server for data-parallel ML algos
o Scheduler for model-parallel ML algos

● “Think like an ML algo”
o ML algo = (1) update equations + (2) run those eqns in some order
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Petuum Overview

● Parameter Server
o Enables efficient data-parallelism: model parameters become global
o Special type of Distributed Shared Memory (DSM)

Petuum
-PS

UpdateVar(i) {
old = y[i]
delta = f(old)
y[i] += delta

}

UpdateVar(i) {
old = PS.read(y,i)
delta = f(old)
PS.inc(y,i,delta)

}

Single
Machine
Parallel

Distributed
with Petuum-PS

(one or more 
machines)

Worker 1 Worker 2

Worker 3 Worker 4
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Petuum Overview

● Scheduler
o Enables correct model-parallelism
o Can analyze ML model structure for best execution order
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Lots of Advanced Apps

DNN
Petuum Brain for 
mining images, videos, 
speech, text, biology

(Med)LDA
Web-scale analysis of 
docs, blogs, tweets

Regression
Linear and Logistic for 
intent prediction, 
stock/future hedging

(N)MF
Collaborative Filtering 
for recommending 
movies, products

MMTM
Societal/web-scale 
network analysis, 
community detection

SVM
General-purpose 
Classification

Ising
Model power and 
sensor grids

SIOR
Genome-wide 
association, 
stock/future hedging

ADMM
Constrained optimization 
for operations research, 
logistics management

Kalman
Kalman Filters for 
aviation control, 
dynamic system 
prediction

SC
Sparse Coding for 
web-scale, million-
class classification

Metric
Distance Metric 
Learning to boost 
large-scale 
classification
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The Science Behind …

principles, design, and theory

● Key insight: ML algos have special properties
o Error-tolerance, dependency structures, uneven convergence
o How to harness for faster data/model-parallelism?
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Petuum: ML props = 1st-class citizen

● Error tolerance via Stale Sync Parallel Parameter Server (PS)
o System Insight 1: ML algos bottleneck on network comms
o System Insight 2: More caching => less comms => faster execution

More caching (more staleness)
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Petuum: ML props = 1st-class citizen

● Harness Block dependency structure via Scheduler
o System Insight 1: Pipeline scheduler to hide latency
o System Insight 2: Load-balance blocks to prevent stragglers

Blocks in Lasso 
Regression problem

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Prioritize Params/Vars
for update

All Parameters and 
Variables

Generate Blocks

Blocks of 
variables

Check Variable 
Dependencies
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Petuum: ML props = 1st-class citizen

● Exploit Uneven Convergence via Prioritizer
o System Insight 1: Prioritize small # of vars => fewer deps to check
o System Insight 2: Great synergy with Scheduler

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Prioritize Params/Vars
for update

All Parameters and 
Variables

Generate Blocks

Blocks of 
variables

Check Variable 
Dependencies
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How to speed up 
Data-Parallelism?
 Existing ways are either safe/slow (BSP), or fast/risky (Async)

 Need “Partial” synchronicity
 Spread network comms evenly (don’t sync unless needed)
 Threads usually shouldn’t wait – but mustn’t drift too far apart!

 Need straggler tolerance
 Slow threads must somehow catch up

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4
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1

Thread 1

Thread 2

Thread 3

Thread 4

2
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6

6

???

BSP Async

Is persistent memory really necessary for ML?
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High-Performance Consistency Models
for Fast Data-Parallelism

Stale Synchronous Parallel (SSP)
• Allow threads to run at their own pace, without synchronization
• Fastest/slowest threads not allowed to drift >S iterations apart
• Threads cache local (stale) versions of the parameters, to reduce network syncing

Q. Ho, J. Cipar, H. Cui, J.-K. Kim, S. Lee, P. B. Gibbons, G. Gibson, G. R. 
Ganger and E. P. Xing. More Effective Distributed ML via a Stale 
Synchronous Parallel Parameter Server. NIPS 2013.

Iteration0 1 2 3 4 5 6 7 8 9

Thread 1 will always see
these updates

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Threshold 3

Thread 1 may not see
these updates (possible error)

Consequence:
• Asynchronous-like speed, BSP-like ML correctness guarantees
• Guaranteed age bound (staleness) on reads
• Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached
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Convergence Theorem

 Goal: minimize convex                                  
(Example: Stochastic Gradient)
 L‐Lipschitz, problem diameter bounded by F2

 Staleness s, using P threads across all machines
 Use step size

 SSP converges according to
 Where T is the number of iterations

 Note the RHS interrelation between (L, F) and (s, P)
 An interaction between theory and systems parameters

 Stronger guarantees on means and variances can also be proven

Difference between
SSP estimate and true optimum

W. Dai, A. Kumar, J. Wei. Q. Ho, G. Gibson and E. P. Xing, High-Performance Distributed ML 
at Scale through Parameter Server Consistency Models. AAAI 2015.

© Eric Xing @ CMU, 2006-2016 94



Faster convergence

Theorem: Given L-Lipschitz objective ft and step 
size ht,

where

Let observed staleness be
Let its mean, variance be                     , 

Explanation: the (E)SSP distance between true optima and 
current estimate decreases exponentially with more 
iterations. Lower staleness mean, variance      ,      improve the 
convergence rate. Because ESSP has lower       ,     , it exhibits  
faster convergence than normal SSP.
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Steadier convergence
Theorem: the variance in the (E)SSP estimate is

where

and         represents 5th order or higher terms in

Explanation: The variance in the (E)SSP parameter estimate 
monotonically decreases when close to an optimum.
Lower (E)SSP staleness        => Lower variance in parameter => 
Less oscillation in parameter => More confidence in estimate 
quality and stopping criterion.
ESSP has lower staleness than SSP => higher quality estimates
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Easy PS Programming
 Put global parameters in PS 

Examples:

 Topic Modeling (MCMC)
 Topic-word table

 Matrix Factorization (SGD)
 Factor matrices L, R

 Lasso Regression (CD)
 Coefficients β

 PS supports many classes of 
algorithms
 Above are just a few examples

L

R
PS

Topic 1
Topic 2
Topic 3
Topic 4

β

UpdateVar(i) {
old = PS.read(y,i)
delta = f(old)
PS.inc(y,i,delta)

}
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Enjoys Async Speed, But BSP 
Guarantee across algorithms 

 Massive Data Parallelism

 Effective across different algorithms

LASSO Matrix Fac.LDA
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Challenges in Model Parallelism

A huge number of parameters 
(e.g.) J = 100M

N

J

J

Model

=

b0 b1b2 b3

b4 b5

b6 b8b7 b9

b10 b11

G0

G1

• Within group – synchronous 
(i.e., sequential) update

• Inter group – asynchronous 
update
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 Concurrent updates of     may induce errors

Sync

Sequential updates Concurrent updates

Induces parallelization error

Need to check x1
Tx2

before updating 
parameters

Model Dependencies in Lasso
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How to Model-Parallel?
 Again, existing ways are either safe but slow, or fast but risky
 Need to avoid processing whole-data just for optimal 

distribution
 i.e., build expensive data representation on the whole data
 Compute all variable dependencies 

 Dynamic load balance 

???

Graph Partition Random Partition

Is full consistency really necessary for ML?
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Structure-Aware Parallelization 
(SAP)

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

 Smart model-parallel execution:
 Structure-aware scheduling
 Variable prioritization
 Load-balancing

data 
partition

model 
partition

worker

 Simple programming:
 Schedule()
 Push()
 Pull()
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Structure-aware Dynamic Scheduler 
(STRADS)

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Blocks of variables

Sync.
barrier

Sample Variables 
to be Updated ~ p(j)

Check 
Variable 

Dependency

All Variables 

Generate 
Blocks of 
Variables

STRADS

S. Lee, J.-K. Kim, X. Zheng, Q. Ho, G. Gibson, and E. P. Xing. On Model Parallelization and 
Scheduling Strategies for Distributed Machine Learning. NIPS 2014.

• Priority Scheduling

• Block scheduling  

[Kumar, Beutel, Ho and Xing, Fugue: 
Slow-worker agnostic distributed 
learning, AISTATS 2014]
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Let                                  , where P is the number of workers
Let M be the number of features
Let     be the spectral radius of X

Explanation: Dynamic scheduling ensures the gap between 
the objective at the t-th iteration and the optimal objective is 
bounded by        , which decreases as               . Therefore 
dynamic scheduling ensures convergence.

Dynamic Scheduling Leads to 
Faster Convergence 

Theorem: the difference between the STRARD estimate and the true 
optima is 
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Dynamic scheduling is close to 
ideal

Let                be  an ideal model-parallel schedule
Let           be the parameter trajectory by ideal schedule
Let          be the parameter trajectory by dynamic schedule
Let 

Explanation: Under dynamic scheduling, algorithmic progress is 
nearly as good as ideal model-parallelism. Intuitively, it is because 
both ideal and dynamic model-parallelism seek to minimize the 
parameter dependencies crossing between workers. 

Theorem: After t iterations, we have
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Faster, Better Convergence 
across algorithms 

 STRADS+SAP achieves better speed and objective
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Open research topics
● Early days for data-, model-parallelism, and other ML properties 

o New properties, principles still undiscovered
o Potential to accelerate ML beyond naive strategies

● Deep analysis of BigML systems limited to few ML algos
o Need efforts at deeper, foundational level

● Major obstacle: lack common formalism for data/model parallelism, 
partitioning, and scheduling strategies 
o Model of ML execution under error due to imperfect system?
o Model not just “theoretical” ML costs, but also system costs?
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