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Abstract

We present a general framework for discriminative estimation based on the maximum en-
tropy principle and its extensions. All calculations involve distributions over structures and/or
parameters rather than speci�c settings and reduce to relative entropy projections. This holds
even when the data is not separable within the chosen parametric class, in the context of anoma-
ly detection rather than classi�cation, or when the labels in the training set are uncertain or
incomplete. Support vector machines are naturally subsumed under this class and we provide
several extensions. We are also able to estimate exactly and eÆciently discriminative distri-
butions over tree structures of class-conditional models within this framework. Preliminary
experimental results are indicative of the potential in these techniques.

1 Introduction

E�ective discrimination is essential in many application areas including speech recognition, im-
age classi�cation or identi�cation of molecular binding sites in genomic DNA. Statistical approaches
used in these contexts for classi�cation generally fall into two major categories { generative or dis-
criminative { depending on the estimation criterion used for adjusting the model parameters and/or
structure. Generative approaches rely on a full joint probability distribution over examples and clas-
si�cation labels whereas for discriminative methods only the conditional relation of a label given the
example is relevant. While the full joint distribution in the generative approach carries a number of
advantages e.g. in handling incomplete examples, the typical estimation criterion (maximum likeli-
hood or its variatiants) is nevertheless suboptimal from the point of view of classi�cation objective.
Discriminative methods such as support vector machines [21] or boosting algorithms [8] that focus
directly on the parametric decision boundary typically yield more robust classi�cation methods,
whenever they are applicable.

Full joint distributions and the bene�ts they convey can be, of course, exploited in discriminative
approaches as well. We may, for example, interprete the posterior probability of a label given the
example as a parametric decision boundary (see e.g. [10, 13]). Alternatively, we can induce suitable
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vector space representations for examples from generative models and feed such representations into
standard discriminative techniques [11].

In this paper we provide a more general notion of discrimination, one that applies also in the
contex of anomaly detection or when the classi�cation labels themselves are uncertain or missing.
Note that the utility of e.g. unlabeled examples is not obvious [22, 2, 4, 18]. Our approach towards
general discriminative training relies on the well known maximum entropy principle which embodies
the Bayesian integration of prior information with observed constraints (see e.g. [15]). The formalism
that we apply and extend in this paper allows, for example, a feasible discriminative training of both
the parameters and the structure of a class of joint probability models. The approach is not limited
to probability models, however, and we extend e.g. support vector machines.

2 Maximum entropy classi�cation

Consider �rst a two-class classi�cation problem where labels y 2 f�1; 1g are assigned to examples
X 2 X . Assume we have two class-conditional probability distributions over the examples, i.e.,
P (X j�y) with parameters �y, one for each class. The decision rule corresponding to any particular
parameter setting f��1g follows the sign of the discriminant function:

L(X j�) = log
P (X j�1)

P (X j��1)
+ b (1)

where � = f�1; ��1; bg and b is a bias term, usually expressed as a log-ratio of prior class probabilities
b = log p=(1 � p) . The class-conditional distributions here may come from di�erent families of
distributions or we might specify the parametric discriminant function directly without any reference
to probability models. The parameters �y may also include the model structure as seen later in the
paper.

The parameters � = f�1; ��1; bg in the discriminant function should be chosen to maximize
classi�cation accuracy. Instead of �nding a single parameter setting, we consider here a more
general problem of �nding a distribution P (�) over the parameters and using a convex combination
of discriminant functions, i.e., Z

P (�)L(X j�)d� (2)

in place of the original discriminant function in the decision rule. The problem is now to �nd an
appropriate distribution P (�). Given a set of training examples fX1; : : : ; XT g and corresponding
labels fy1; : : : ; yT g we seek for a distribution P (�) that makes the least assumptions about the choice
of the parameter values � while giving rise to a discriminant function that correctly separates the
training examples. We can formalize this as a maximum entropy (ME) estimation problem. In other
words, we maximize the entropy H(P ) of P subject to the classi�cation constraintsZ

P (�) [ yt L(Xtj�) ] d� � 
 (3)

for all t = 1; : : : ; T . Here 
 speci�es a desired classi�cation margin. We note that the solution is
unique (provided that it exists) since H(P ) is concave and the linear constraints specify a convex
region. Note that the preference towards high entropy distributions (fewer assumptions) applies
only within the admissible set of distributions P
 consistent with the classi�cation constraints.

We can readily extend this formulation to a multi-class setting by introducing additional clas-
si�cation constraints. To see this, suppose we have instead m class-conditional probability models
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P (X j�y), y = 1; : : : ;m, prior class frequencies fpyg, and the associated pairwise discriminant func-
tions

Ly;y0(Xtj�) = log
P (X j�y)

P (X j�y0)
+ log

py
py0

(4)

where � = f�1; : : : ; �m; p1; : : : ; pmg. We may now replace the single constraint per training example
in eq. (3) with the following m� 1 pairwise constraintsZ

P (�) [Lyt;y(Xtj�) ] d� � 
; y 6= yt; (5)

to ensure that the training label yt always \wins" the competition against the alternative labels
y 6= yt. For notational simplicity we will consider primarily only binary classi�cation problems in
the remainder of the paper but emphasize that the analogous extension to a multi-class setting can
be made.

The overall ME formulation presented so far has several problems. We have, for example, made
a tacit assumption that the training examples can be separated with the speci�ed margin. This
assumption may very well be violated in practice. Moreover, we may have a prior reason to prefer
some parameter values over others (as well as margin constraints) which requires us to incorporate a
prior distribution P0(�; 
) into the de�nition. Other extensions and generalizations will be discussed
later in the paper.

A more general formulation that addresses these concerns is given by the following minimum
relative entropy principle:

De�nition 1 Let fXt; ytg be the training examples and labels, L(X j�) a parametric discriminant
function, and 
 = [
1; : : : ; 
t] a set of margin variables. Assuming a prior distribution P0(�; 
), we
�nd the discriminative minimum relative entropy (MRE) distribution P (�; 
) by minimizing

D(PkP0) =

Z
P (�; 
) log

P (�; 
)

P0(�; 
)
d� (6)

subject to the (soft) classi�cation constraintsZ
P (�; 
) [ yt L(Xtj�)� 
t] d�d
 � 0 (7)

for all t. The decision rule for any new example X is given by

ŷ = sign

� Z
P (�) L(X j�) d�

�
(8)

Let us make a few remarks about the de�nition. First, we can recover the previous ME formula-
tion by appropriately adjusting the prior distribution P0(�; 
) (e.g., if P0(
) peaks around a speci�c
setting of the margins). It is clear that the margin constraints are hidden in the prior distribution
P0(
). Second, if we assume that there is a non-zero prior probability for all 
t taking some negative
values, we guarantee that the admissible set P composed of all distributions P (�; 
) consistent with
the classi�cation constraints, is never empty. Thus even when the examples cannot be separated
by any discriminant function in the chosen parametric class (e.g. linear), we get a valid and unique
solution. Third, the penalty for violating any of the margin constraints also depends on the prior
distribution P0; whenever the mean of 
t deviates from its prior mean under P0, we incur a penalty
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Figure 1: Minimum relative entropy (MRE) projection from the prior distribution to the admissible
set.

in the form of relative entropy distance between the corresponding distributions. It is worth noting
that the penalties are de�ned in terms of joint speci�cations of margins but, in certain cases, they
reduce to the more typical additive penalties of violating the constraints.

The prior P0(�; 
) playes an important role in our de�nition and we must choose it appropriately.
Let us consider here only the prior over the margin constraints 
. Supposing again that P0(�; 
) =
P0(�)P0(
), we can, for example, set

P0(
) =
Y
t

P0(
t) (9)

where P0(
t) = c e�c(1�
t), for 
t � 1. A penalty is incurred for margins smaller than 1� 1=c (the
prior mean of 
t) while margins larger than this are not penalized. In the latter case, the associated
constraint becomes merely irrelevant. We will see in later sections that this choice of the margin
prior corresponds closely to the use of slack variables and additive penalties used in support vector
machines. A number of other choices for P0(
) are possible and we discuss some of them later in
the paper.

An important property of the MRE solution is that it can be viewed as a relative entropy
projection, the e-projection in the terminology of [1], from the prior distribution P0(�; 
) to the
admissible set P . Figure 1 illustrates this view. Even in the non-separable case, we can view the
MRE solution as a projection. This formalism readily extends to the case of uncertain or partially
labeled examples as we will see later in the paper.

To solve the MRE problem, we rely on the following theorem.

Theorem 1 The solution to the MRE problem has the following general form (cf. [7]):

P (�; 
) =
1

Z(�)
P0(�; 
) e

P
t
�t[ ytL(Xtj�)�
t] (10)

where Z(�) is the normalization constant (partition function) and � = f�1; : : : ; �T g de�nes a set
of non-negative Lagrange multipliers, one for each classi�cation constraint. � are set by �nding the
unique maximum of the following jointly concave objective function:

J(�) = � logZ(�) (11)

Whether the MRE solution can be found in a feasible way depends entirely on whether we can
evaluate the partition function Z(�),

Z(�) =

Z
P0(�; 
) e

P
t
�t[ ytL(Xtj�)�
t] d�d
 (12)
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in closed form. Given a closed form expression for Z(�), the maximum of the jointly concave ob-
jective function J(�) can be subsequently found through any standard convex optimization method
such as Newton-Raphson. The resulting set of Lagrange multipliers f�tg then de�ne the MRE
solution as indicated in the theorem. Finally, predicting a label for any new example X involves av-
eraging the discriminant function L(�) with respect to the marginal P (�) of the MRE distribution
(see De�nition 1). Finding this marginal as well as performing the required averaging are no more
costly than computing Z(�). We will elaborate these calculations further in the context of speci�c
realizations.

The MRE solution is sparse in the sense that only a few Lagrange multipliers will be non-zero.
This arises because many of the classi�cation constraints become irrelevant once the constraints are
enforced for a small subset of examples. For support vector machines that are subsumed under the
above general de�nition, this notion translates into a sparse representation of the separating hyper-
plane. Sparsity leads to immediate generalization guarantees (independent of the dimensionality of
the parameter or example space):

Lemma 1 The generalization error �g of the MRE classi�er satis�es

eg � Ef fraction of non-zero Lagrange multipliers g (13)

where the expectation is over the choice of the training set.

Practical leave-one-out cross-validation estimates of the generalization error can be derived on
the basis of this result (cf. [21, 12]). We may also make use of generalization error results derived
for convex combination of classi�ers [20] to obtain more informative generalization bounds for MRE
classi�ers. The details are left for another paper.

3 Practical realization of the MRE solution

We now turn to the question of actually �nding the MRE solution. Consider �rst the following
elementary but helpful lemma

Lemma 2 Any factorization of the prior P0(�; 
) across any disjoint sets of variables f�; 
g leads
to a disjoint factorization of the MRE solution P (�; 
) across the same sets of variables provided
that these variables appear in distinct additive components in ytL(Xt;�)� 
t.

If we assume that the labels fytg are �xed and that the prior distribution P0(�; 
) factorizes
across the components f�nb; b; 
g, then according to the lemma, the MRE solution factorizes in the
same way. This factorization property allows us to eliminate e.g. the bias term from the remaining
solution by means of imposing additional constraints on the Lagrange multipliers. This is analogous
to the handling of the bias term in support vector machines [21]:

Lemma 3 Assuming P0(�; 
) = P0(� n b; 
)P0(b) and P0(b) approaches a non-informative prior,
then P (�; 
) = P (� n b; 
)P (b) and P (� n b; 
) can be found independently from P (b) provided that
we require

P
t �tyt = 0.

With the help of these results, we will consider now a few speci�c realizations such as support
vector machines and a class of graphical models.
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Figure 2: Three margin prior distributions (top row) and the corresponding potential terms (bottom
row) from Eq. (15).

3.1 Support vector machines

It is well known that the log-likelihood ratio of two Gaussian distributions with equal covariance
matrices yields a linear decision rule. With a few additional assumptions, the MRE formulation
gives support vector machines:

Theorem 2 Assuming L(X;�) = �TX�b and P0(�; 
) = P0(�)P0(b)P0(
) where P0(�) is N(0; I),
P0(b) approaches a non-informative prior, and P0(
) is given by eq. (9) then the Lagrange multipliers
� are obtained by maximizing J(�) subject to 0 � �t � c and

P
t �tyt = 0, where

J(�) =
X
t

[�t + log(1� �t=c) ]�
1

2

X
t;t0

�t�t0ytyt0(X
T
t Xt0) (14)

The only di�erence between our J(�) and the (dual) optimization problem for SVMs is the
additional potential term log(1� �t=c). This highlights the e�ect of the di�erent miss-classi�cation
penalties, which in our case come from the MRE projection. Figures 2a) and c) show, however,
that the additional potential term does not always carry a huge e�ect (for c = 5). Moreover, in the
separable case, letting c!1, the two methods coincide. The decision rules are formally identical.

The choice of the prior distribution P0(
) leads to di�erent potential terms. Figure 2 gives the
following priors and their corresponding potential terms

Margin prior Dual potential term

a) P0(
) / e�c (1�
); 
 � 1; �t + log(1� �t=c)

b) P0(
) / e�c j1�
j; �t + 2 log(1� �t=c)

c) P0(
) / e�c
2 (1�
)2=2; �t � (�t=c)

2

(15)

where a) is the case discussed in the theorem. Note that the resulting potential terms may or may
not set an upper bound on the value of �t. In a) and b) �t is bounded by the constant c whereas
in c) no such bound exists.
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3.1.1 Extension

We now consider the case where the discriminant function L(X;�) corresponds to the log-
likelihood ratio of two Gaussians with di�erent (and adjustable) covariance matrices. The parame-
ters � in this case are both the means and the covariances. The prior P0(�) must be the conjugate
Normal-Wishart to obtain closed form integrals1 for the partition function, Z. Here, P (�1;��1)
is P (m1; V1)P (m�1; V�1), a density over means and covariances (and the factorization follows from
our assumptions below).

The prior distribution has the form P0(�1) = N (m1;m0; V1=k) IW(V1; kV0; k) with parameters
(k, m0, V0) that can be speci�ed manually or one may let k ! 0 to get a non-informative prior. We
used the MAP values for k, m0 and V0 from the class-speci�c data2. Integrating over the parameters
and the margin, we get a partition function which factorizes Z = Z
 �Z1 �Z�1. For Z1 we obtain
the following:

Z1 / N
�d=2
1 j�S1j

�N1=2 �d
j=1�

�
N1 + 1� j

2

�
(16)

N1
�
=
P

t wt
�X1

�
=
P

t
wt
N1
Xt S1

4
=
P

t wtXtX
T
t �N1

�X1
�XT
1

(17)

Here, wt is a scalar weight given by wt = u(yt) + yt�t for Z1. To solve for Z�1 we proceed in a
similar manner with the exception that the weights are set to wt = u(�yt) � yt�t. u(�) here is the
step function. Given Z, updating � is done by maximizing the corresponding negative log-partition
function J(�) subject to 0 � �t � c and

P
t �tyt = 0 where:

J(�) =
X
t

[l��t + log(1� �t=c)]� logZ1(�t)� logZ�1(�t) (18)

The potential term above corresponds to integrating over the margin with a margin prior P0(
) /
e�c(l��
) with 
 � l�. We pick l� to be some �-percentile of the margins obtained under the standard
MAP solution. Optimal lambda values are found via constrained gradient descent. The resulting
marginal MRE distribution over the parameters (normalized by the partition function Z1�Z�1) is
a Normal-Wishart distribution itself, P (�1) = N (m1; �X1; V1=N1) IW(V1;S1; N1) with the �nal �
values. Predicting the labels for a data point X under the �nal P (�) involves taking expectations
of the discriminant function under a Normal-Wishart. This is simply:

EP (�1)[logP (X j�1)] = constant�
N1

2
(X � �X1)

TS�1
1 (X � �X1) (19)

We thus obtain discriminative quadratic decision boundaries. These extend the linear boundaries
without (explicitly) resorting to kernels. Of course, kernels may still be used in this formalism,
e�ectively mapping the feature space into a higher dimensional representation. However, unlike
linear discrimination, the covariance estimation in this framework allows the model to adaptively
modify the kernel.

3.1.2 Experiments

In the following, we show results using the minimum relative entropy approach where the dis-
criminant function (L(X;�)) is the log-ratio of Gaussians with variable covariance matrices on
standard 2-class classi�cation problems (Leptograpsus Crabs and Breast Cancer Wisconsin). In

1This can be done more generally for conjugate priors in the exponential family.
2The prior here is the posterior distribution over the parameters given the data, i.e. an empirical Bayes procedure.
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Method Training Testing
Errors Errors

Neural Network (1) 3
Neural Network (2) 3
Linear Discriminant 8
Logistic Regression 4
MARS (degree = 1) 4
PP (4 ridge functions) 6
Gaussian Process (HMC) 3
Gaussian Process (MAP) 3
SVM - Linear 5 3

SVM - RBF � = 0:3 1 18

SVM - 3rd Order Polynomial 3 6

Maximum Likelihood Gaussians 4 7

MaxEnt Discrimination Gaussians 2 3

Table 1: Leptograpsus Crabs
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Figure 3: ROC curves on Leptograpsus Crabs for discriminative (solid line), Bayes / ML models
(dashed line) and SVM linear models (dotted line).

addition we display a two-dimensional visualization example of the classi�cation. Performance is
compared to regular support vector machines, maximum likelihood estimation and other methods.

The Leptograpsus crabs data set was originally provided by Ripley [19] and further tested by
Barber and Williams [3]. The objective is to classify the sex of the crabs from 5 scalar anatomical
observations. The training set contains 80 examples (40 of each sex) and the test set includes 120
examples.

The Gaussian based decision boundaries are compared in Table 1 against other models from[3].
The table shows that the maximum entropy (or minimum relative entropy) criterion improves the
Gaussian discrimination performance to levels similar to the best alternative models. The bias was
estimated separately from training data for both the maximum likelihood Gaussian models and the
maximum entropy discrimination case. In addition, we show the performance of a support vector
machine (SVM) with linear, radial basis and polynomial decision boundaries (using the Matlab
SVM Toolbox provided by Steve Gunn). In this case, the linear SVM is limited in 
exibility while
kernels exhibit some over-�tting.

In Figure 3 we plot the ROC curves on training and testing data. The ROC curve shows improved
classi�cation for maximum entropy (minimum relative entropy) case.
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Method Training Testing
Errors Errors

Nearest Neighbour 11
SVM - Linear 8 10

SVM - RBF � = 0:3 0 11

SVM - 3rd Order Polynomial 1 13

Maximum Likelihood Gaussians 10 16

MaxEnt Discrimination Gaussians 3 8

Table 2: Breast Cancer Classi�cation
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Figure 4: ROC curves on Breast Cancer for discriminative (solid line), Bayes / ML models (dashed
line) and SVM linear models (dotted line).

Another data set which was tested was the Breast Cancer Wisconsin data where the two classes
(malignant or benign) have to be computed from 9 numerical attributes from the patients (200
training cases and 169 test cases). The data was �rst presented by Wolberg [24]. We compare our
results to those produced by Zhang [25] who used a nearest neighbour algorithm to achieve 93:7%
accuracy. As can be seen from Table 2, over-�tting seems to prevent good performance for kernel
based SVMs. The maximum entropy discriminator achieves 95:3% accuracy.

In Figure 4 we plot the ROC curves on training and testing data. The training ROC curves
show improved discrimination for the maximum entropy method. ROC curves for all three methods
are equivalent on testing however since we typically assume that bias is estimated exclusively from
training data, the results in Table 2 are more signi�cant.

Finally, for visualization, we present the technique on a 2D set of training data in Figure 5 and
Figure 6. The SVM in Figure 5(a) attempts to achieve maximum descrimination but is limited to a
linear decision boundary. It only succeeds after the application of a kernel as in Figure 5(b), where
a 3rd order polynomial kernel is used. In Figure 6(a), the maximum likelihood technique is used
to estimate a 2 Gaussian discrimination boundary (bias is estimated separately) which has more

exibility than the linear SVM yet fails to achieve the desired optimal classi�cation. Meanwhile,
the maximum entropy discrimination technique places the Gaussians in the most discriminative
con�guration as shown in Figure 6(b).
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(a) Linear SVM (b) Polynomial Kernel SVM

Figure 5: Classi�cation visualization SVMs.

(a) Max Likelihood (b) Max Ent Discrimination

Figure 6: Classi�cation visualization for Gaussian discrimination.

3.2 The Fisher kernel classi�er

Here we demonstrate that the MRE formulation proposed in this paper contains the Fisher kernel
method of [11]. The Fisher kernel method provides a combination of a generative model P (X j�)
with a discriminative method such as support vector machines through de�ning an appropriate
kernel function. The kernel function, called the Fisher kernel, can be computed from any generative
model in the neighborhood of some desired e.g. maximum likelihood parameter setting ��. The
Fisher kernel function is given by

Kfk(X;X
0) = UX(�

�)T F (��)�1 UX0(��) (20)

where UX(�) is the Fisher score

UX(�) = r� logP (X j�)j�=�� ; (21)
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F (�) = EfUX(�)UT
X(�) g is the Fisher information matrix3 and the expectation is with respect to

P (X j�). Replacing the inner product XT
t Xt0 between the examples in Theorem 2 with the kernel

function in Eq. (20) amounts to the \simple" Fisher kernel method as explained in [11].
Our goal in this section is to show that we can recover the Fisher kernel method in the MRE

framework so long as the prior distribution P0(�; 
) is chosen in an appropriate way. We start with a
few necessary regularity assumptions about the family of distributions P (X j�) in some small (open)
neighborhood O(��) of ��:

1. for any X 2 X , UX(�) = r� logP (X j�) is a continuously di�erentiable vector valued function
of �

2. F (�) = EfUX(�)UT
X(�) g exists and is positive de�nite

Let us de�ne, in addition, the di�erential (symmetric) relative entropy distance between the
distributions P (X j�) and P (X j��)

d(�; ��)2 =
1

2
(� � ��)T F (��)�1 (� � ��) (22)

valid whenever � � ��. We assign a prior distribution P0(�) in terms of this distance4

P0(�) =
1

Z(��; �)
e�� d(�;�

�)2 (23)

where � serves as a scaling parameter. This prior assigns a low probability to all � for which the
corresponding probability distribution P (X j�) deviates signi�cantly from P (X j��). Another way to
view this prior is as a local isotropic Gaussian prior distribution in the probability manifold induced
by the family of distributions P (X j�), � 2 O(��).

In the MRE formalism the objective is to minimize the relative entropy distance between the
MRE distribution P and the prior P0 subject to the classi�cation constraintsZ

P (�; 
) [ ytL(Xtj�; �)� 
t ] d�d
 � 0 (24)

where the discriminant function L(Xtj�; �) is the scaled log-likelihood ratio:

L(Xtj�; �) = [�1=2 log
P (Xtj�)

P (Xtj��)
� b ] (25)

and � = f�; bg. This discriminant function encourages parameter values � that are indicative of the
+1 class relative to the \null model" P (Xtj��).

The following Theorem now establishes the desired connection to the Fisher kernel method.

Theorem 3 If we replace P0(�) with Eq. (23) in Theorem 2 and the discriminant function with
L(Xtj�; �) de�ned above as well as let � !1, then the objective function J(�) reduces to

J(�) =
X
t

[�t + log(1� �t=c) ]�
1

2

X
t;t0

�t�t0ytyt0Kfk(Xt; Xt0) (26)

where Kfk(Xt; Xt0) is the Fisher kernel of Eq. (20).

We note that this result is merely a formal relation between the MRE principle and the Fisher
kernel and does not necessarily provide any additional motivation.

3For many probability distributions the Fisher information matrix may not be possible to compute in closed form.
However, it is the covariance matrix of the Fisher scores and thus can be easily approximated by sampling.

4A more precise de�nition of this prior would involve setting it to zero outside the open neighborhood where the
regularity conditions may no longer hold. For large �, the e�ect of this condition vanishes and we omit it here for
simplicity.
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3.3 Graphical models

The MRE formulation can accomodate discriminant functions resulting from log-ratios of general
graphical models. The MRE distribution, i.e. P (�), in this setting is over both the parameters
and the structure of the model. Since the estimation is carried out in the space of distributions
the distinction between discrete or continuous variables is immaterial. The framework does not,
however, admit eÆcient solutions without restrictions on the class of graphical models. For example,
assuming the structure remains �xed and that the class-conditional models have no latent variables,
then the MRE distribution P (�) over the parameters can be obtained eÆciently. This requires
additional technical assumptions such as the use of conjugate priors, the parameter independence
assumption of [6] and the fact that the probability model must be tractable for any �xed setting
of the parameters. Although restricted, this class does include e.g. naive Bayes models, mixture of
tree models and so on.

For a special class of graphical models whose structure is a tree, both the parameters and the
structure can be estimated eÆciently within our discriminative framework. In the remainder, we
will consider such tree structured models.

First, we de�ne a tree distribution. Let V denote the set of variables of interest, jV j = n, xv 2 Xv
a particular value of v 2 V and X 2 X an assignment to all the variables in V . Like any graphical
model, a tree distribution is de�ned in two stages. First, one de�nes a graph (V;E), called structure,
whose vertices are the variables in V and whose edges encode dependencies between these variables.
A tree is an undirected graph over V that is connected and has no cycles. For any tree over n
vertices jEj = n � 1. Because such a tree spans all the nodes in V , it is often called a spanning
tree. Then, the tree distribution is de�ned as a product of factors corresponding to the edges and
vertices.

T (x) =

Q
(u;v)2E Tuv(xu; xv)Q
v2V Tv(xv)

deg v�1
(27)

where deg v is the degree of vertex v, i.e. the number of edges incident to v 2 V and Tuv and Tv
denote the marginals of T :

Tuv(xu; xv) =
X

v=xv;u=xu

T (X)

Tv(xv) =
X
v=xv

T (X):

When the variable x is discrete, the marginals Tuv and Tv can be represented as probability tables
denoted respectively �uv(xu; xv) and �v(xv). The values � are the parameters of the distribution.
When it will be necessary to emphasize the dependence of the tree distribution on its structure and
parameters we will use the notation T (xjE; �).

By taking the logarithm of T (X) and conveniently grouping the factors one obtains

logT (X) =
X
v2V

logTv(xv)| {z }
w0(X)

+
X
uv2E

log
Tuv(xu; xv)

Tv(xv)Tu(xu)| {z }
wuv(X)

= w0(X) +
X
uv2E

wuv(X): (28)

In words, the log-likelihood is a sum of terms wuv(X) each corresponding to an edge (and depending
only on the values of the variables u; v associated with that edge) plus a structure independent term
w0(X) that depends on all the variables. All the terms are functions of the tree parameters �.
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3.3.1 Discriminative learning of tree structures

A tree model is de�ned by a set of discrete variables encoding its structure and a set of continuous
variables representing its parameters. To use the MRE framework we must de�ne a prior joint distri-
bution over the structures and their associated parameters. We will assume that the structure and
the parameters are independent a priori; moreover, we shall assume that except for the functional
dependencies among the parameters that are imposed by the fact that they have to represent a valid
joint distribution overX there are no other statistical or functional dependencies. These assumptions
correspond to the parameter independence and parameter modularity assumptions of [9] (see also [6]).
In our case, this means that there is a set of parameters � = f�uv(i; j); u; v 2 V; i 2 Xu; j 2 Xvg
associated with the edges such that in any tree model containing an edge uv 2 E, the pairwise
marginals Tuv(xu; xv) are given by �uv(xu; xv) regardless of the presence of other edges in E and
their parameter values. This simpli�cation, in turn, allows the MRE formulation for only structures
(with a �xed set of parameters or a �xed distribution over their values), for parameters only, or for
both.

We start with a MRE estimation of structures only when the pairwise marginals �uv(xu; xv) are
assumed �xed. Note that each tree nevertheless makes use of a di�erent set of n � 1 edges and
thereby a di�erent set of parameters. For each class or label s 2 f1;�1g, we have a separate set of
�xed parameters �s. In the experiments below, the values of these parameters were obtained from
empirical (class-conditional) marginals. We assume a uniform prior over the class-conditional tree
structures Es.

De�nition 2 Given a set (Xt; yt); t = 1; : : : T of labeled examples, a set of margin variables 
 =
[
1; : : : ; 
T ] and a prior distribution P0(E1; E�1; 
) the MRE distribution P (E1; E�1; 
) is the one
minimizing D(PkP0) subject toX

E1;E�1

Z
P (E1; E�1; 
)

�
yt log

T (XtjE1; �
1)

T (XtjE�1; ��1)
� 
t

�
d
 � 0 for t = 1; : : : T (29)

Assuming P0(E1; E�1; 
) = P0(E1)P0(E�1)P0(
), Lemma 2 implies that the solution is factored as
P (E1)P (E�1)P (
) with

P (Es) =
1

Zs
e

P
T

t=1
s�tyt[w

s
0(Xt)+

P
uv2Es

ws
uv(Xt)] =

W s
0

Zs

Y
uv2Es

W s
uv (30)

for s = 1;�1 and

W s
0 = e

P
t
s�tytw

s
0(Xt); W s

uv =

TY
t=1

(ws
uv(Xt))

s�tyt ; s = 1;�1: (31)

In the above the normalization constants Zs and the factors W s are functions of the Lagrange
multipliers � which need to be set. Provided that we can obtain the normalization constants
(functions) Zs in closed form, � are set to maximize the dual objective

J(�) = 
 � �� logZ1 � logZ�1: (32)

where, for simplicity, we have assumed a �xed setting of the margin variables f
tg.

3.4 Computing the normalization constant and its derivatives

The number of all possible tree structures over n vertices is nn�2 [23] and thus computing the
normalization constants by enumerating all the tree structures is clearly not possible for reasonable
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n. However, a remarkable graph theory result enables us to perform all the necessary summations
in closed form in polynomial time. This is the Matrix Tree Theorem quoted below.

Theorem 4 (Matrix Tree Theorem)[23] Let G = (V;E) be a multigraph and denote by auv =
avu � 0 the number of undirected edges between vertices u and v. Then the number of all spanning
trees of G is given by jAjuv(�1)(u+v) the value of the determinant obtained from the following matrix
by removing row u and column v5.

A =

2
6666664

deg(v1) �a12 �a13 : : : �a1;n
�a21 deg(v2) �a23 : : : �a2;n

: : :

�an;1 �an;2 : : : : : : deg(vn)

3
7777775 (33)

By extending the Matrix Tree theorem to continuous-valued A and letting the weights Wuv play
the role of auv, one can prove

Theorem 5 Let P (E) be a distribution over tree structures de�ned by

P (E) / W0

Y
uv2E

Wuv (34)

Then its normalization constant Z is equal to

Z = W0

X
E

Y
uv2E

Wuv = W0jQ(W )j (35)

with Q(W ) being the (n� 1)� (n� 1) matrix

Quv(W ) = Qvu(W ) =

�
�Wuv 1 � u < v � n� 1Pn

v0=1Wv0v 1 � u = v � n� 1
(36)

This shows that summing over the distribution of all trees, when this distribution factors according
to the trees' edges, can be done in closed form by computing the value of a order n�1 determinant,
operation that involves O(n3) operations.

To optimize the Lagrange multipliers, we must compute derivatives of J(�) or, equivalently,
derivates of the log-partition functions with respect to �. It is well known that such derivatives lead
to averages with respect to the distribution in question (for details see Appendix A). In our case,
for example,

@ logZs
@�t

= syt < logT (XtjEs; �
s) >P (Es) = syt

2
4ws

0(X
t) +

X
u 6=v

ws
uv(X

t)W s
uvM

s
uv

3
5 (37)

whereMs is a linear function of Q�1(W s) given in Appendix A. Inverting the matrix Q(W ) is O(n3)
and this operation can be done once before the summations in equations (37). Thus, computing
the derivatives of the normalization constant w.r.t all �t takes O(n

3 + n2T ) operations and O(n2)
extra space.

5Note that A as a whole is a singular matrix.
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Finally, to obtain the decision rule for any new example X we must compute averages of the
log-likelihood ratio with respect to the (marginal) MRE distribution P (E1)P (E�1):

ŷ = sgn
n P

E1;E�1
P (E1)P (E�1) log

T (XjE1;�
1)

T (XjE�1;��1)

o
(38)

= sgn
�
w1
0(X)� w�1

0 (X) + <
X

uv2E1

w1
uv(X)>P (E1) � <

X
uv2E�1

w�1
uv (X)>P (E�1)

	
(39)

where we have omitted a possible bias term b. The required averages can be computed analogously
to Eq. (37) yielding e.g.

<
X

uv2E1

w1
uv(X)>P (E1)=

X
u6=v

w1
uv(X)WuvM

1
uv (40)

where M1
uv is the same matrix as in Eq. (37) and has been already computed in the last step of the

training algorithm. Classifying a new data point therefore requires only roughly O(n2) operations.

3.5 MRE distributions over tree structures and parameters

Here we describe brie
y how to �nd the MRE distribution over both structures and parameters,
i.e., P (E1; �

1; E�1; �
�1). We assume a factored prior P0(�

1)P0(�
�1) over the parameters and as be-

fore a uniform prior over the structures. In addition to the parameter independence and modularity
assumptions used earlier, we must assume that the priors P0(�

s); s = 1;�1 are likelihood equivalent
(i.e. they assign the same value to models having the same likelihood for all data sets). In this case,
the priors over parameters are forced to be Dirichlet [9] and de�ned in terms of a set of equivalent
marginal counts ~Ns

uv(xu; xv) satisfyingX
xu

~Ns
uv(xu; xv) = ~Ns

v (xv)
X
xv

~Ns
uv(xu; xv) = ~Ns

u(xu)
X
xuxv

~Ns
uv(xu; xv) = ~Ns (41)

Because the prior over parameters is independent of the structure, the MRE distribution factor-
izes as

P (Es; �
s) =

1

Zs
P0(�

s)e
P

t
s�tyt log T (XtjEs;�

s) (42)

To evaluate the partition function Zs, the parameters �
s can be analytically integrated out before

the summation over structures. The resulting marginal distribution over tree structures is similar
to equation (35)

P (Es) =
W s

0

Zs

X
E

Y
uv2E

W s
uv (43)

with the factors W s are now functions of both � and Dirichlet distribution parameters ~Ns (see
appendix B for exact expression).

The classi�cation rule is also similar in form to equation (39) with the terms ws depending on
�, the data, and the equivalent counts as described in Appendix B.

3.6 General Bayes nets

A Bayes net with given structure can be parametrized by the set of conditional distributions
P (vjpa(v) = xpa(v)) of a variable given a con�guration of its parents. A discriminative MRE solution
can be found for the parameter distribution P (�1; ��1) assuming complete observations. Finding
the MRE distribution over structures is, however, unlikely to be feasible for other than trees (c.f.
[5]).
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Figure 7: ROC curves for the ME discriminative classi�er (full line) and the ML classi�er (dashed
line) for the splice junction classi�cation problem. The minimum test errors are 12.4% and 14%
respectively.
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Figure 8: Logarithmic weights wuv versus mutual informations Iuv for class 1 (a) respective �1 (b).
The square in position uv; u < v represents wuv while its symmetric, vu represents Iuv . Larger
values appear more back in the �gures.

3.7 Experiments

We tested our model in the �xed parameter version on the detection of DNA splice sites and
compared its performance to the performance of a classi�er using a Maximum Likelihood (ML) tree
for each class. In both cases, the tree parameters � were the ML parameters for the corresponding
class (empirical class-conditional marginals).

The domain consists of 25 variables representing sites around a (hypothetic) splice junction.
The test set had 400 examples split equally between the two classes; the training set consisted of
4724 examples, about a fourth being positives ones. For simplicity, we used a �xed margin 
 = 4,
the largest value that allowed perfect class separation. The number of �'s that are nonzero in this
example is 61 (out of 400) suggesting a performance level of about %15 according to Lemma 1. The
ROC curves for the two classi�ers are compared in �gure 7. MRE distribution over tree structures
is superior to a pair maximum Likelihood trees, although the parameter values are identical. The
test set error is 14.0% for the ML classi�er and 12.3% for the MRE method. The training error is
0.5% for the ML classi�er and zero for the discriminative one indicating that the MRE method is
resistant to over�tting.

Figure 8 compares the \edge weights" for the two classi�ers. These edge weights re
ect the
preferences assigned to tree structures in the MRE distribution or in the (single) class-conditional
maximum likelihood (ML) tree. Since the estimation criterion di�ers in the two cases, the most
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likely tree in the MRE solution does not in general equal the ML tree structure. Figure 8a) displays
w1
uv = log(W 1

uv) factors corresponding to each edge uv in the MRE distribution for class 1 as well as
the respective mutual information values I1uv . Since both matrices are symmetric, one can display
both sets of values in a 25 by 25 square: the upper left half represents the ME weights whereas the
lower right half of the square shows the mutual information. Figure 8,b shows the same results for
class -1. Note that summing w1

uv or I
1
uv across the edges of a particular tree pertains directly to the

log-probability of the tree and thus the comparison is meaningful 6.
The �gure shows that there are relatively few edges with large weights on both sides of the

diagonal. This is particularly relevant for the discriminative model of the positive examples, since
it shows that the MRE distribution decays rapidly around its peak. The maximum W 1

uv is more
than 103 times the next largest value, clearly separating edges that are discriminative and those
whose inclusion or exclusion has little e�ect on discrimination. This contrast is understandably less
pronounced for the negative examples that represent a diverse collection of spurious splice sites.

A second important remark is that neither �gure 8,a nor 8,b are symmetric w.r.t the diagonal. In
other words, not all pairs of variables that exhibit high mutual information are also discriminative.
Note for example that the subdiagonal band showing that adjacent variables are informative of
each other is almost completely e�aced under discriminative training. Our method brings out the
discriminative structure of the data, which is di�erent from its structure as a density estimator.

4 Anomaly detection

In anomaly detection we are given a set of training examples representing only one class, the
\typical" examples. We attempt to capture regularities among the examples to be able to recognize
unlikely members of this class. Estimating a probability distribution P (X j�) on the basis of the
training set fX1; : : : ; XT g via the standard maximum likelihood (or analogous) criterion is not
appropriate since there is no reason to further increase the probability of those examples that are
already well captured by the model. A more relevant measure involves the level sets

X
 = fX 2 X : logP (X j�) � 
 g (44)

These level sets are used in deciding the class membership, even in the context of ML parameter
estimation. We therefore estimate the parameters � to optimize an appropriate level set. As before,
we cast this problem as MRE:

De�nition 3 Given a probability model P (X j�), � 2 �, a set of training examples fX1; : : : ; XT g,
a set of margin variables 
 = [
1; : : : ; 
T ], and a prior distribution P0(�; 
) we �nd the MRE
distribution P (�; 
) such that minimizes D(PkP0) subject to the constraintsZ

P (�; 
) [ logP (Xtj�)� 
t ] d�d
 � 0 (45)

for all t = 1; : : : ; T .

Note that this is again a MRE projection problem whose solution can be obtained as before.
The choice of P0(
) in P0(�; 
) = P0(�)P0(
) is not as straightforward as before since each margin

t needs to be close to achievable log-probabilities. We can nevertheless easily �nd a reasonable
choice e.g. by relating the prior mean of 
t to some ��percentile of the training set log-probabilities
generated through ML or other standard parameter estimation criterion. Denote the resulting value
by l� and de�ne the prior P0(
t) as P0(
t) = c e�c (l��
t) for 
t � l�. In this case the prior mean
of 
t is l� � 1=c.

6The comparison is done upto a scaling factor and an additive constant.
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Figure 9: a) Distribution of training set log-likelihoods for the MRE model (solid line) or the Bayes
model (dashed-line). b) ROC curve for the two models on an independent test set.

We have veri�ed experimentally for a simple product distribution that this choice of prior to-
gether with the MRE framework leads to a real improvement over standard (Bayesian) approach.
Figure 9 illustrates the bene�t of the MRE approach for discriminating between true and spurious
splice sites. The examples were �xed length DNA sequences (length 25) and we used the following
product distribution of simple multinomials:

P (X j�) =
25Y
i=1

Pi(xij�i) =
25Y
i=1

�xiji (46)

where X = fx1; : : : ; x25g, xi 2 fA;C; T;Gg, and
P

xi
�xiji = 1. The model parameters f�xijig were

estimated on the basis of only true examples (7000). The estimation criterion was either Bayesian
with an independent Dirichlet prior over each component distribution f��jig or through the relative
entropy projection method with the same prior. Figure 9a) indicates, as expected, that the training
set log-likelihoods from the MRE method are more uniform and without the long tails7. This
di�erence leads to improved anomaly detection as shown by the ROC curve in Figure 9b). The test
set consisted of 1192 true splice sites and 3532 spurious ones.

We expect the e�ect to be more striking in the context of more sophisticated models such as
HMMs that may otherwise easily capture spurious regularities in the data. In the next section we
describe how such models can be used eÆciently within the MRE framework.

4.1 Extension to latent variable models

In the presence of latent variables (missing information) we can no longer use the above formula-
tion directly. This arises because logP (Xtj�) does not decompose into a sum of simple components.
We can, however, achieve an eÆcient lower bound solution. If we letXh be the set of latent variables,
we can resort to the following variational lower bound:

logP (Xtj�) �
X
Xh

Qt(Xh) logP (Xt; Xhj�) +H(Qt) (47)

where H(Qt) is the entropy of the Qt distribution. A separate transformation has to be introduced
for each training example. Note that the lower bound is reasonable in this context since the objective

7To compute these log-likelihoods from the MRE method, we used the MRE solution as the posterior distribution
over the parameters. This is suboptimal for the MRE method given that the criterion is slightly di�erent but suÆces
here for the purposes of illustration. An analogous �gure with minor di�erences could be computed on the basis ofR
P (�) logP (Xj�)d� for the two methods. In this case, the �gure would be suboptimal for the Bayesian approach.
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is to guarantee that all (or most) training examples have likelihoods above some margin threshold.
Whenever the lower bound exceeds the threshold, so does the original likelihood.

The MRE distribution P (�; 
) is obtained under the following constraints:

Z
P (�; 
)

"X
Xh

Qt(Xh) logP (Xt; Xhj�) � 
t

#
d� +H(Qt) � 0 (48)

which are of the same form (linear) as before. Note that we have made an additional assumption
that Qt(Xh) is functionally independent of the parameters �. This assumption guarantees that the
MRE distribution P (�; 
) can be computed eÆciently for a large class of probability models such
as mixture models and HMMs. The loss in accuracy due to this simplifying assumption vanishes
whenever the (marginal) MRE distribution P (�) becomes peaked. In principle, this means that we
can always �nd the single most discriminative setting of the parameters even with the variational
bound. Roughly speaking, we incur a loss only relative to the exact MRE approach.

The overall solution to the MRE problem is no longer unique, however, but we can �nd a locally
optimal solution iteratively as follows:

Step 1. Fix fQt(Xh)g and �nd the MRE distribution P (�; 
) as before

Step 2. Fix P (�; 
) and let

Qt(Xh) / exp

�Z
P (�) logP (Xt; Xhj�)d�

�
(49)

Both steps can be computed eÆciently for a large class of models such as HMMs assuming the prior
P0(�) is Dirichlet and factorizes across the parameters. More generally, the prior should be the
conjugate prior satisfying the parameter independence assumption of [6] (see also [9]).

The iterative algorithm actually converges in the sense de�ned by the following theorem:

Theorem 6 If we let P (n)(�; 
) be the MRE distribution after n steps of the iterative algorithm
described above, then

D(P (1)kP0) � D(P (2)kP0) � : : : � D(P (n)kP0) (50)

The theorem is easy to understand as follows: each time we optimize any of the Qt(Xh) dis-
tributions, we maximize the associated lower bound. This maximization relaxes the corresponding
constraint on the MRE distribution and allows the relative entropy to be decreased.

5 Uncertain or incompletely labeled examples

Examples with uncertain labels are hard to deal with in any standard discriminative classi�cation
method, probabilistic or not. Note the di�erence between labels that are inherently stochastic and
those that are predictable but merely missing (the case considered here). Uncertain labels can be
handled in a principled way within the maximum entropy formalism: let y = fy1; : : : ; yT g be a set
of binary variables corresponding to the labels for the training examples. We can de�ne a prior
uncertainty over the labels by specifying P0(y); for simplicity, we can take this to be a product
distribution

P0(y) =
Y
t

Pt;0(yt) (51)
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where a di�erent level of uncertainty can be assigned to each example. We may, for example,
set Pt;0(yt) = 1 whenever yt is observed and Pt;0(yt) = 0:5 if the label is missing. The MRE
solution is found by calculating the relative entropy projection from the overall prior distribution
P0(�; 
; y) = P0(�)P0(
)P0(y) to the admissible set of distributions P (no longer directly function
of the labels) that are consistent with the constraints:X

y

Z
�;


P (�; 
; y) [ ytL(Xt;�)� 
t ] d� d
 � 0 (52)

for all t = 1; : : : ; T . The prior distribution P0(
) in this formulation encourages decision rules that
achieve large classi�cation margins for the examples (most of the probability mass is assigned to
values 
t � 0). This preference towards large margins creates dependencies between the (a priori)
unknown labels and the parameters � of the discriminant function. Consequently, even unlabeled
examples will contribute to the (marginal) MRE distribution P (�) that speci�es the decision rule.
We may alternatively view the MRE formulation as a transduction algorithm [22] whose objective
is to determine the class labels for a set of unlabeled training examples.

While this provides a principled framework for dealing with uncertain or partially labeled ex-
amples, the MRE solution itself is not in general feasible to obtain. For example, in the context
of support vector machines (for an alternative approach see [2]), the MRE distribution over the
labels will be (roughly speaking) a Boltzmann machine and therefore not manageable in general via
exact calculations. We can nevertheless employ eÆcient approximate methods to obtain an iterative
algorithm for self-consistent probabilistic assignment of the uncertain labels.

5.1 Feasible approximation

To be able to deal with uncertain labels in a feasible way, we solve instead the following MRE
problem with additional constraints:

De�nition 4 Given a parametric discriminant function L(X;�), a set of margin variables 
 =
[
1; : : : ; 
T ], a set of class variables y = [y1; : : : ; yT ], and a prior distribution

P0(�; 
; y) = P0(�)

"Y
t

P0(
t)

# "Y
t

P0;t(yt)

#
(53)

we �nd a constrained MRE distribution P (�; 
; y) of the form P (�; 
)P (y) that minimizes D(PkP0)
subject to the constraintsX

y

Z
�;


P (�; 
)P (y) [ ytL(Xt;�)� 
t ] d� d
 � 0 (54)

for all t = 1; : : : ; T .

We may view this as a type of mean �eld approximate since the MRE distribution is forced
to factorize to make the problem tractable. The solution is no longer unique but can be obtained
through the following two-stage iterative algorithm:

Step 1. Fix P (y) and let pt =
P

y P (y)yt. We �nd P (�; 
) as the MRE solution subject to the
constraints Z

�;


P (�; 
) [ ptL(Xt;�)� 
t ] d� d
 � 0 (55)

Note that since the prior factorizes across f�; 
g the MRE solution factorizes as well, i.e.,
P (�; 
) = P (�)P (
).
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Step 2. Fix the marginal P (�) obtained in the previous step and �nd the MRE solution P 0(y; 
)
subject to X

y

Z
P 0(y; 
)

�Z
�

P (�) [ yt L(Xt;�)� 
t ] d�

�
d
 � 0 (56)

for all t. Update P (y)  (1 � �)P (y) + �P 0(y) or simply set pt  (1 � �)pt + �p0t where
p0t =

P
y P

0(y)yt.

The fact that we include P (
) also in the second step is necessary since any adjustments to
the labels must be compensated by an increased margin. The distribution P (y) is updated via
relaxation to ensure a more controlled adjustment of the labels; any large change in P (y) is likely to
induce a signi�cant subsequent modi�cation to the solution of the �rst step. Although the iterative
algorithm remains stable even if larger changes are made, we believe the relaxation update leads
to better local optima. Moreover, since the admissible set is convex and because the minimization
objective (relative entropy) is also convex, the relaxation update always yields a change in the
appropriate direction. The solution to either step is well de�ned and can be obtained in closed
form assuming the problem is tractable when we have complete information about the labels. The
iterative algorithm is well-behaved in the sense of the following theorem:

Theorem 7 Let P (n)(�; 
; y) = P (n)(�; 
)P (n)(y) be the constrained MRE solution after n itera-
tions. Then for all 0 � � � 1, where � is the step size used in the algorithm, we have

D(P (1)kP0) � D(P (2)kP0) � : : : � D(P (n)kP0) (57)

The result holds also after either step of the two-stage iterative algorithm.

5.2 Example: support vector machines

Here we provide a preliminary numeral assessment of how the above algorithm is able to make use
of unlabeled examples in the context of predicting DNA splice sites with support vector machines.
A detailed formulation of the algorithm for SVMs can be found in Appendix C. We generated three
training sets of examples corresponding to whether 1) all the labels were known, 2) labels were
provided only for about 10% randomly chosen examples and the remaining 90% were unlabeled but
available, and 3) only the 10% labeled examples were used for training. The full training set in this
case consisted of 500 true DNA splice sites and 500 spurious ones (false examples). The examples
were �xed length (25) strings of DNA letters (A,C,T,G) which were translated into bit vectors using
a four bit encoding (e.g. A! [1000]). Figure 10 gives ROC curves based on an independent test set
(1192 true examples and 3532 false examples) for SVMs trained with one of the three training sets.
Note that when the training set is fully labeled the algorithm reduces to the standard formulation.
The �gures show that even the approximate formulation8 is able to reap most of the bene�t from
the unlabeled examples. The �nding is also robust against the choice of the kernel function as is
seen by comparing Figure 10a) and 10b). The �ndings are preliminary.

6 Discussion

We have presented a general approach to discriminative training of model parameters, structures,
or parametric discriminant functions. The formalism is based on the minimum relative entropy prin-
ciple reducing all calculations to relative entropy projections. Quite remarkably, we can eÆciently

8In our experiments, � = 0:1 and the iterative algorithm was run for 10 iterations. The bene�t may vary as a
function of � and the number of iterations, particularly if � is too large. The prior probability P0(y) =

Q
t
P0;t(yt)

over the labels were set to 0 or 1 when the label for yt was observed and to 0:5 for the unlabeled ones.
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Figure 10: a) test set ROC curves based on a training set with fully labeled examples (solid line),
90% unlabeled and 10% labeled (dot-dashed), only the 10% labeled examples (dashed). In a) a
linear kernel was used and in b) a Gaussian kernel.

and exactly compute the best discriminative distribution over tree structures within this framework.
The MRE idea gives, in addition, a natural discriminative formulation of anomaly detection prob-
lems or classi�cation problems involving partially labeled examples. EÆcient algorithms were also
given to exploit such formulations.
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A Computing averages under a factored distribution over tree structures

Lemma 4 If P (E) is given by equation (34) and f; g are functions of E additive in the edges (i.e.
f(E) =

P
uv2E fuv) then

< f(E) >P =
1

Z
@jQ(We�f )j

@�

���
�=0

(58)

< f(E)g(E) >P =
1

Z
@2jQ(We�f+�g)j

@�@�

���
�=�=0

(59)
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This lemma can be easily proved by equating jQ(We�f )j with its de�nition (36) and then taking
derivatives of both sides. Then, remembering that for any matrix A with elements Aij

@jAj

@Aij
= jAj(A�1)ij (60)

one obtains, after conveniently grouping the terms, the result of Lemma 5:

Lemma 5 Let P (E) and Q be given by equations (34) and (36) respectively, M be a symmetric
matrix with 0 diagonal de�ned by

Muv = Mvu =

�
1
2 [(Q

�1)uu + (Q�1)vv � 2(Q�1)uv)]; u; v < n
1
2 (Q

�1)vn v < u = n
(61)

and f a function of the structure E satisfying f(E) =
P

uv2E fuv. Then the average of f under P
is

< f(E) >P =
X
E

P (E)f(E) =

nX
u;v=1

fuvWuvMuv : (62)

B Integrating over the parameters P (Es; �
s)

Let us de�ne

Ns
uv(xu; xv) =

X
t:v=xv;u=xu

s�tyt Ns
uv(xv) =

X
t:v=xv

s�tyt (63)

�suv =
Y
xu

Y
xv

�(Ns
uv(xu; xv) + ~Ns

uv(xu; xv))

�( ~Ns
uv(xuxv))

(64)

�sv =
Y
xv

�(Ns
v (xv) + ~Ns

v (xv))

�( ~Ns
v (xv))

(65)

With these notations we can express W s
uv and W s

0 in equation (43) as

W s
uv =

�suv
�su�

s
v

and W s
0 =

�( ~Ns)

�(Ns + ~Ns)

Y
v2V

�sv (66)

In the above, �() denotes Euler's Gamma function. Note that the \counts" Ns
uv can be either

positive or negative, so that the variables � may not be de�ned for arbitrary values of �. All the
above expressions exist, however, for � = 0; in this case W s

uv =W s
0 = 1.

The classi�cation rule is given by equation (39) with ws
uv(X); ws

0(X) rede�ned as

ws
uv(X) = 	[Ns

uv(xuxv) +
~Ns
uv(xuxv)]�	[Ns

v (xv) +
~Ns
v (xv)]�	[Ns

u(xu) +
~Ns
u(xu)] (67)

ws
0(X) =

X
v2V

	[Ns
v (xv) + ~Ns

v (xv)]�	[Ns + ~Ns] (68)

with 	 representing the derivative of the log-Gamma function:

	(z) =
d

dz
log �(z) (69)

Note the similarity with the �xed parameter case: the classi�cation rule is still an average of a
log-likelihood di�erence; the 	 functions arise from averaging the log-likelihood under the MRE
distribution of the � parameters.
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C Uncertain labels and support vector machines

We provide here more details about the two step feasible algorithm for dealing with partial-
ly labeled examples in the context of support vector machines. We start by de�ning the prior
distribution over all the parameters as

P0(�; b; 
; y) = P0(�)P0(b)P0(
)P0(y) (70)

where P0(�) is N (0; I) and P0(b) approaches a non-informative prior. By the non-informative prior
we mean here a limit of P0(bjk) = N (0; I � k) as k ! 1. The prior over the labels is assumed to
factorize across the examples, i.e.,

P0(y) =
Y
t

P0;t(yt) (71)

where, for example, we can set each P0;t(yt) = 1 whenever the corresponding label yt is known and
P0;t(yt) = 0:5; yt = �1 for all unlabeled examples. We use here P0(
) from eq. (9); the alternatives
were discussed in the text.

Let now pt =
P

y P0(y)yt =
P

yt
P0;t(yt)yt, where pt is the mean value of the label. With these

initializations, the two step algorithm is given as follows:

Step 1. We �x fptg and �nd the MRE solution for P (�; b; 
). Based on Lemma 3 P (�; 
) and P (b)
can be found separately. For P (�; 
) the the Lagrange multipliers are obtained by maximizing
(analogously to Theorem 2):

J�;
(�) =
X
t

[�t + log(1� �t=c) ]�
1

2

X
t;t0

�t�t0ptpt0(X
T
t Xt0) (72)

subject to the constraint that
P

t �tpt = 0. This is no more diÆcult to solve than the original
SVM optimization problem with hard labels.

As for the bias term b, we only need its mean relative to the MRE solution, i.e., �b =
R
P (b)b db.

This can be computed as the limit of the means corresponding to proper priors P0(bjk) (each
MRE solution P (bjk) based on P0(bjk) is a Gaussian with a well-de�ned mean). We omit the
algebra and instead provide the answer in terms of the following averages:

�Lt =

Z
P (�) (�TXt) d� =

X
t0

�t0pt0(X
T
t Xt0) (73)

�
t =

Z
P (
) 
t d
 = 1�

1

c� �t
(74)

The desired mean �b is now given by

�b = argmax
b

n
min
t
( pt(�Lt + b)� �
t )

o
(75)

This setting optimizes the most critical constraints of eq. (55). In other words, �b maximizes
the minimum of the left hand sides of eq. (55).

Step 2. To update the MRE distribution over the labels, we �x P (�; b) and �nd P 0(y; 
) subject toX
y

Z
P 0(y; 
)

Z
�;b

P (�; b)
�
yt(�

TXt + b)� 
t
�
d�dbd


=
X
y

Z
P 0(y; 
)

�
yt(�Lt +�b)� 
t

�
d
 � 0 (76)
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Analogously to the �rst step, the Lagrange multipliers are found by maximizing the corre-
sponding �logZ (algebra omitted):

Jy;
(�
0) =

X
t

(
�0t + log(1� �0t=c)� log

X
yt=�1

P0;t(yt)e
yt�

0

t(
�Lt+�b)

)
(77)

Note that the Lagrange multipliers here are not tied and can be optimized independently for
each t. This happens because we have assumed that the prior distribution factorizes across the
examples and because the discriminant function does not tie the variables together. Each of
the one dimensional convex optimization problems are readily solved by any standard methods
(e.g. Newton-Raphson). The resulting MRE distribution over the labels, P 0(y) is given by

P 0(y) =
Y
t

P 0
t (yt) (78)

where

P 0
t (yt) =

1

Zt
P0;t(yt) e

yt�
0

t(
�Lt+�b) (79)

We can easily compute p0t =
P

yt
P 0
t (yt)yt from this result. Finally, the updates

pt  (1� �)pt + �p0t (80)

complete the second step.

The decision rule for a new example X is given by

ŷ = sign

 X
t

�tpt(X
T
t X) + �b

!
(81)

where f�tg and �b are the solutions to the �rst step of the iterative algorithm.

26


