School of Computer Science
Carnegie Mellon

Machine Learning

10-701, Fall 2016

The Algorithm and System
Interface of Distributed Machine
Learning

Reading: see post
© Eric Xing @ CMU, 2006-2016

Machine Learning;: 022
-- a view from outside e

© Eric Xing @ CMU, 2006-2016 2

Inside ML ...

« Graphical °+ Nonparametric + Regularized « Deep Learning * Spectral/Matrix

Models Bayesian Models Bayesian Methods Large-Margin . Sparse Coding Methods ° Sparse Structured
/0 Regression

cv C:\WINDOWS\system32\cmd.exe

and current TCP/IP connections using NBT
teNamel [-A
[-RR]1 [-s]

yte machine’s name tahle
mote machir ; name tahle gi

F remote [machine] names and thei
names reso B y hro: as < via WINS
and relo:] ~em e name tahle
3 on IP addre
tion IP

nd then,. start:

Hardware and infrastructure

* Network switches + Network attached storage « Server machines + GPUs * Cloud compute - Virtual Machines
* Infiniband * Flash storage » Desktops/Laptops (e.g. Amazon EC2)
* NUMA machines

An ML Program

arg max = L({x;,yi}{, ; 0)

0

Model

|
S
!

Data Parameter

Solved by an iterative convergent algorithm

doThings ()
Q"t‘+1

}

9(

doOtherThings(

for (t =1 toT) ¢

— —

‘)gtv Af (D)>

This computation needs to be parallelized!

© Eric Xing @ CMU, 2006-2016

000
0000
o000
_ | XX
Massive Data oo
A 32 million
facebook. g 2m
1B+ USERS v mc o
30+ PETABYTES IKIPEDIA
The Free Encyclopedia
@
Youlll: twitterd
100+ hours video 645 million users

uploaded every minute 500 million tweets / day

© Eric Xing @ CMU, 2006-2016 5

Issue: When is Big Data useful? -

e Negative examples
e “Simple” regression and classification models, with fixed parameter size
e Intuition: the decrease in the variance of the estimator experiences diminishing
returns with more data. At some point, the estimator is simply “good enough” for
practical purposes, and additional data/computation is unnecessary
e Positive examples
e Topic models (used all over internet industry)
e DNNs (Google Brain, many others)
e Collaborative filtering (again, used all over internet industry)
e “Personalized” models
e Practitioners of the above usually increase model size with more data

e Conjecture: how much data is useful really depends on model
size/capacity

© Eric Xing @ CMU, 2006-2016 6

for (t = 1|teg’g @ @

Challenge #1 e es)

] doOtherThingsi)
— Massive Data Scale j °

THE INTERNET OF THINGS i (- | T

AN EXPLOSION OF CONNECTED POSSIBILITY Cl d Data Cent (35/ CAGR)
el 71, Y . oud Data Center (35%
421 BILLION ‘ :
Traditional Data Center (12% CAGR)

~
[
o
>
"
]
5
]
®
-]
]
N

BILLIONS

46%

54%

2012 2013 2014 2015 2016 2017

Source: Cisco Global Cloud
Index

Source: The Connectivist

Familiar problem: data from 50B devices, data
centers won’t fit into memory of single machine

© Eric Xing @ CMU, 2006-2016 7

Growing Model Complexity -

= Elye New JJork Eimes: Topic |\/|OC!6|S
omma orrersisera visow: wi NEWS article
= , B anal_yg.ls:
g Y FeUp to 1 Trillion

model
parameters

Google Brain
Deep Learning

for images:

1—10 Billion
model parameters

Collaborative filtering
for Video recommendation:
1—10 Billion

model

N E T |: l | x parameters

© Eric Xing @ CMU, 2006-2016 8

(Y X)

o000

o000

- 1
Issue: Are Big Models useful? -
e In theory e |In practice
e Possibly, but be careful not to e Some success stories - could

over-extend there be theory justification?

e Beware “statistical strength” e Many topics in topic models

e “When you have large e Capture long-tail effects of
amounts of data, your appetite interest; improved real-world
for hypotheses tends to get task performance

even larger. And if it's growing

faster than the statistical

strength of the data, then many ~® Many parameters in DNNs
of your inferences are likely to e Improved accuracy in vision
be false. They are likely to be and speech tasks

white noise.” —Michael Jordan e Publicly-visible success (e.g.

Google Brain)

© Eric Xing @ CMU, 2006-2016 9

for (t.= 1 tc'a:.
Challenge #2 e s)

- - - doOtherThingsi)
— Gigantic Model Size } -
Convolution Fully connected
A
-
gz:::‘ce: University of _ I
E % .)

—

—>»

Big Data needs Big Models to extract understanding
But ML models with >1 trillion params also won’t fit!

© Eric Xing @ CMU, 2006-2016 10

Issue: Inference Algorithms, or T
Inference Systems? oe

e View: focus on inference algorithm e View: focus on distributed systems
for inference

e Scale up by refining the algorithm

e Given fixed computation, finish e Scale up by using more machines

inference faster .
e Not trivial; real clusters are

imperfect and unreliable; Hadoop

e A few examples not a fix-all
e Quasi-Newton algorithms for
optimization e A few platforms
e Fast Gibbs samplers for topic e Spark
models (Yao et al. 2009, Li et al. e GraphLab
2014, Yuan et al. 2015, Zheng et P
al, 2015) e Petuum

e Locality sensitive hashing for
graphical models (Ahmed et al.
2012)

© Eric Xing @ CMU, 2006-2016 11

Issue: Theoretical Guarantees

and Empirical Performance -

View: establishing theoretical e View: empirical and industrial

consistency of estimators gives
practitioners much-needed

evidence can provide a strong
driving force for experimental

confidence research

e Motivated by empirical science, °
where guarantees are paramount

Motivated by industrial practice,
particularly at internet companies

Example: Lasso sparsistency and e Example: AB testing in industry

consistency (Wainwright 2009) o

e Theory predicts how many
samples n needed for a Lasso
problem with p dimensions and k
non-zero elements °

e Simulation experiments show very
close match with theory

e |s there a way to analyze more
complex models?

© Eric Xing @ CMU, 2006-2016

Principled experimental means of
testing new algorithms or feature
engineering; makes use of large
user base for experimentation

Can show whether an new
algorithm makes a significant
difference to click-through rate,
user adoption, etc.

12

Parallelization Strategies

New Model = Old Model +
Update(Data)

© Eric Xing @ CMU, 2006-2016

13

Parallelization Strategies

New Model = Old Model +
Update(Data)

© Eric Xing @ CMU, 2006-2016

14

Parallelization Strategies

New Model = Old Model +
Update(Data)

Tl
— ;

A A
(Ll.o_?b(Plr

mnarale

EKnowieaEE T |~ reaina

DE{D13D279Dn}

15

There Is No Ideal Distributed System! | s

e Not quite that easy...

e Two distributed challenges:
e Networks are slow f

e “ldentical” machines rarely perform equally o Né g

A AVA 7\ =
Unequal W= A/ 22
erformance ‘i'-““l“ :‘;m: ﬁw]
p = V'V = o fi
s ~hii ~miiiu 1111 01
4H N 4H 05
8000 7
. 7000 7 B Network waiting time
Low bandwidth, 6000 1 .
. = 5000 Compute time
High delay = o |
@ 3000 7
w
2000
1000
0
0 8 16 24

© Eric Xing @ CMU, 2006-2016

Issue: How to approach cece
distributed systems? -

e Idealist view e Pragmatist view
e Start with simplified view of distributed e Start with real-world, complex
systems; develop elaborate theory distributed systems, and develop a

combination of theoretical guarantees
and empirical evidence
e Issues being explored:

e Information theoretic lower bounds for _ _
communication (Zhang et al. 2013) e Issues being explored:
e Fault tolerance and recovery (Zaharia et

e Provably correct distributed .
al. 2012, Spark, Li et al. 2014)

architectures, with mild assumptions

(Langford et al. 2009, Duchi and e Impact of stragglers and delays on
Agarwal 2011) inference, and robust solutions (Ho et
al. 2013, Dai et al. 2014, Petuum, Li et
al. 2014)
¢ HO_W can We_ build practical solutions e Scheduling of inference computations
using these ideas? for massive speedups (Low et al. 2012,

GraphLab, Kim et al. 2014, Petuum)

e How can we connect these
phenomena to theoretical inference
correctness and speed?

© Eric Xing @ CMU, 2006-2016 17

Solution:

Machine Learning Models/ Algorithms

» Graphical < Nonparametric - Regularized - Sparse Structured . * Spectral/Matrix
Models Bayesian Models Bayesian Methods Large-Margin | Regression Sparse Coding Methods - Others

RN

Hardware and infrastructure

* Network switches * Network attached storage « Server machines + GPUs » Cloud compute - Virtual Machines

* Infiniband * Flash storage » Desktops/Laptops (e.g. Amazon EC2)
* NUMA machines

© Eric Xing @ CMU, 2006-2016

18

Solution: 44

An Alg/Sys INTERFACE for BigML __ °

Machine Learning Models/ Algorithms

» Graphical ¢ Nonparametric -+ Regularized - Sparse Structured _ . * Spectral/Matrix
Models Bayesian Models Bayesian Methods Large-Margin |io Regression * Sparse Coding Methods . Others

Hardware and infrastructure

* Network switches « Network attached storage * Server machines * GPUs * Cloud compute -« Virtual Machines
* Infiniband * Flash storage * Desktops/Laptops (e.g. Amazon EC2)
* NUMA machines

© Eric Xing @ CMU, 2006-2016

The Big ML “Stack” - More than i
just software :

. Degree of parallelism, convergence analysis, sub-sampl
{Q'\Theory' conglplexity P 1 } }

o~
‘Q Representation: Compact and informative features >
S’

'@'/ Model: Generic building blocks: loss functions, structures,
h— \

constraints, priors ...

aa : | Parallelizable and stochastic MCMC, VI, Opt,
4gi<Algor1thm. Ixhnunuip) B

PN | High: Matlab/R
10; Programming model & Interface: reThiy C/JAVA) __
4 Low: MPI
1‘! System: Distributed architecture: DFS, parameter server, task -
W \ scheduler. ..
PN /
1@' Hardware: GPU, flash storage, cloud ... —
h—d \

© Eric Xing @ CMU, 2006-2016

Outline: from sequential to parallel, 322
algorithms and systems o

e Optimization Algorithms

e Algorithms:
Stochastic gradient descent
Coordinate descent
Proximal gradient methods: ISTA, FASTA, Smoothing proximal gradient
ADMM

e Data-parallel
e Model-Parallel

e Markov Chain Monte Carlo Algorithms

e Data-parallel
Auxiliary Variable Dirichlet Process
Embarassingly Parallel MCMC

e Distributed System Frameworks (aka, Big Learning systems)

© Eric Xing @ CMU, 2006-2016 21

Sparse Linear Regression

]
mﬂma Hy — XBHi + AQ(P)

\ J |\ J
l l

Data fitting Regularization

Data fitting part:
- find B that fits into the data
- Squared loss, logistic loss, hinge loss, etc

Regularization part:
- induces sparsity in B.
- incorporates structured information into the model

© Eric Xing @ CMU, 2006-2016

22

Sparse Linear Regression

1
mﬁma Hy — X[i”i + AQ(P)

Examples of regularization Q(ﬁ) ;

‘[Qlasso (B) — i‘ﬂj‘ Sparsity

i QQFOUP (B) - gEZGHBgHZ where HBgHz — Z\/(ﬂj)z

7 Qtree (l}) Structured sparsity
(sparsity + structured information)
_ Qoverlap (l3)

Algorithm I: cece
Stochastic Gradient Descent ot

e Consider an optimization problem:

min E{ f(z, d)}

X

1 n
e Classical gradient descent: z!"" + z*) — gim > Vaf(z",d;)
1=1

e Stochastic gradient descent:

e Pick a random sample d,
e Update parameters based on noisy approximation of the true gradient

D 5 — 47, f(z), d;)

© Eric Xing @ CMU, 2006-2016 24

Stochastic Gradient Descent ot

e SGD converges almost surely to
a global optimal for convex problems

e Traditional SGD compute gradients based on a single
sample

e Mini-batch version computes gradients based on multiple
samples
e Reduce variance in gradients due to multiple samples

e Multiple samples => represent as multiple vectors => use vector
computation => speedup in computing gradients

© Eric Xing @ CMU, 2006-2016 25

Other usages: coce
e.d., SGD for Matrix Factorization |:

e Matrix factorization problem is given by

min A= WHT|[},+ (IWI5 + 1511)

e MF approximates A with WHT (W and H are rank-k matrices)

e SGD is shown be effective for MF [Koren and Bell, 2009].
MF SGD update rules are:

fw,gtﬂ) — wgt) — fy()\w,gt) — Rijhg-t)) R;j = Aij — w; h;

R B — (AR — Ryjw?)
e Time complexity per MF SGD iteration is O(|Q|k)

e Where Q is number of nonzero elements in matrix A

© Eric Xing @ CMU, 2006-2016 26

Parallel Stochastic Gradient

Descent

e Parallel SGD: Partition data to different workers: all workers
update full parameter vector

e Parallel SGD [zinkevich et al., 2010]

Update local copy
of ALL params

| split Input
m Data >
) Y 74

Input
Data [)

) I

Update local copy
of ALL params

aggregate

Update ALL
params

e PSGD runs SGD on local copy of params in each machine

© Eric Xing @ CMU, 2006-2016

27

Hogwild!: Lock-free approach to |32
PSGD T

e MapReduce-like parallel processing frameworks have been a
popular approach for parallel SGD

e However, MapReduce framework is not ideal for iterative
algorithms
e Difficult to express iterative algorithms in MapReduce
e Overhead for fault tolerance
e Overhead of locking or synchronization is a severe bottleneck

e Hogwild! Is a lock-free approach

e It works well when data access is sparse, i.e., a single SGD step affects only a
small number of variables

e If multi processors write a parameter at the same time, break ties at random.

© Eric Xing @ CMU, 2006-2016 28

- . 0000
Hogwild!: Lock-free approach to
L N
PSGD ol
o
e Example:
e Sparse SVM
: 2
min Z max(1 — Yo’ 24,0) + A|z|;
ack
zis input vector, and y is a label; (z,y) is an elements of E
Assume that z, are sparse
e Matrix Completion
min 0 (Auw — WoH)? + AW G + Ao |]I
’ (u,v)EE
Input A matrix is sparse
e Graph cuts
min Z Wyy ||Ty — Xy]|; subject to z, € Sp,v=1,...,n
v (u,v)EE
W is a sparse similarity matrix, encoding a graph
© Eric Xing @ CMU, 2006-2016 29

Hogwild! Algorithm -

e Hogwild! algorithm: iterate in parallel for each core
e Sample e uniformly at random from E
e Read current parameter x,; evaluate gradient of function f,
e Sample uniformly at random a coordinate v from subset e
e Perform SGD on coordinate v with small constant step size

e Atomically update single coordinate, no mem-locking
e Hogwild! takes advantage of sparsity in ML problems
e Enables near-linear speedup on various ML problems

e EXxcellent on single machines, less ideal for distributed
e Atomic update on multi-machine challenging to implement; inefficient and slow
e Delay among machines requires explicit control... why? (see next slide)

© Eric Xing @ CMU, 2006-2016

30

The cost of uncontrolled delay —
slower convergence

Theorem: Given lipschitz objective f, and step size n,, Dai et al. 2015 (AAAI)

P [Bl[r;\r] - \/1T (m:? T dag QJL%m) > r}
. o~ —T72
< exp 5 @ } %(’TL-z(QS 4 1)pT
where
RIX] = Y, fi(@) — f*)

L is a lipschitz constant, and ¢, and ¢, are the mean and variance of the delay

Intuition: distance between current estimate and optimal value decreases
exponentially with more iters — but high variance in the delay ¢, incurs
exponential penalty

Distributed systems have much higher delay variance than single machine

© Eric Xing @ CMU, 2006-2016 31

The cost of uncontrolled delay —
instability during convergence

T . : : - Dai et al. £O15 (AAAI)

heorem: the variance in the parameter estimate is

Vari4; = Vll‘t — ‘)flt(ov(x;, EA gt]) + O(neée)

where

cov(v1,v2) := E[v] vs] —E[v] |E[v,]

and O] represents 5th order or higher terms as a function of the delay ¢,

Intuition: variance of the parameter estimate decreases near the optimum, but
delay ¢, increases parameter variance => instability during convergence

Distributed systems have much higher average delay than single machine

© Eric Xing @ CMU, 2006-2016 32

PSGD with Parameter Server ot

e Parameter server allows us to parallelize SGD, consisting of

e Shared key-value store
e Synchronization scheme

e Shared key-value store provides easy interface to read/write
shared parameters

e Synchronization scheme determines how parameters are
shared among multiple workers

e Bulk synchronous parallel (e.g., Hadoop)
e Asynchronous parallel [Ahmed et al., 2012]
e Stale synchronous parallel [Ho et al., 2013]

© Eric Xing @ CMU, 2006-2016

33

PSGD with Bounded Async PS

e Stale synchronous parallel supports synchronization with
bounded staleness

e Fastest and the slowest workers are <s clocks apart

Stale Synchronous Parallel

Stal Threshold 3
aleness Thresho Thread 1 waits until

<€ I : > / Thread 2 has reached iter 4

' |
1 1 L | 4
i I I i I
I I I
Thread 2 | I | |
I I I I
I I I
Thread 3 |
I I ' I
| | I
Thread 4 E b
I I | I
’ I I - I
i } i } : } $ } } —>
0 1 2 3 4 5 6 7 8 9 Iteration

© Eric Xing @ CMU, 2006-2016 34

Faster and better convergence

~u . .. i .. . I I

Objective function versus time
LDA 32 machines (256 threads), 10% data per iter

-5.00E+08

-9 50E+08 0 500 1000 1

0 o ﬁon
-1.00E+09 /'/ /—
-1.05E+09 -
-1.10E+09 /

-1.15E+09 // /f/ —+-BSP (stale 0) |-

-1.20E+09 —
o / -B-stale 32

-1.25E+09
async
-1.30E+09 .

Seconds

Log-Likelihood

© Eric Xing @ CMU, 2006-2016

Algorithm II: HE

Coordinate Descent .

Update each regression coefficient in a cyclic manner

1st jteration

2st jteration

e Pros and cons

e Unlike SGD, CD does not involve learning rate

e If CD can be used for a model, it is often comparable to the state-of-the-art

(e.g. lasso, group lasso)
e However, as sample size increases, time for each iteration also increases

© Eric Xing @ CMU, 2006-2016

36

Example: Coordinate Descent for
Lasso

A 1
p=min_ |y - XB|, + 2|8
J

e Set a subgradient to zero:

—x?(y—XB)+/1tj =0

. Standardization
. T .
e Assuming that ijj =1, we can derive update rule:

B T B P Soft thresholding
pi = S{XJ (¥ ; XA)’ﬁ‘} S(X,A)= sign(x)(\x\ -A),

© Eric Xing @ CMU, 2006-2016 37

Parallel Coordinate Descent

e Shotgun algorithm [Bradley et al. 2011] proposed parallel
coordinate descent algorithm

e Shotgun algorithm
e Choose parameters to update at random
e Update the selected parameters in parallel
e |terate until convergence

e \When features are nearly independent, Shotgun scales
almost linearly
d

e Shotgun scales linearly up to p < 7 where p is the spectral radius of ATA
e For uncorrelated features, p=1; for gxactly correlated features p=d

© Eric Xing @ CMU, 2006-2016

38

Block-greedy Coordinate Descent |

e Block-greedy coordinate descent [Scherrer et al., 2012] extends
Greedy-CD, Shortgun, Randomized-CD

e Alg: partition p params into B blocks; iterate:

e Randomly select P blocks
e Greedily select one coordinate per P blocks
e Update each selected coordinate

e Sublinear convergence O(1/k) for separable regularizer r:

mm Z fi(x ;)

e Big-O constant depends on the maximal correlation among the B blocks

e Hence greedily cluster features (blocks) to reduce correlation

© Eric Xing @ CMU, 2006-2016 39

Parallel Coordinate Descent with | 332
Dynamic Scheduler -

e STRADS (STRucture-Aware Dynamic Scheduler) [Lee et al.,
2014] is developed to schedule concurrent updates in CD

e STRADS is a general scheduler for ML problems, applicable to CD as well as
other ML algorithms such as Gibbs sampling

e STRADS improves the performance of CD, taking advantage
of two key ideas

e Dependency checking

update parameters which have a small degree of dependency. Thus, updating nearly
independent parameters generate a small parallelization error

e Priority-based updates

schedule the frequency of parameter updates based on their contributions to the
decrease of objective function

© Eric Xing @ CMU, 2006-2016 40

Comparison: eecs
p-scheduling vs. u-scheduling oo

* Priority-based scheduling converged faster than
the baseline with random scheduling

100M features

9 machines
) R
0.2+ E
o -]
= @
§0.15- <
o)
@)
0.1+ v
0.05 . .
0 500 1000

Seconds

© Eric Xing @ CMU, 2006-2016 41

Advanced Optimization Tech.

e What if simple methods like SPG, CD are not adequate?

e Advanced techniques at hand

e Complex regularizer: PG
e Complex loss: SPG
e Overlapping loss/regularizer: ADMM

e How to parallelize them? You must understand the MATH
behind the algorithms
e Which module should be at the server
e Which module can be distributed to clients

© Eric Xing @ CMU, 2006-2016

42

- - 000
Proximal Gradient (a.k.a. forward- | 33::
backward splitting, ISTA) 4+

min f(w) + g(w)
W
e f:loss term, smooth (continuously differentiable)
e (: regularizer, non-differentiable (e.g. 1-norm)
Projected gradient Proximal gradient
g represents some constraint « g represents some simple function
0 wel * e.g., 1-norm, constraint C, etc.
g(w) =1c(w) = { ’ .
o0, otherwise
w < w —nVf(w) w < w —nVf(w) gradient
W ¢ arg min —HW —z||* + 1c(2) W ¢ argmin —Hw —z||? + g(2)
— arg I%Ig 2 511w - ZH2 proxir;lral map

© Eric Xing @ CMU, 2006-2016 43

Parallel (Accelerated) PG

e Bulk Synchronous Parallel Accelerated PG (exact)

Chen and Ozdaglar (2012, arXiv)

e Asynchronous Parallel (non-accelerated) PG (inexact)

Li et al. Parameter Server (2014, OSDI)

e General strategy:

1.

2.

3.

4.

5.

Aggregate gradients on servers

vl w' —[nV f(w')
Compute gradients on workers /} ut PZ (Vt)

Compute proximal operator on servers
Compute momentum on servers
Send result wi*! to workers and repeat

t_
with —ul + —

L+
N——

Yy

~Y

1

(u'

N

— u

t—1)

~"

momentum

e Can apply Hogwild-style asynchronous updates to non-
accelerated PG, for empirical speedup

Open question: what about accelerated PG? What happens theoretically and

empirically to accelerated momentum under asynchrony?

© Eric Xing @ CMU, 2006-2016

44

Outline: from sequential to parallel, 322
algorithms and systems o

e Optimization Algorithms

e Algorithms:
Stochastic gradient descent
Coordinate descent
Proximal gradient methods: ISTA, FASTA, Smoothing proximal gradient
ADMM

e Data-parallel
e Model-Parallel

e Markov Chain Monte Carlo Algorithms

e Data-parallel
Auxiliary Variable Dirichlet Process
Embarassingly Parallel MCMC

e Distributed System Frameworks (aka, Big Learning systems)

© Eric Xing @ CMU, 2006-2016 45

i - i
Posterior Inference Algorithms:
o0
| X
MCMC and SVI .
Markov Chain Monte Carlo: Stochastic Variational Inference:
Randomly sample each variable in sequence Gradient ascent on randomly-chosen variables
Prior Prior
& ‘ | *{ l
z J -g z
-
A {\\ A
N <K N
D D

© Eric Xing @ CMU, 2006-2016 46

A Mixed Membership Triangular Model

Q. Ho, J. Yin and E. P. Xing. On Triangular versus Edge Representations - Towards Scalable Modeling of Networks. NIPS 2012.

Role mixed-

membership vectors

0, ~ Dirichlet(a)
Sk ™~ Multinomial(ei)
BXyZ ~ Dirichlet(}\)

Ej ~ TrlangleDlstrlbutlon(B,si,jk,sj’ik,sk’ij)

—
=

®

i

\\ ////

1
Role indicators for -'

each triple (i,j,k)

.a‘

Rao-Blackwellized/Collapsed Gibbs

Sampling for inference, with 0 and B
integrated out

p(s,0,B | E,a,A) < p(6 | a)p(B | A)p(s | 0})p(E | s,B).

Observed 2/3-edge
triangular motifs

© Eric Xing @ CMU, 2006-2016

Tensor of motif

role combination

distributions for each

47

Scalable Algorithms

e Parsimonious model: with linear O(K) number of role parameters

e 0O-subsampling: down-sample neighborhood of high-degree nodes

e Stochastic algorithms: update small random subset of variables every
iteration

e More recent advancements of stochastic inference:
e Adaptive learning rate [R. Ranganath, C. Wang, D. Blei and E. P. Xing, ICML 2013]
e Variance Reduction [C. Wang, X. Chen, A. Smola and E. P. Xing, NIPS 2013]

© Eric Xing @ CMU, 2006-2016

48

Gibbs Sampling (with -

su bsam pl i ng) : [Q. Ho, J. Yin and E. P. Xing.. NIPS 2012.]

Stanford web graph, N = 280,000

e Converged in 500 Gibbs sampling iterations

e Runtime: 18 hours using one processor core

250

200

150

100

Time per iteration (s)

Figure 5: N = 281,903 Stanford web graph, MMTM 0

mixed-membership visualization.

© Eric Xing @ CMU, 2006-2016

Per-iteration runtime for MMSB and MMTM Gibbs samplers

T

f

I

—¥—MMSB
== MMTM
= MMTM 6=20

T

=W =NMMTM &=15
=x=+MMTM &=10
% MMTM 8=5

1.5 2 25

Number of vertices

000
0000
SVI: Faster & M A t 11T
. Faster ore Accurate 000
J. Yin, Q. Ho and E. P. Xing. A Scalable Approach to Probabilistic Latent Space Inference of Large-Scale : °
Networks. NIPS 2013.

—

Real Networks — Statistics, Experimental Settings and Runtime
Name | Nodes | Edges | & [2.3-Tris (for §) | Frac. 3-Tris | Roles K | Threads | Runtime (10 data passes)
Brightkite S8K | 214K | 50 3.5M 0.11 64 4 34 min |
Brightkite I Il | [[300 4 2.6h
Slashdot Feb 2009 82K | 504K | 50 0.0M 0.030 100 4 24h
Slashdot Feb 2009 [| | [[|| 300 4 6.7 h
Stanford Web 282K | 2.0M | 20 11.4M 0.57 S 4 10 min |
Stanford Web || | 50 25.0M 0.42 100 4 6.3 h
Berkeley-Stanford Web 685K | 6.6M | 30 57.6M 0.55 100 8 152h
Youtube I.LIM | 3.0M | 50 36.0M 0.053 100 8 9.1h
Stochastic VI MMSB (Gopalan et al, Gibbs MMTM (Ho et al, NIPS 2012) took
NIPS 2012) took 8 days using 4 threads 18.5 hours using 1 thread
340x speedup! 110x speedup!

© Eric Xing @ CMU, 2006-2016 50

The Need for Distributed Computation | -

e Triangular model SVI can handle 1M node networks with 100 roles
in a few hours, on just one machine

e \What if we want to analyze 10K roles in a 100M-node network?

e Memory:
e 100M * 10K = 1 trillion latent states = 4TB of RAM

e Computation:
e SVI algorithm analyzes 1M nodes and 100 roles in a few hrs on one machine
e 100M nodes and 10K roles would require 10K+ hrs on one machine, i.e. yrs!

e Need many machines to satisfy memory and computational
requirements!

© Eric Xing @ CMU, 2006-2016

51

Parallel and Distributed MCMC e

e Classic parallel MCMC solutions

e Take multiple chains in parallel, take average/consensus between chains.
But what if each chain is very slow to converge?
Need full dataset on each process — no data parallelism!

Chain on core 1 o

Tl ,",‘-a‘r B
P R

i m.ll I

f] |
e\ y 1
LV ,

W) & b . ik ‘
PR N g 1 (‘I Chain on core 2 H b et
Vo “-;," A f
]

% kl Chain on core 3
Mol |

2y A AT 4
N J p W\t J \
4§ Ml
n

Mo 10 w0 w0 @6 50 80 700 80 w0 fow B ios 20 0 400 S0 B0 700 800 90 1000

Not converged Converged

e Naively run Gibbs sampling in parallel (i.e. parallelize a single MCMC chain)
Many distributed topic model implementations do this

But Parallel Gibbs sampling does not reach stationary distribution in general - itis
incorrect! (Gonzalez et al. 2011 AISTATS)

Correct Parallel GS not possible on “collapsed” models like topic models ... what to do?

© Eric Xing @ CMU, 2006-2016

52

000
Solution I: Induced Independence via | se3¢
Auxiliary Variables ... oz oz oo

Auxiliary Variable DP Inference

o« Conditioned on the restaurant allocation, data are distributed
according to P independent Dirichlet process

o Each processor performs local collapsed Gibbs sampling on
the independent DPs

o For the global parameters perform MH to migrate clusters
dClroSS processors
o Select a cluster ‘c’ and a processor ‘p’
o Propose: move ‘c’ to p’
o Acceptance ratio depends on cluster size

o Can be done asynchronously in parallel without affecting
performance

© Eric Xing @ CMU, 2006-2016

53

Auxiliary Variable Model for DP -

o AV model (left) completely equivalent to standard DP (right)

o Intuition: open up opportunity to parallelize MCMC via model reformulation

il .
Df”DP(E'H)' J=1..F D ~DP(a, H),
O ~ Dirichlet(% %) <:> 0 ~ D,
/ z; ~ f(6i)
Ty~ O
9! ~ Dﬂ",‘

i~ f(0;), i=1,...,N.

© Eric Xing @ CMU, 2006-2016 54

Correct Parallel MCMC via

Auxiliary variable mixtures

o lIdea: Dirichlet Mixture of Dirichlet processes are Dirichlet

Processes

Dirichlet Mixture over
Processor DPs 1...P

DP on Processor P
© Eric Xing @ CMU, 2006-2016

O ~ Dirichlet(

T~ @

8

|

i

[
g
b

ooooo

55

Solution ll: Embarrassingly Parallel 0000
(bUt correCt) MCMC [Neiswanger, et al. UAI 14] :.

e High-level idea:
e Run MCMC in parallel on data subsets; no communication between machines.
e Combine samples from machines to construct full posterior distribution samples.

e Obijective: recover full posterior distribution
N
p(0|z") oc p(O)p(z™|0) = p(0) [[;=; p(z:]0)

e Definitions:
e Partition data into M subsets {33n1a . ,mnM}
1
o Define m-th machine’s “subposterior” to be P, (8) o< p(0) ™M p(x™™ |9)

Subposterior: “The posterior given a subset of the observations with an underweighted
prior”.

© Eric Xing @ CMU, 2006-2016

56

Embarassingly Parallel MCMC o

e Algorithm

1. For m=1...M independently in parallel, draw samples from each subposterior Pm

2. Estimate subposterlor density product pq-+-pas(0) o< p(B|zY) (and thus the
full poster p(8]z?Y)) by “combining subposterior samples”

e “Combine subposterior samples” via nonparametric estimation

1. Given T samples {6;* }{ _, from each subposterior Pm :

Construct Kernel Density Estimate (Gaussian kernel, bandwidth h):
T

pm(0) = = Z th(HH Vi ”) Z Ny(0167 , h?14)

tm—l tm—l

2. Combine subposterior KDEs:

M T T T
pr- pM(Q) pl _LM H Z 9|9 hZId) Octz=1mgz=1 (‘Gt _Id)

where

M M
LS o we = [Na (07160, 1212)
M m=1 m=1

© Eric Xing @ CMU, 2006-2016 57

Embarassingly Parallel MCMC o

e Theoretical guarantee: the nonparametric estimator generated
by subposterior combination is consistent:

Theorem 5.3. If h < T~/ (28+4) the mean-squared error of the estimator p1--par(0) satisfies

sup E[/ prpm(0) — prpa(6))" do| <
P1,.-.,pMEP(B,L) () T28/(28+d)

for some ¢ >0 and 0 < h < 1.

e Simulations:
e More subposteriors

= tighter estimates Seet /(B 1 - O -
e EPMCMC recovers

correct parameter

Dimension 2
*

Dimension 2
g g g g g g g

Dimension 1 Dimension 1
e Naive subposterior Subposteriors (M=10) Subposteriors (M=20)
. Posterior Posterior
averaging does not! === Subposterior Density Product === Subposterior Density Product
""" Subposterior Average ='='"' Subposterior Average

© Eric Xing @ CMU, 2006-2016 58

Outline: from sequential to parallel, 322
algorithms and systems o

e Optimization Algorithms

e Algorithms:
Stochastic gradient descent
Coordinate descent
Proximal gradient methods: ISTA, FASTA, Smoothing proximal gradient
ADMM

e Data-parallel
e Model-Parallel

e Markov Chain Monte Carlo Algorithms

e Data-parallel
Auxiliary Variable Dirichlet Process
Embarassingly Parallel MCMC

e Distributed System Frameworks (aka, Big Learning systems)

© Eric Xing @ CMU, 2006-2016 59

The systems interface of Big
Learning 4

e Parallel Optimization and MCMC algorithms = “algorithmic
interface” to Big Learning

e Reusable building blocks to solve large-scale inferential challenges in Big Data
and Big Models

e \What about the systems (hardware, software platforms) to
execute the algorithmic interface?

e Hardware: CPU clusters, GPUs, Gigabit ethernet, Infiniband
Behavior nothing like single machine — what are the challenges?

e Software platforms: Hadoop, Spark, GraphLab, Petuum
Each with their own “execution engine” and unique features
Different pros and cons for different data-, model-parallel styles of algorithms

© Eric Xing @ CMU, 2006-2016 60

Why need new Big ML systems?

MLer’s view

e Focuson
e Correctness
o fewer iteration to converge,

e but assuming an ideal system, e.g.,
e zero-cost sync,
e uniform local progress

for (t =1 toT) {
doThings()
parallelUpdate(x,0)

doOtherThings()
}

Seconds

¥

8000
7000
6000
5000
4000
3000
2000
1000

o

Parallelize ove

worker threads

© Eric Xing @ CMU, 2006-2016

Compute vs Network
LDA 32 machines (256 cores)

B Network waiting time

u Compute time

(e}
o

24 32

Share global model
parameters via RAM

61

Why need new Big ML systems? | :¢

!
0.2 -
) Shotgun with 4 machines flies away!
<— Shotgun with 2 machines
Single machine (shooting algorithm)
0.1 g 0'5
Agonistic of ML properties and objectives in system
design
/7%
mossage
Small :pd te
messags
-, Converged
variables
Non-uniform Dynamic Error
convergence structures tolerance

Systems View:

Focus on
e high iteration throughput (more iter per sec)
e strong fault-tolerant atomic operations,

but assume ML algo is a black box

e ML algos “still work” under different execution
models

e “easy to rewrite” in chosen abstraction

Synchronization model
-» np) spmpnpr
peduprpupr)
Programming model
o

© Eric Xing @ CMU, 2006-2016 62

Why need new Big ML systems? |

MLer’s view

Focus on
e Correctness
o fewer iteration to converge,

but assuming an ideal system, e.g.,
e zero-cost sync,
e uniform local progress

for (t =1 toT) {
doThings()
parallelUpdate(x,0)
doOtherThings()

}

a2)

Oversimplify systems issues

¢ need machines to perform
consistently

¢ need lots of synchronization

Q or even try not to communicate at aJ/

Systems View:

e Focuson
e high iteration throughput (more iter per sec)
e strong fault-tolerant atomic operations,

e but assume ML algo is a black box
e ML algos “still work” under different execution

models
e “easy to rewrite” in chosen abstraction
red i bed
ol bd Bt m ma) mxm) £ mmw) mcw)
= = Nmll O spepmpmpupey
) =) =) o o o ot 4

/Oversimplify ML issues andlor
ignore ML opportunities

ML algos “just work” without proof
 Conversion of ML algos across

different program models (qraph
K programs, RDD) is easy

© Eric Xing @ CMU, 2006-2016 63

Parallelization Strategy

for (t =1 to T) {
doThings()
parallelUpdate(x,0)
doOtherThings()

}

8000 1
7000
6000
5000 -
Q 4000 -
L 3000
v

2000 -

Barrier ?

conds

1000 T

/
\

© Eric Xing @ CMU, 2006-2016

P

0.2

0.1

0.5

B Network waiting time

u Compute time

64

A Dichotomy of Data and Model
in ML Programs

Data Parallelism Model Parallelism

—) Dx
(B= ® Yo = ® =

—] D>
(Ea=>(X) <> —> ® =

—— D3 A
<:==:|:> @ & ® —

s Shared -
Data Data-Parallel pjodel Shared E:;ﬁ;l :ﬂa';'t'l"“eu
Partitions Workers States Data ode

Workers States

D, 1D; | 0, Vi % j 0: X 6; | D, 3(i,)

© Eric Xing @ CMU, 2006-2016

65

ML Computation vs. Classical
Computing Programs

ML Program:
optimization-centric and
iterative convergent

© Eric Xing @ CMU, 2006-2016

Traditional Program:
operation-centric and
deterministic

66

Traditional Data Processing

needs operational correctness

Example: Merge sort
11|16 7|3 S|4

. . v
116 3|7 4|5

.

2

38

\ /

1|3]|6]7 1TEH B
'4

1[3]4]5]|6|7 Bl 8

Error persists and is

67

ML Algorithms can Self-heal

© Eric Xing @ CMU, 2006-2016

68

Intrinsic Properties of ML Programs o

e ML is optimization-centric, and admits an iterative convergent
algorithmic solution rather than a one-step closed form solution

e Error tolerance: often robust against limited
errors in intermediate calculations

e Dynamic structural dependency: changing correlations
between model parameters critical to efficient parallelization

e Non-uniform convergence: parameters

can converge in very different number of steps

e \Whereas traditional programs are transaction-centric, thus only
guaranteed by atomic correctness at every step

e How do existing platforms (e.g., Spark, GraphLab) fit the above?

© Eric Xing @ CMU, 2006-2016 69

Why not Hadoop? ",

2= {D13D23°"5Dn}-

Iteralion 1 Iteration 2

Distributed File System

Distributed File System

< Distributed File System >

Image source: dzone.com
HDFS Bottleneck

Naive MapReduce not best for ML

e Hadoop can execute iterative-convergent, data-parallel ML...
o map() to distribute data samples i, compute update A(D,)
0 reduce() to combine updates A(D)
o0 lterative ML algo = repeat map()+reduce() again and again
e But reduce() writes to HDFS before starting next iteration’s map() - very slow iterations!

© Eric Xing @ CMU, 2006-2016 70

Modern Systems for Big ML

e Just now: basic ideas of data-, model-parallelism in ML

e \What systems allow ML programs to be written, executed this way?

GraphLab% Spoﬁ(\z
“PETUUM

© Eric Xing @ CMU, 2006-2016

71

Spark Overview

e General-purpose system for Big Data processing
o Shell/interpreter for Matlab/R-like analytics

e MLIib = Spark’s ready-to-run ML library
o Implemented on Spark’s API

(machine

learning)

Apache Spark

© Eric Xing @ CMU, 2006-2016 72

Spark Overview

e Key feature: Resilient Distributed Datasets (RDDs)
e Data processing = lineage graph of transforms
e RDDs = nodes
e Transforms = edges

Source: Zaharia et al.
(2012)
© Eric Xing @ CMU, 2006-2016 73

Spark Overview S

e Benefits of Spark:
e [aulttolerant - RDDs immutable, just re-compute from lineage
e Cacheable - keep some RDDs in RAM
o Faster than Hadoop MR at iterative algorithms
e Supports MapReduce as special case

Source: Zaharia et al.
(2012)
© Eric Xing @ CMU, 2006-2016 74

Spark:
Faster MapR on Data-Parallel

e Spark’s solution: Resilient Distributed Datasets (RDDs)
o Input data — load as RDD — apply transforms — output result
o RDD transforms strict superset of MapR
o0 RDDs cached in memory, avoid disk I/O

— J— N
RDD(1 S — —
T (o))
o ™
Memo
: s € 160 - .
Input Data Resident RDD(2 RDDIn Output = x
‘ ‘ [.
HOFS Text/ | Map Iteration 1 Iteration N Map) HDFS Text/ (o] 120 Q ©
Sequence L2l L Sequence = ®~ %
i Resident Resident a © 80 4 = ©
Files Files o <
RDD(1 = 40 - -
(e8]
o -/ - 0
Memo
Reside: \ Can be spilled to disk Hadoop HadoopBM Spark
\ \ / or recreated on read Logistic Regression

e Spark ML library supports data-parallel ML algos, like Hadoop

o Spark and Hadoop: comparable first iter timings...

o But Spark’s later iters are much faster Source: ebaytechblog.com
© Eric Xing @ CMU, 2006-2016 75

GraphLab Overview

e System for Graph Programming
o Think of ML algos as graph algos

e Comes with ready-to-run “toolkits”
o ML-centric toolkits: clustering, collaborative filtering, topic modeling,
graphical models

GraphLab API (C++)
MPY/TCP-IP PThreads Hadoop/HDFS

Linux Cluster Services (Amazon AWS)

© Eric Xing @ CMU, 2006-2016 76

GraphLab Overview

e Key feature: Gather-Apply-Scatter API
o Write ML algos as vertex programs
o0 Run vertex programs in parallel on each graph node
o Graph nodes, edges can have data, parameters

. v’

Source: Gonzalez (2012)

© Eric Xing @ CMU, 2006-2016 77

GraphLab Overview

e GAS Vertex Programs:
o 1) Gather(): Accumulate data, params from my neighbors + edges
o 2) Apply(): Transform output of Gather(), write to myself
o 3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Machine 1 Machine 2

/Master
Gather A
Mirror
44 N
Mirror
Mirror

Machine 3 Machine 4 Source: Gonzalez (2012)

—

© Eric Xing @ CMU, 2006-2016 78

GraphLab Overview

e GAS Vertex Programs:
o 1) Gather(): Accumulate data, params from my neighbors + edges
o 2) Apply(): Transform output of Gather(), write to myself
o 3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Machine 1 Machine 2

Gathel Kor
:> Apply =

Machine 3 Machine 4 . Source: Gonzalez (2012)

© Eric Xing @ CMU, 2006-2016 79

GraphLab Overview

e GAS Vertex Programs:
o 1) Gather(): Accumulate data, params from my neighbors + edges
o 2) Apply(): Transform output of Gather(), write to myself
o 3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Machine 1 Machine 2

/ Master
er
Mirror
| \/

ADUILY
I]

Scatter ‘}4 f‘

Machine 3 Machine4 Source: Gonzalez (2012)

=« ATN
\Jdll |
;Lpr

—

© Eric Xing @ CMU, 2006-2016 80

GraphLab Overview

e Benefits of Graphlab
0 Supports asynchronous execution - fast, avoids straggler problems
o0 Edge-cut partitioning - scales to large, power-law graphs
o Graph-correctness - for ML, more fine-grained than MapR-correctness

Source: Gonzalez (2012)

© Eric Xing @ CMU, 2006-2016 81

GraphLab:
Model-Parallel via Graphs

e GraphLab Graph consistency models
o0 Guide search for “ideal” model-parallel execution order
o ML algo correct if input graph has all dependencies

Full Consistency ’

¢age Consistengy,

- Cons;j D
’ er St S
£ 5@“ 6

Runtime(s)

—_
o
b d

1 1 1 L L 1 L L
48 16 24 32 40 48 56 64
#Machines

10

e GraphlLab supports asynchronous (no-waiting) execution
o Correctness enforced by graph consistency model
0 Result: GraphLab graph-parallel ML much faster than Hadoop

Source: Low et al. (2010)
© Eric Xing @ CMU, 2006-2016 82

%ruum

A New Framework for Large Scale Parallel
Machine Learning

(Petuum.org)
e System for iterative-convergent ML algos t ‘?ﬂ‘cat"’
- - - - . Ekn w!edg ,_.I
0 Speeds up ML via data-, model-parallel insights -i.égﬁmegﬁégg]g’ | _
e Ready-to-run ML programs Data Parallel Model Parallel

o Earlier release: Topic Model (LDA), Deep Learning (DNN), Matrix Factorization (Collaborative
Filtering), Lasso & Logistic Regression

Latest release: Random Forest, K-means, SVM, Deep Learning (CNN), Distance Metric Learning,
Multiclass LR, Sparse Coding, Nonnegative MF, Topic Model (MedLDA)

L

e Exploit ML properties, with theoretical guarantees Séf}f*’

© Eric Xing @ CMU, 2006-2016

Petuum Overview

e Key modules

o Parameter Server for data-parallel ML algos
0 Scheduler for model-parallel ML algos

e “Think like an ML

algo”

o ML algo = (1) update equations + (2) run those egns in some order

Worker Worker PS server PS server Scheduler

[Data J [Data J [Model] [Model] [Scheduling]
Partition Partition Partition Partition Data

g o | g e et | et | ey

PS | Sched || PS | Sched Sched | 4> || Sched [4} 0 PS
Client | Client || Client | Client Client Client Client

2 & % = e o s 7

N V. IV V. &4

| parameter exchange channel |

4 v v Y

scheduling control channel

Network Layer

© Eric Xing @ CMU, 2006-2016

84

Petuum Overview

e Parameter Server

o Enables efficient data-parallelism: model parameters become global
0 Special type of Distributed Shared Memory (DSM)

Worker 1

\

Staleness Threshold 3

=
i
Thread 3 ﬁ

(-
=
U
|

Thread 4

Worker 2

| (one or more
machines)
Worker 3 Worker 4

Single
Machine
Parallel

4

Distributed
with Petuum-PS

7000

6000
w5000 |
=

=1
© 4000
“

o
“ 3000

1 2 3 4 5 6 7

+ +—>
8 lteration
© Eric Xing @ CMU, 2006-2016

Updatevar(i) {
old =
delta = f(old)

Updatevar(i) {
old = PS.read(y,1i)
delta = f(old)
PS.inc(y,i,delta)
}

¥ Network waiting time

u Compute time

2000
- I l l . .
0

85

Petuum Overview

e Scheduler
o0 Enables correct model-parallelism

o Can analyze ML model structure for best execution order

Schedule
== F‘arame(ef F‘ara.mete« Parameter
Variable/Param er server
RW

* Variabla/Param
RW

Push Pull

Finding dynamic

<3 block structures
Para meters
Variables % @ @ ‘

&? . . Re-grouping Dlspatch[ng
blocks to
workers

f)

Dynamically revising

© Eric Xing @ CMU, 2006-2016

schedule () {
// Select U vars x[]j] to be sent
// to the workers for updating
return: (k[T]y g 2 0T

}

push (worker = p, vars = (x[j_1],...,x[j_U]))
// Compute partial update z for U vars x[j]
// at worker p

return 2z

{

pull (workers = [p], vars = (x
updates = [z]) {

// Use partial updates z from workers p to

// update U vars x[j]. sync() is automatic.

(311, ..

- x[3_U])

0.2+
0]
2
9015 e
Qo Thell
S
0.1 ‘
0.05 . T
0 500 1000

86

(Med)LDA

Web-scale analysis of

docs, blogs, tweets

SVM

General-purpose

Kalman

Kalman Filters for
aviation control,
dynamic system

prediction

Lots of Advanced Apps

Regression

Linear and Logistic for

intent prediction,
stock/future hedging

Ising
Model power and
sensor grids

SC

Sparse Coding for
web-scale, million-
class classification

© Eric Xing @ CMU, 2006-2016

(N)MF
Collaborative Filtering

for recommending
movies, products

SIOR

Genome-wide
association
stock/future hedging

Metric

Distance Metric
Learning to boost

large-scale

87

The Science Behind ...

“PETUUM

principles, design, and theory

e Key insight: ML algos have special properties
o Error-tolerance, dependency structures, uneven convergence
o How to harness for faster data/model-parallelism?

© Eric Xing @ CMU, 2006-2016 88

Petuum: ML props = 1st-class citizen

e Error tolerance via Stale Sync Parallel Parameter Server (PS)
o System Insight 1: ML algos bottleneck on network comms
o System Insight 2: More caching => less comms => faster execution

8000

i M Network waiting time |
6000 - I
B 5000 - B Compute time -
=
O 4000 -
0
B 3000 -

2000 -

I e
0 - T T T T

0 8 16 24 32 40 48
More caching (more staleness)

© Eric Xing @ CMU, 2006-2016 89

Petuum: ML props = 1st-class citizen | :°

e Harness Block dependency structure via Scheduler
o System Insight 1: Pipeline scheduler to hide latency
o System Insight 2: Load-balance blocks to prevent stragglers

Check Variable
Dependencies

All Parameters and

Variables

Blocks in Lasso Generte Blocks | €— " or upcate
Regression problem

| - J J
f f)
Round 1 Round 2 Round 3 Round 4

© Eric Xing @ CMU, 2006-2016 90

Petuum: ML props = 1st-class citizen | :°

e Exploit Uneven Convergence via Prioritizer
o System Insight 1: Prioritize small # of vars => fewer deps to check
o0 System Insight 2: Great synergy with Scheduler

X

Large update

\ < message |
\/l X8 « Small update 6
X message
; Converged

\." variables

| - J J
f f)
Round 1 Round 2 Round 3 Round 4

© Eric Xing @ CMU, 2006-2016 91

How to speed up T
Data-Parallelism? '+

e Existing ways are either safe/slow (BSP), or fast/risky (Async)

e Need “Partial” synchronicity
e Spread network comms evenly (don’t sync unless needed)
e Threads usually shouldn’t wait — but mustn’t drift too far apart!

e Need straggler tolerance
e Slow threads must somehow catch up

BSP Async
-.; — s N MERY NI)))
= O e T
s) N NERp D HED HDP

Is persistent memory really necessary for ML?

© Eric Xing @ CMU, 2006-2016 92

High-Performance Consistency Models

Q. Ho, J. Cipar, H. Cui, J.-K. Kim, S. Lee, P. B. Gibbons, G. Gibson, G. R

fo r F a St D ata - P a ra I I e I i S m Ganger and E. P. Xing. More Effective Distributed ML via a Stale

Synchronous Parallel Parameter Server. NIPS 2013.

Staleness Threshold 3 - gl:; I_’ I

<€ >
[[I | EE——
o C = Depuppeded
| | |
I i Thread 1 will always see
Thread 2 | | I
I I I I these updates
I I N I
1 1 I | |:> Thread 1 may not see
Thread 4 _ : : :) I : these updates (possible error)
| | | |
i i i i i i i i i —>
0 1 2 3 4 5 6 7 8 9 Iteration

Stale Synchronous Parallel (SSP)

« Allow threads to run at their own pace, without synchronization
* Fastest/slowest threads not allowed to drift >S iterations apart
« Threads cache local (stale) versions of the parameters, to reduce network syncing

Consequence:

+ Asynchronous-like speed, BSP-like ML correctness guarantees
* Guaranteed age bound (staleness) on reads
+ Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached
© Eric Xing @ CMU, 2006-2016 93

Convergence Theorem

W. Dai, A. Kumar, J. Wei. Q. Ho, G. Gibson and E. P. Xing, High-Performance Distributed ML
at Scale through Parameter Server Consistency Models. AAAl 2015.

e Goal: minimize convex f(x) = 23, fi(x)
(Example: Stochastic Gradient)
e [L-Lipschitz, problem diameter bounded by

noisy gradient

e Staleness s, using P threads across all machines

. I R
e Usestepsize n =7 witho = —=t—m

e SSP converges according to
e Where T is the number of iterations e st = v tte + oty gradn

Difference between
SSP estimate and true optimum

—
T
Z xt)w x)<4FL\/2(5;1)

e Note the RHS interrelation between and (s, P)
e An interaction between and systems parameters

e Stronger guarantees on means and variances can also be proven

© Eric Xing @ CMU, 2006-2016 94

05

—88P
0.4} |—ESSP

0.3

Faster convergence

0.1

Soe 87654329 0

Let observed staleness be V¢ o e
Let its mean, variance be 1, = E[y], o0y = var(y)

Theorem: Given L-Lipschitz objective f, and step

[] 1 . F2 5 { — T2 }
R X B = % <
v { 1 VT (771: 7 Mbipy) 27| S P 2iiro., + $nL*(2s + 1) P

RIX] == YL, fi@) - f@) r = LRI — (1)

Explanation: the (E)SSP distance between true optima and
current estimate decreases exponentially with more
iterations. Lower staleness mean, variance 1~ , 0~ improve the
convergence rate. Because ESSP has lower 1., ,0, it exhibits
faster convergence than normal SSP.

© Eric Xing @ CMU, 2006-2016 95

05

—88P
0.4} |—ESSP

0.3

Steadier convergence

0.1
|

—qO-Q -8-7-6-5-4-3-2-1 0
Clock Differential

Theorem: the variance in the (E)SSP estimate is

Var sy = Var; — 2n.cov(xy, EA gt]) + O(neés)
+ O(n;p7) + OF,

where
cov(a,b) := Ela’b] — Ela’|E[b]

and O3, represents 5th order or higher terms in ~y;

Explanation: The variance in the (E)SSP parameter estimate
monotonically decreases when close to an optimum.

Lower (E)SSP staleness Yt => Lower variance in parameter =>
Less oscillation in parameter => More confidence in estimate
quality and stopping criterion.

ESSP has lower staleness than SSP => higher quality estimates

© Eric Xing @ CMU, 2006-2016 96

Easy PS Programming -

. [.
e Put global parameters in PS Updatevar(i) {
. & old = PS.read(y,i)
Examples: Ly S@ | delta = f(old)
. . © . i
‘\\Q%é%&z'é&} QA‘\C‘,’}@{O. 1, PS.inc(y,i,delta)
e Topic Modeling (MCMC) Y evo - -

e Topic-word table

e Matrix Factorization (SGD)
e Factor matrices L, R

e Lasso Regression (CD)
e Coefficients 3

e PS supports many classes of
algorithms

e Above are just a few examples

|||Br|||

© Eric Xing @ CMU, 2006-2016 97

Enjoys Async Speed, But BSP
Guarantee across algorithms

9.00E+08

Log-Likelihood

1.25E+09 7

1.30E+09

-1.00E+09 7

1.OSE+09 1

LI0E+09 T

1LISE+09 7

1L.20E+09 7

e Massive Data Parallelism

e Effective across different algorithms

LDA on NYtimes Dataset

LDA 32 machines (256 cores), 10% docs per iter

=*=BSP (stale 0)

“B=stale 32

“Srasync

Objc.ctiv-c

Seconds

LDA

0 200 400 600 800 1000 1200 1400 1600 1800 2000 4.80E-
9.50E+08 | t 1 1 + 1 t :
4.70E-

4.30E-

4.20E-

4.60E

4.50E-

4. 40E-

Objective function versus time

—=RSP (e 2
Lasso 16 machines (128 threads) BSI (hmh O)

“Tgtale 10

—stale 20

““stale 40

—stale 80

0 500 1000 1500 2000 2500 3000 3500 4000

Seconds

LASSO

© Eric Xing @ CMU, 2006-2016

1.40E+09

1.20E+09 -

1.00E+09 -
e
§8.00E+08 i
2 6.00E+08
o

4,00E+08 |

2.00E+08 -

Objective function versus time
MF 32 machines (256 threads)

“stale 7

“#=BSP (stale 0)

0.00E+00 -

0 500 1000 1500

Seconds

Matrix Fac.

98

2000

Challenges in Model Parallelism -

min ly — X5, +A) |5
J

.

* Within group — synchronous
J (i.e., sequential) update
A huge number of parameters) Intzrtgroup - asynchronous
(e.g.) J = 100M update

© Eric Xing @ CMU, 2006-2016 99

Model Dependencies in Lasso 4+

e Concurrent updates of ﬁnay iInduce errors

Sequential updates

b

v

B

Concurrent updates

b1

b1

(t)

FS(X1Y_

B2

B2

Induces parallelization error

7”7

Need to check x,™x,
before updating
parameters

XlTXQBg_l), A)

© Eric Xing @ CMU, 2006-2016

100

How to Model-Parallel? ot

e Again, existing ways are either safe but slow, or fast but risky

e Need to avoid processing whole-data just for optimal
distribution

e i.e., build expensive data representation on the whole data
e Compute all variable dependencies

e Dynamic load balance
Graph Partition Random Partition

B

21
= ?7?°?
A

Is full consistency really necessary for ML?

Graphlab

© Eric Xing @ CMU, 2006-2016 101

Structure-Aware Parallelization 34
(SAP) °°

data
partition

model schedule () {
// Select U vars x[j] to be sent
// to the workers for updating

partition

worker s) .
return (x[Jj_ 1]y vy X7 Ul
}
data push (worker = p, vars = (x[j_11,...,x[3_U1)) {
partition

// Compute partial update z for U vars x[j]
// at worker p

return z

model
partition }
7 pull (workers = [p], vars = (x[j_1),...,x[]j_Ul)]
worker updates = [z]) {
_ // Use partial updates z from workers p to
// update U vars x[j]. sync() is automatic.
data)
partition
m— 0 Smart model-parallel execution: U Simple programming:
partition O Structure-aware scheduling U Schedule()
U Variable prioritization U Push()
worker 0 Load-balancing Q Pull()

© Eric Xing @ CMU, 2006-2016 102

000
- 0000
Structure-aware Dynamic Scheduler eocs
(ST R A D S) S. Lee, J-K. Kim, X. Zheng, Q. Ho, G. Gibson, and E. P. Xing. On Model Parallelization and : o
Scheduling Strategies for Distributed Machine Learning. NIPS 2014.
STRADS
Check ‘ All Variables \ * Priority Scheduling
Variable
Dependency
! Y e
Generate Sample Variables {ﬁﬂ} ~ (553()> aa
Blocks of [€ -
Variables to be Updated ~ P(])
T S———

* Block scheduling

Blocks of variables

&

V3

Worker 1 —

P Sync.

N barrier
Worker 2 :>

: !
Worker 3 '::> Us i
[[Kumar, Beutel, Ho and Xing, Fugue:

::> Slow-worker agnostic distributed

Worker 4 L learning, AISTATS 2014]
: >
Round 1 Round 2 Round 3 Round 4

© Eric Xing @ CMU, 2006-2016 103

Dynamic Scheduling Leads to
Faster Convergence

Lete— (P — 1]\)4(,0— 1)

Let M be the number of features

Let P be the spectral radius of X

<1, where P is the number of workers

Theorem: the difference between the STRARD estimate and the true
optima is

t . CM 1 1
E[F(ﬁ())—F(ﬁ)] P(l—e)t_O<P't>

IN

Explanation: Dynamic scheduling ensures the gap between
the objective at the t-th iteration and the optimal objective is
bounded by (=), which decreases as t — 00. Therefore
dynamic scheduling ensures convergence.

© Eric Xing @ CMU, 2006-2016

Dynamic scheduling is close to T
ideal 4+

Let S’ideal() be an ideal model-parallel schedule

Let 5@deal be the parameter trajectory by ideal schedule

Let 5§2n be the parameter trajectory by dynamic schedule

Let M oc JPL?

Theorem: After t iterations, we have

©) 0 2M

T
Hﬁideal dynH (t_|_1)2X X

Explanation: Under dynamic scheduling, algorithmic progress is
nearly as good as ideal model-parallelism. Intuitively, it is because
both ideal and dynamic model-parallelism seek to minimize the
parameter dependencies crossing between workers.

© Eric Xing @ CMU, 2006-2016 105

00
0000
Faster, Better Convergence eecs
n o0
across algorithms o
e STRADS+SAP achieves better speed and objective
100M features 80 ranks v i
025 9machines 2.5*,,,,,,,,,,,,,,,,,,,,,,,,,?,,T,?,Chines e 2.5M320;zt2h?r:<et30p °s
—STRADS —STRADS :
---Lasso-RR . ---GraphLab
0.2 * 3
}Z’;o 15- E:,
: L
> - —STRADS
---YahoolLDA
0.05 T T 0.5 T T T -3.5-F T T T T T
0 500 1000 0 50 100 150 0 1 2 3 4 5
Seconds Seconds Seconds X 104
Lasso MF LDA

© Eric Xing @ CMU, 2006-2016 106

Open research topics o

e Early days for data-, model-parallelism, and other ML properties
o New properties, principles still undiscovered
o Potential to accelerate ML beyond naive strategies

e Deep analysis of BigML systems limited to few ML algos
o0 Need efforts at deeper, foundational level

e Major obstacle: lack common formalism for data/model parallelism,
partitioning, and scheduling strategies
0 Model of ML execution under error due to imperfect system?
0 Model not just “theoretical” ML costs, but also system costs?

© Eric Xing @ CMU, 2006-2016 107

