
PCA
+

AdaBoost

1

10-601 Introduction to Machine Learning

Matt Gormley
Lecture 30

April 27, 2018

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 8: Reinforcement Learning
– Out: Tue, Apr 17
– Due: Fri, Apr 27 at 11:59pm

• Homework 9: Learning Paradigms
– Out: Sat, Apr 28
– Due: Fri, May 4 at 11:59pm

2

DIMENSIONALITY REDUCTION

3

PCA Outline

• Dimensionality Reduction
– High-dimensional data
– Learning (low dimensional) representations

• Principal Component Analysis (PCA)
– Examples: 2D and 3D
– Data for PCA
– PCA Definition
– Objective functions for PCA
– PCA, Eigenvectors, and Eigenvalues
– Algorithms for finding Eigenvectors /

Eigenvalues

• PCA Examples
– Face Recognition
– Image Compression

4

High Dimension Data

Examples of high dimensional data:

– High resolution images (millions of pixels)

5

High Dimension Data

Examples of high dimensional data:

– Multilingual News Stories
(vocabulary of hundreds of thousands of words)

6

High Dimension Data

Examples of high dimensional data:

– Brain Imaging Data (100s of MBs per scan)

7
Image from https://pixabay.com/en/brain-mrt-magnetic-resonance-imaging-1728449/

Image from (Wehbe et al., 2014)

High Dimension Data

Examples of high dimensional data:

– Customer Purchase Data

8

PCA, Kernel PCA, ICA: Powerful unsupervised learning techniques
for extracting hidden (potentially lower dimensional) structure
from high dimensional datasets.

Learning Representations

Useful for:

• Visualization

• Further processing by machine learning algorithms

• More efficient use of resources
(e.g., time, memory, communication)

• Statistical: fewer dimensions à better generalization

• Noise removal (improving data quality)

Slide from Nina Balcan

Shortcut Example

12

https://www.youtube.com/watch?v=MlJN9pEfPfE

Photo from https://www.springcarnival.org/booth.shtml

PRINCIPAL COMPONENT
ANALYSIS (PCA)

13

PCA Outline

• Dimensionality Reduction
– High-dimensional data
– Learning (low dimensional) representations

• Principal Component Analysis (PCA)
– Examples: 2D and 3D
– Data for PCA
– PCA Definition
– Objective functions for PCA
– PCA, Eigenvectors, and Eigenvalues
– Algorithms for finding Eigenvectors / Eigenvalues

• PCA Examples
– Face Recognition
– Image Compression

14

Principal Component Analysis (PCA)

In case where data lies on or near a low d-dimensional linear subspace,
axes of this subspace are an effective representation of the data.

Identifying the axes is known as Principal Components Analysis, and can be
obtained by using classic matrix computation tools (Eigen or Singular Value
Decomposition).

Slide from Nina Balcan

2D Gaussian dataset

Slide from Barnabas Poczos

1st PCA axis

Slide from Barnabas Poczos

2nd PCA axis

Slide from Barnabas Poczos

Principal Component Analysis (PCA)

Whiteboard
– Data for PCA

– PCA Definition

– Objective functions for PCA

19

Data for PCA

We assume the data is centered

20

=

�

����

((1))T

((2))T

...
((N))T

�

����D = { (i)}N
i=1

µ =
1

N

N�

i=1

(i) = 0

Q: What if
your data is

not centered?

A: Subtract
off the

sample mean

Sample Covariance Matrix

The sample covariance matrix is given by:

21

�jk =
1

N

N�

i=1

(x(i)
j � µj)(x

(i)
k � µk)

Since the data matrix is centered, we rewrite as:

� =
1

N
T

=

�

����

((1))T

((2))T

...
((N))T

�

����

Maximizing the Variance

Quiz: Consider the two projections below
1. Which maximizes the variance?
2. Which minimizes the reconstruction error?

22

Option A Option B

PCA

23

Equivalence of Maximizing Variance and Minimizing Reconstruction Error

Principal Component Analysis (PCA)

Whiteboard
– PCA, Eigenvectors, and Eigenvalues

– Algorithms for finding Eigenvectors /
Eigenvalues

26

Principal Component Analysis (PCA)

X	X# v = λv	, so v (the first PC) is the eigenvector of
sample correlation/covariance matrix '	'(

Sample variance of projection v('	'(v =)v(v =)
Thus, the eigenvalue)	denotes the amount of variability
captured along that dimension (aka amount of energy along that

dimension).

Eigenvalues)* ≥), ≥)- ≥ ⋯

• The 1st PC /* is the the eigenvector of the sample covariance matrix '	'(
associated with the largest eigenvalue

• The 2nd PC /, is the the eigenvector of the sample covariance matrix
'	'(associated with the second largest eigenvalue

• And so on …

Slide from Nina Balcan

• For M original dimensions, sample covariance matrix is MxM, and has
up to M eigenvectors. So M PCs.

• Where does dimensionality reduction come from?

Can ignore the components of lesser significance.

0

5

10

15

20

25

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Va
ria

nc
e

(%
)

How Many PCs?

© Eric Xing @ CMU, 2006-2011 28

• You do lose some information, but if the eigenvalues are small, you don’t lose
much

– M dimensions in original data
– calculate M eigenvectors and eigenvalues
– choose only the first D eigenvectors, based on their eigenvalues
– final data set has only D dimensions

Variance (%) = ratio of variance along
given principal component to total

variance of all principal components

PCA EXAMPLES

29

Projecting MNIST digits

30

Task Setting:
1. Take 25x25 images of digits and project them down to K components
2. Report percent of variance explained for K components
3. Then project back up to 25x25 image to visualize how much information was preserved

Projecting MNIST digits

31

Task Setting:
1. Take 25x25 images of digits and project them down to 2 components
2. Plot the 2 dimensional points

Projecting MNIST digits

32

Task Setting:
1. Take 25x25 images of digits and project them down to 2 components
2. Plot the 2 dimensional points

PCA EXAMPLES

Slides from Barnabas Poczos

Original sources include:

• Karl Booksh Research group

• Tom Mitchell

• Ron Parr

33

Face recognition

Slide from Barnabas Poczos

Challenge: Facial Recognition
• Want to identify specific person, based on facial image
• Robust to glasses, lighting,…
Þ Can’t just use the given 256 x 256 pixels

Slide from Barnabas Poczos

Applying PCA: Eigenfaces

• Example data set: Images of faces
– Famous Eigenface approach

[Turk & Pentland], [Sirovich & Kirby]
• Each face x is …

– 256 ´ 256 values (luminance at location)

– x in Â256´256 (view as 64K dim vector)

256 x 256
real values

m faces

X =

x1, …, xm

Method: Build one PCA database for the whole dataset and
then classify based on the weights.

Slide from Barnabas Poczos

Principle Components

Slide from Barnabas Poczos

Reconstructing…

• … faster if train with…
– only people w/out glasses
– same lighting conditions

Slide from Barnabas Poczos

Shortcomings
• Requires carefully controlled data:

– All faces centered in frame
– Same size
– Some sensitivity to angle

• Alternative:
– “Learn” one set of PCA vectors for each angle
– Use the one with lowest error

• Method is completely knowledge free
– (sometimes this is good!)
– Doesn’t know that faces are wrapped around 3D objects

(heads)
– Makes no effort to preserve class distinctions

Slide from Barnabas Poczos

Image Compression

Slide from Barnabas Poczos

Original Image

• Divide the original 372x492 image into patches:
• Each patch is an instance that contains 12x12 pixels on a grid

• View each as a 144-D vector

Slide from Barnabas Poczos

L2 error and PCA dim

Slide from Barnabas Poczos

PCA compression: 144D à 60D

Slide from Barnabas Poczos

PCA compression: 144D à 16D

Slide from Barnabas Poczos

16 most important eigenvectors

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

Slide from Barnabas Poczos

PCA compression: 144D à 6D

Slide from Barnabas Poczos

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

2
4
6
8
10
12

6 most important eigenvectors

Slide from Barnabas Poczos

PCA compression: 144D à 3D

Slide from Barnabas Poczos

2 4 6 8 10 12

2

4

6

8

10

12
2 4 6 8 10 12

2

4

6

8

10

12

2 4 6 8 10 12

2

4

6

8

10

12

3 most important eigenvectors

Slide from Barnabas Poczos

PCA compression: 144D à 1D

Slide from Barnabas Poczos

60 most important eigenvectors

Looks like the discrete cosine bases of JPG!...
Slide from Barnabas Poczos

2D Discrete Cosine Basis

http://en.wikipedia.org/wiki/Discrete_cosine_transform

Slide from Barnabas Poczos

Learning Objectives

Dimensionality Reduction / PCA
You should be able to…
1. Define the sample mean, sample variance, and sample

covariance of a vector-valued dataset
2. Identify examples of high dimensional data and common use

cases for dimensionality reduction
3. Draw the principal components of a given toy dataset
4. Establish the equivalence of minimization of reconstruction

error with maximization of variance
5. Given a set of principal components, project from high to low

dimensional space and do the reverse to produce a
reconstruction

6. Explain the connection between PCA, eigenvectors,
eigenvalues, and covariance matrix

7. Use common methods in linear algebra to obtain the principal
components

53

ENSEMBLE METHODS

54

Recommender Systems

55

Recommender Systems

56

Recommender Systems

57

Problem Setup
• 500,000 users
• 20,000 movies
• 100 million ratings
• Goal: To obtain lower root mean squared error

(RMSE) than Netflix’s existing system on 3 million
held out ratings

Recommender Systems

58

Recommender Systems

• Setup:
– Items:

movies, songs, products, etc.
(often many thousands)

– Users:
watchers, listeners, purchasers, etc.
(often many millions)

– Feedback:
5-star ratings, not-clicking ‘next’,
purchases, etc.

• Key Assumptions:
– Can represent ratings numerically

as a user/item matrix
– Users only rate a small number of

items (the matrix is sparse)

59
D

oc
to

r
St

ra
ng

e

St
ar

 T
re

k:

Be
yo

nd

Zo
ot

op
ia

Alice 1 5

Bob 3 4

Charlie 3 5 2

Recommender Systems

60

Top performing systems
were ensembles

Weighted Majority Algorithm

• Given: pool A of binary classifiers (that
you know nothing about)

• Data: stream of examples (i.e. online
learning setting)

• Goal: design a new learner that uses
the predictions of the pool to make
new predictions

• Algorithm:
– Initially weight all classifiers equally
– Receive a training example and predict

the (weighted) majority vote of the
classifiers in the pool

– Down-weight classifiers that contribute
to a mistake by a factor of β

61

(Littlestone & Warmuth, 1994)

Weighted Majority Algorithm

63

(Littlestone & Warmuth, 1994)

Weighted Majority Algorithm

64

(Littlestone & Warmuth, 1994)

This is a “mistake bound”
of the variety we saw for
the Perceptron algorithm

ADABOOST

65

Comparison

Weighted Majority Algorithm

• an example of an
ensemble method

• assumes the classifiers are
learned ahead of time

• only learns (majority vote)
weight for each classifiers

AdaBoost
• an example of a boosting

method

• simultaneously learns:
– the classifiers themselves

– (majority vote) weight for
each classifiers

66

AdaBoost

Whiteboard:

– Weak Learners vs. Strong Learners

– Weak Learning = Strong Learning

– Key Idea behind AdaBoost

– AdaBoost algorithm

– Toy Example: Learning with Decision Stumps

68

Toy ExampleToy ExampleToy ExampleToy ExampleToy Example

D1

weak classifiers = vertical or horizontal half-planes

AdaBoost: Toy Example

69
Slide from Schapire NIPS Tutorial

Round 1Round 1Round 1Round 1Round 1

h1

α

ε1
1

=0.30
=0.42

2D

AdaBoost: Toy Example

70
Slide from Schapire NIPS Tutorial

Round 2Round 2Round 2Round 2Round 2

α

ε2
2

=0.21
=0.65

h2 3D

AdaBoost: Toy Example

71
Slide from Schapire NIPS Tutorial

Round 3Round 3Round 3Round 3Round 3

h3

α

ε3
3=0.92
=0.14

AdaBoost: Toy Example

72
Slide from Schapire NIPS Tutorial

Final ClassifierFinal ClassifierFinal ClassifierFinal ClassifierFinal Classifier

H
final

+ 0.92+ 0.650.42sign=

=

AdaBoost: Toy Example

73
Slide from Schapire NIPS Tutorial

AdaBoost

74

Given: where ,
Initialize .
For :

Train weak learner using distribution .
Get weak hypothesis with error

Choose .
Update:

if
if

where is a normalization factor (chosen so that will be a distribution).

Output the final hypothesis:

Figure 1: The boosting algorithm AdaBoost.

and the labels give the outcomes (i.e., the winners) of each race. The weak hypotheses are
the rules of thumb provided by the expert gambler where the subcollections that he examines are
chosen according to the distribution .

Once the weak hypothesis has been received, AdaBoost chooses a parameter as in the
figure. Intuitively, measures the importance that is assigned to . Note that if
(which we can assume without loss of generality), and that gets larger as gets smaller.

The distribution is next updated using the rule shown in the figure. The effect of this rule
is to increase the weight of examples misclassified by , and to decrease the weight of correctly
classified examples. Thus, the weight tends to concentrate on “hard” examples.

The final hypothesis is a weighted majority vote of the weak hypotheses where is the
weight assigned to .

Schapire and Singer [42] show how AdaBoost and its analysis can be extended to handle weak
hypotheses which output real-valued or confidence-rated predictions. That is, for each instance ,
the weak hypothesis outputs a prediction whose sign is the predicted label (or
) and whose magnitude gives a measure of “confidence” in the prediction. In this paper,

however, we focus only on the case of binary () valued weak-hypothesis predictions.

3

Algorithm from (Freund & Schapire, 1999)

AdaBoost

Whiteboard:

– Theoretical Results:

• training error

• generalization error

75

AdaBoost

76
Figure from (Freund & Schapire, 1999)

er
ro
r

10 100 1000
0

5

10

15

20

cu
m
ul
at
iv
e
di
st
rib
ut
io
n

-1 -0.5 0.5 1

0.5

1.0

rounds margin

Figure 2: Error curves and the margin distribution graph for boosting C4.5 on the letter dataset as
reported by Schapire et al. [41]. Left: the training and test error curves (lower and upper curves,
respectively) of the combined classifier as a function of the number of rounds of boosting. The
horizontal lines indicate the test error rate of the base classifier as well as the test error of the final
combined classifier. Right: The cumulative distribution of margins of the training examples after 5,
100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly hidden) and solid curves,
respectively.

Analyzing the training error
The most basic theoretical property of AdaBoost concerns its ability to reduce the training error.
Let us write the error of as . Since a hypothesis that guesses each instance’s class
at random has an error rate of (on binary problems), thus measures how much better than
random are ’s predictions. Freund and Schapire [23] prove that the training error (the fraction of
mistakes on the training set) of the final hypothesis is at most

(1)

Thus, if each weak hypothesis is slightly better than random so that for some , then
the training error drops exponentially fast.

A similar property is enjoyed by previous boosting algorithms. However, previous algorithms
required that such a lower bound be known a priori before boosting begins. In practice, knowl-
edge of such a bound is very difficult to obtain. AdaBoost, on the other hand, is adaptive in that it
adapts to the error rates of the individual weak hypotheses. This is the basis of its name — “Ada”
is short for “adaptive.”

The bound given in Eq. (1), combined with the bounds on generalization error given below,
prove that AdaBoost is indeed a boosting algorithm in the sense that it can efficiently convert
a weak learning algorithm (which can always generate a hypothesis with a weak edge for any
distribution) into a strong learning algorithm (which can generate a hypothesis with an arbitrarily
low error rate, given sufficient data).

4

Learning Objectives

Ensemble Methods / Boosting
You should be able to…
1. Implement the Weighted Majority Algorithm
2. Implement AdaBoost
3. Distinguish what is learned in the Weighted

Majority Algorithm vs. Adaboost
4. Contrast the theoretical result for the

Weighted Majority Algorithm to that of
Perceptron

5. Explain a surprisingly common empirical result
regarding Adaboost train/test curves

77

