
Q-Learning

1

10-601 Introduction to Machine Learning

Matt Gormley
Lecture 24

Nov. 19, 2018

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders
• Homework 7: HMMs
– Out: Wed, Nov 7
– Due: Mon, Nov 19 at 11:59pm

• Homework 8: Reinforcement Learning
– Out: Mon, Nov 19
– Due: Fri, Dec 7 at 11:59pm

• Peer Tutoring
– Sign up by Mon, Nov 19

• Schedule Changes
– Recitation on Mon, Nov 26
– Lecture on Fri, Nov 30
– Recitation on Wed, Dec 5

3

VALUE ITERATION

9

Definitions for Value Iteration

Whiteboard
– State trajectory
– Value function
– Bellman equations
– Optimal policy
– Optimal value function
– Computing the optimal policy
– Ex: Path Planning

10

Example: Path Planning

11

Example: Robot Localization

12

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

Figure from Tom Mitchell

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

Value Iteration

Whiteboard
– Value Iteration Algorithm
– Synchronous vs. Asychronous Updates

13

Value Iteration

14

Value Iteration Convergence

15

Provides
reasonable

stopping criterion
for value iteration

Often greedy policy
converges well

before the value
function

Holds for both
asynchronous and

sychronous
updates

POLICY ITERATION

16

Policy Iteration

Whiteboard
– Policy Iteration Algorithm
– Solving the Bellman Equations for Fixed Policy
– Convergence Properties
– Value Iteration vs. Policy Iteration

17

Policy Iteration

18

Policy Iteration

19

System of |S|
equations and |S|

variables

Compute value
function for fixed

policy is easy

Greedy policy
w.r.t. current

value function

Greedy policy might remain the
same for a particular state if there is

no better action

Policy Iteration Convergence
In-Class Exercise:
How many policies are there for a finite sized state and
action space?

20

In-Class Exercise:
Suppose policy iteration is shown to improve the policy at
every iteration. Can you bound the number of iterations it
will take to converge?

Value Iteration vs. Policy Iteration
• Value iteration requires

O(|A| |S|2)
computation per iteration

• Policy iteration requires
O(|A| |S|2 + |S|3)
computation per iteration

• In practice, policy iteration
converges in fewer
iterations

21

Learning Objectives
Reinforcement Learning: Value and Policy Iteration

You should be able to…
1. Compare the reinforcement learning paradigm to other learning paradigms
2. Cast a real-world problem as a Markov Decision Process
3. Depict the exploration vs. exploitation tradeoff via MDP examples
4. Explain how to solve a system of equations using fixed point iteration
5. Define the Bellman Equations
6. Show how to compute the optimal policy in terms of the optimal value

function
7. Explain the relationship between a value function mapping states to

expected rewards and a value function mapping state-action pairs to
expected rewards

8. Implement value iteration
9. Implement policy iteration
10. Contrast the computational complexity and empirical convergence of value

iteration vs. policy iteration
11. Identify the conditions under which the value iteration algorithm will

converge to the true value function
12. Describe properties of the policy iteration algorithm

22

Q-LEARNING

23

Q-Learning

Whiteboard
– Motivation: What if we have zero knowledge of

the environment?
– Q-Function: Expected Discounted Reward

24

Example: Robot Localization

25

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

Figure from Tom Mitchell

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

State-action values Q*(s,a)

Bellman equation.

Consider first the case where
P(s’| s,a) is deterministic

Q-Learning

Whiteboard
– Q-Learning Algorithm
• Case 1: Deterministic Environment
• Case 2: Nondeterministic Environment

– Convergence Properties
– Exploration Insensitivity
– Ex: Re-ordering Experiences
– ϵ-greedy Strategy

26

DEEP RL EXAMPLES

27

TD Gammon à Alpha Go

Learning to beat the masters at board games

28

“…the world’s top computer
program for backgammon,
TD-GAMMON (Tesauro,
1992, 1995), learned its
strategy by playing over one
million practice games
against itself…”

(Mitchell, 1997)

THEN NOW

Lecture 1: Introduction to Reinforcement Learning

Problems within RL

Atari Example: Reinforcement Learning

observation

reward

action

At

Rt

Ot
Rules of the game are
unknown

Learn directly from
interactive game-play

Pick actions on
joystick, see pixels
and scores

Playing Atari with Deep RL
• Setup: RL

system
observes the
pixels on the
screen

• It receives
rewards as the
game score

• Actions decide
how to move
the joystick /
buttons

29
Figures from David Silver (Intro RL lecture)

Playing Atari with Deep RL

Videos:
– Atari Breakout:

https://www.youtube.com/watch?v=V1eYniJ0Rn
k

– Space Invaders:
https://www.youtube.com/watch?v=ePv0Fs9cG
gU

30

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

an experience replay mechanism [13] which randomly samples previous transitions, and thereby
smooths the training distribution over many past behaviors.

We apply our approach to a range of Atari 2600 games implemented in The Arcade Learning Envi-
ronment (ALE) [3]. Atari 2600 is a challenging RL testbed that presents agents with a high dimen-
sional visual input (210 ⇥ 160 RGB video at 60Hz) and a diverse and interesting set of tasks that
were designed to be difficult for humans players. Our goal is to create a single neural network agent
that is able to successfully learn to play as many of the games as possible. The network was not pro-
vided with any game-specific information or hand-designed visual features, and was not privy to the
internal state of the emulator; it learned from nothing but the video input, the reward and terminal
signals, and the set of possible actions—just as a human player would. Furthermore the network ar-
chitecture and all hyperparameters used for training were kept constant across the games. So far the
network has outperformed all previous RL algorithms on six of the seven games we have attempted
and surpassed an expert human player on three of them. Figure 1 provides sample screenshots from
five of the games used for training.

2 Background

We consider tasks in which an agent interacts with an environment E , in this case the Atari emulator,
in a sequence of actions, observations and rewards. At each time-step the agent selects an action
at from the set of legal game actions, A = {1, . . . ,K}. The action is passed to the emulator and
modifies its internal state and the game score. In general E may be stochastic. The emulator’s
internal state is not observed by the agent; instead it observes an image xt 2 Rd from the emulator,
which is a vector of raw pixel values representing the current screen. In addition it receives a reward
rt representing the change in game score. Note that in general the game score may depend on the
whole prior sequence of actions and observations; feedback about an action may only be received
after many thousands of time-steps have elapsed.

Since the agent only observes images of the current screen, the task is partially observed and many
emulator states are perceptually aliased, i.e. it is impossible to fully understand the current situation
from only the current screen xt. We therefore consider sequences of actions and observations, st =
x1, a1, x2, ..., at�1, xt, and learn game strategies that depend upon these sequences. All sequences
in the emulator are assumed to terminate in a finite number of time-steps. This formalism gives
rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct state.
As a result, we can apply standard reinforcement learning methods for MDPs, simply by using the
complete sequence st as the state representation at time t.

The goal of the agent is to interact with the emulator by selecting actions in a way that maximises
future rewards. We make the standard assumption that future rewards are discounted by a factor of
� per time-step, and define the future discounted return at time t as Rt =

PT
t0=t �

t0�t
rt0 , where T

is the time-step at which the game terminates. We define the optimal action-value function Q

⇤
(s, a)

as the maximum expected return achievable by following any strategy, after seeing some sequence
s and then taking some action a, Q⇤

(s, a) = max⇡ E [Rt|st = s, at = a,⇡], where ⇡ is a policy
mapping sequences to actions (or distributions over actions).

The optimal action-value function obeys an important identity known as the Bellman equation. This
is based on the following intuition: if the optimal value Q

⇤
(s

0
, a

0
) of the sequence s

0 at the next
time-step was known for all possible actions a

0, then the optimal strategy is to select the action a

0

2

Figures from Mnih et al. (2013)

Playing Atari with Deep RL

31

B. Rider Breakout Enduro Pong Q*bert Seaquest S. Invaders
Random 354 1.2 0 �20.4 157 110 179

Sarsa [3] 996 5.2 129 �19 614 665 271

Contingency [4] 1743 6 159 �17 960 723 268

DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 �3 18900 28010 3690

HNeat Best [8] 3616 52 106 19 1800 920 1720
HNeat Pixel [8] 1332 4 91 �16 1325 800 1145

DQN Best 5184 225 661 21 4500 1740 1075

Table 1: The upper table compares average total reward for various learning methods by running
an ✏-greedy policy with ✏ = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an ✏-greedy policy with ✏ = 0.05.

types of objects on the Atari screen. The HNeat Pixel score is obtained by using the special 8 color
channel representation of the Atari emulator that represents an object label map at each channel.
This method relies heavily on finding a deterministic sequence of states that represents a successful
exploit. It is unlikely that strategies learnt in this way will generalize to random perturbations;
therefore the algorithm was only evaluated on the highest scoring single episode. In contrast, our
algorithm is evaluated on ✏-greedy control sequences, and must therefore generalize across a wide
variety of possible situations. Nevertheless, we show that on all the games, except Space Invaders,
not only our max evaluation results (row 8), but also our average results (row 4) achieve better
performance.

Finally, we show that our method achieves better performance than an expert human player on
Breakout, Enduro and Pong and it achieves close to human performance on Beam Rider. The games
Q*bert, Seaquest, Space Invaders, on which we are far from human performance, are more chal-
lenging because they require the network to find a strategy that extends over long time scales.

6 Conclusion
This paper introduced a new deep learning model for reinforcement learning, and demonstrated its
ability to master difficult control policies for Atari 2600 computer games, using only raw pixels
as input. We also presented a variant of online Q-learning that combines stochastic minibatch up-
dates with experience replay memory to ease the training of deep networks for RL. Our approach
gave state-of-the-art results in six of the seven games it was tested on, with no adjustment of the
architecture or hyperparameters.

References

[1] Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In
Proceedings of the 12th International Conference on Machine Learning (ICML 1995), pages
30–37. Morgan Kaufmann, 1995.

[2] Marc Bellemare, Joel Veness, and Michael Bowling. Sketch-based linear value function ap-
proximation. In Advances in Neural Information Processing Systems 25, pages 2222–2230,
2012.

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence

Research, 47:253–279, 2013.

[4] Marc G Bellemare, Joel Veness, and Michael Bowling. Investigating contingency awareness
using atari 2600 games. In AAAI, 2012.

[5] Marc G. Bellemare, Joel Veness, and Michael Bowling. Bayesian learning of recursively fac-
tored environments. In Proceedings of the Thirtieth International Conference on Machine

Learning (ICML 2013), pages 1211–1219, 2013.

8

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

an experience replay mechanism [13] which randomly samples previous transitions, and thereby
smooths the training distribution over many past behaviors.

We apply our approach to a range of Atari 2600 games implemented in The Arcade Learning Envi-
ronment (ALE) [3]. Atari 2600 is a challenging RL testbed that presents agents with a high dimen-
sional visual input (210 ⇥ 160 RGB video at 60Hz) and a diverse and interesting set of tasks that
were designed to be difficult for humans players. Our goal is to create a single neural network agent
that is able to successfully learn to play as many of the games as possible. The network was not pro-
vided with any game-specific information or hand-designed visual features, and was not privy to the
internal state of the emulator; it learned from nothing but the video input, the reward and terminal
signals, and the set of possible actions—just as a human player would. Furthermore the network ar-
chitecture and all hyperparameters used for training were kept constant across the games. So far the
network has outperformed all previous RL algorithms on six of the seven games we have attempted
and surpassed an expert human player on three of them. Figure 1 provides sample screenshots from
five of the games used for training.

2 Background

We consider tasks in which an agent interacts with an environment E , in this case the Atari emulator,
in a sequence of actions, observations and rewards. At each time-step the agent selects an action
at from the set of legal game actions, A = {1, . . . ,K}. The action is passed to the emulator and
modifies its internal state and the game score. In general E may be stochastic. The emulator’s
internal state is not observed by the agent; instead it observes an image xt 2 Rd from the emulator,
which is a vector of raw pixel values representing the current screen. In addition it receives a reward
rt representing the change in game score. Note that in general the game score may depend on the
whole prior sequence of actions and observations; feedback about an action may only be received
after many thousands of time-steps have elapsed.

Since the agent only observes images of the current screen, the task is partially observed and many
emulator states are perceptually aliased, i.e. it is impossible to fully understand the current situation
from only the current screen xt. We therefore consider sequences of actions and observations, st =
x1, a1, x2, ..., at�1, xt, and learn game strategies that depend upon these sequences. All sequences
in the emulator are assumed to terminate in a finite number of time-steps. This formalism gives
rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct state.
As a result, we can apply standard reinforcement learning methods for MDPs, simply by using the
complete sequence st as the state representation at time t.

The goal of the agent is to interact with the emulator by selecting actions in a way that maximises
future rewards. We make the standard assumption that future rewards are discounted by a factor of
� per time-step, and define the future discounted return at time t as Rt =

PT
t0=t �

t0�t
rt0 , where T

is the time-step at which the game terminates. We define the optimal action-value function Q

⇤
(s, a)

as the maximum expected return achievable by following any strategy, after seeing some sequence
s and then taking some action a, Q⇤

(s, a) = max⇡ E [Rt|st = s, at = a,⇡], where ⇡ is a policy
mapping sequences to actions (or distributions over actions).

The optimal action-value function obeys an important identity known as the Bellman equation. This
is based on the following intuition: if the optimal value Q

⇤
(s

0
, a

0
) of the sequence s

0 at the next
time-step was known for all possible actions a

0, then the optimal strategy is to select the action a

0

2

Figures from Mnih et al. (2013)

Q-Learning

Whiteboard
– Approximating the Q function with a neural

network
– Deep Q-Learning
– Experience Replay

32

Alpha Go

Game of Go (��)
• 19x19 board
• Players alternately

play black/white
stones

• Goal is to fully
encircle the largest
region on the board

• Simple rules, but
extremely complex
game play

34
Figure from Silver et al. (2016)

4 8 8 | N A T U R E | V O L 5 2 9 | 2 8 J A N U A R Y 2 0 1 6

ARTICLERESEARCH

on high-performance MCTS algorithms. In addition, we included the
open source program GnuGo, a Go program using state-of-the-art
search methods that preceded MCTS. All programs were allowed 5 s
of computation time per move.

The results of the tournament (see Fig. 4a) suggest that single-
machine AlphaGo is many dan ranks stronger than any previous
Go program, winning 494 out of 495 games (99.8%) against other
Go programs. To provide a greater challenge to AlphaGo, we also
played games with four handicap stones (that is, free moves for the
opponent); AlphaGo won 77%, 86%, and 99% of handicap games
against Crazy Stone, Zen and Pachi, respectively. The distributed ver-
sion of AlphaGo was significantly stronger, winning 77% of games
against single-machine AlphaGo and 100% of its games against other
programs.

We also assessed variants of AlphaGo that evaluated positions
using just the value network (λ = 0) or just rollouts (λ = 1) (see
Fig. 4b). Even without rollouts AlphaGo exceeded the performance
of all other Go programs, demonstrating that value networks provide
a viable alternative to Monte Carlo evaluation in Go. However, the
mixed evaluation (λ = 0.5) performed best, winning ≥95% of games
against other variants. This suggests that the two position-evaluation

mechanisms are complementary: the value network approximates the
outcome of games played by the strong but impractically slow pρ, while
the rollouts can precisely score and evaluate the outcome of games
played by the weaker but faster rollout policy pπ. Figure 5 visualizes
the evaluation of a real game position by AlphaGo.

Finally, we evaluated the distributed version of AlphaGo against Fan
Hui, a professional 2 dan, and the winner of the 2013, 2014 and 2015
European Go championships. Over 5–9 October 2015 AlphaGo and
Fan Hui competed in a formal five-game match. AlphaGo won the
match 5 games to 0 (Fig. 6 and Extended Data Table 1). This is the
first time that a computer Go program has defeated a human profes-
sional player, without handicap, in the full game of Go—a feat that was
previously believed to be at least a decade away3,7,31.

Discussion
In this work we have developed a Go program, based on a combina-
tion of deep neural networks and tree search, that plays at the level of
the strongest human players, thereby achieving one of artificial intel-
ligence’s “grand challenges”31–33. We have developed, for the first time,
effective move selection and position evaluation functions for Go,
based on deep neural networks that are trained by a novel combination

Figure 6 | Games from the match between AlphaGo and the European
champion, Fan Hui. Moves are shown in a numbered sequence
corresponding to the order in which they were played. Repeated moves
on the same intersection are shown in pairs below the board. The first

move number in each pair indicates when the repeat move was played, at
an intersection identified by the second move number (see Supplementary
Information).

1 2

3

4

5

6

7

8

910

11

12

13

14

15 16

17

18

1920

21

22

23

24

25

26

27

28

29 30

31

32

33

3435

36 37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53

54

55

56

57

58

59

60

61

62

63

6465

66

67

68

69

70

71 72

73

74

75

7677

78

79

80

8182 83

84

85

86

87

88 89

90

91

9293

94

95

96

97

9899

100

101 102

103 104

105

106

107108

109

110

111

112

113

114

115 116

117

118

119

120

121

122123

124

125

126

127

128

129130 131

132

133

134

135

136

137

138

139

140

141

142

143

144

145 146

147

148

149 150

151

152

153

154

155

156

157

158

159

160 161

162163

164

165

166

167

168

169

170

171 172

173

174

175

176 177

178

179

180

181 182

183

184

185

186

187

188

189

190

191

192

193194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213 214

215

216

217 218

219

220221

222

223

224

225226

227

228

229

230

231

232

233

235236

237

238

239

240

241

242

243244 246 247

248

249

251

252

253

254

255

256

257

258

259

260

261

262 263

264

265

266267

268

269 270

271

272

234 at 179 245 at 122 250 at 59

1 2

3

4

5 6

7 8

9

1011

12

13

14

15

16

17

18

1920

21

22

23

24

25

26

2728

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47 48

49 50 5152

53

54 55

5657

58

59

60

61

62 63

64

65

66

67

68

69

70

71

7273

7475

76 77

78

79

80

81

82

83

84

85

86

87

88

8990

91

92

93 94

95

96

9798 99

100

101

102

103

104

105

106

107 108

109

110

111

112

113 114

115

116

117

118

119

120121

122123

124

125

126

127

128

129

130

131

132

133

134 135136

137

138

139 140

141142143

144

145

146

147 148

149

150 151

152

153

154155

156

157

158

159 160

161

162

163

164165

166

167

168169170 171

172

173

174

175

176

177

178179 180

181

183

182 at 169

1 2

3 4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

19 20

21

22

23

24

25

26

27

2829

30

31

32

33

34

35

36

37 38

39

40

41 42

43 44

45

46

47

4849

50

51

5253

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69 70

71

72

73

74 75

76

77

78

79

80

81 828384

85

86

87

88

8990

91

92

93

94

95

96 97

98

99

100

101

102

103104

105

106

107

108

109

110111

112

113

114

115

116

117 118

119

120

121 122

123

124 125

126

127

128

129130

131 132

133 134

135

136

137

138

139

140

141

142

143

144145

146

147 148

149

150

151

152

153

154

155156

157158

159160

161

162163

164

165

166

1 2

3

4

5 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22 23

24 25

26

2728 29

30

3132

33

34

35

36 37

38

39

40

41

42 43

44 45

46

47

48

49

50

51

52

5354

55

56

57

58

59

60 61

62

63

6465

66 67

68

69

70

71

72 73

74

75

76

77

78

79 80

81

8283

84

85

86

87

88

89

90

91

9293

94

9597

98

99100

101

102

103

104

105

106

107108

109

110 111

112

113

114

115

116

117

118 119

120

121122

123

124

125

126

127

128

129

130

131

132

133

134135

136137

138139

140

141

142

143

144

145

146

147

148 149

150

151 152

153

154

155156 157

158

159

160

161 162

163

164165

96 at 10

1 2

3 4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

19 20

21

22

2324

25

26

27

28

29

30

31

32

33

34

35

36

37

3839

40

41

42

43

44 45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

61

62

63

64

65

66

67

68

69

7071

72

73

74

75

76

77

78 79

80

81

82

83

84

85

86

87

8889

91

92

93

94

95

96

97

98 99

100

101

102 103

104105

106

107

108

109

110111

112

113

114

115

116117

118 119

120

121

122

123

124

125 126

128

129

130

131

132

133

134

135

136

137138

139140

141

142

143

144

145

146

147148

149

150

152 153

155

156

158159

161 162

164

165

166

167

168

169

170 171172

173

174175

176

177178

179

180

181

182

183

184 185

186 187

188 189

190

191

192

193 194

195

196197

198

199

200

201

202

203

204 205

206

207

208

209

210

211

212

213 214

90 at 15 127 at 37 151 at 141 154 at 148 157 at 141 160 at 148

163 at 141

Game 1
Fan Hui (Black), AlphaGo (White)
AlphaGo wins by 2.5 points

Game 2
AlphaGo (Black), Fan Hui (White)
AlphaGo wins by resignation

Game 3
Fan Hui (Black), AlphaGo (White)
AlphaGo wins by resignation

Game 4
AlphaGo (Black), Fan Hui (White)
AlphaGo wins by resignation

Game 5
Fan Hui (Black), AlphaGo (White)
AlphaGo wins by resignation

© 2016 Macmillan Publishers Limited. All rights reserved

Alpha Go
• State space is too large to represent explicitly since

of sequences of moves is O(bd)
– Go: b=250 and d=150
– Chess: b=35 and d=80

• Key idea:
– Define a neural network to approximate the value function
– Train by policy gradient

35

2 8 J A N U A R Y 2 0 1 6 | V O L 5 2 9 | N A T U R E | 4 8 5

ARTICLE RESEARCH

sampled state-action pairs (s, a), using stochastic gradient ascent to
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ (|)
∂

σp a slog

We trained a 13-layer policy network, which we call the SL policy
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from
other research groups of 44.4% at date of submission24 (full results in
Extended Data Table 3). Small improvements in accuracy led to large
improvements in playing strength (Fig. 2a); larger networks achieve
better accuracy but are slower to evaluate during search. We also
trained a faster but less accurate rollout policy pπ(a|s), using a linear
softmax of small pattern features (see Extended Data Table 4) with
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy
network by policy gradient reinforcement learning (RL)25,26. The RL
policy network pρ is identical in structure to the SL policy network,

and its weights ρ are initialized to the same values, ρ = σ. We play
games between the current policy network pρ and a randomly selected
previous iteration of the policy network. Randomizing from a pool
of opponents in this way stabilizes training by preventing overfitting
to the current policy. We use a reward function r(s) that is zero for all
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current
player at time step t: +1 for winning and −1 for losing. Weights are
then updated at each time step t by stochastic gradient ascent in the
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ (|)

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game
play, sampling each move ∼ (⋅|)ρa p st t from its output probability
distribution over actions. When played head-to-head, the RL policy
network won more than 80% of games against the SL policy network.
We also tested against the strongest open-source Go program, Pachi14,
a sophisticated Monte Carlo search program, ranked at 2 amateur dan
on KGS, that executes 100,000 simulations per move. Using no search
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised

Figure 1 | Neural network training pipeline and architecture. a, A fast
rollout policy pπ and supervised learning (SL) policy network pσ are
trained to predict human expert moves in a data set of positions.
A reinforcement learning (RL) policy network pρ is initialized to the SL
policy network, and is then improved by policy gradient learning to
maximize the outcome (that is, winning more games) against previous
versions of the policy network. A new data set is generated by playing
games of self-play with the RL policy network. Finally, a value network vθ
is trained by regression to predict the expected outcome (that is, whether

the current player wins) in positions from the self-play data set.
b, Schematic representation of the neural network architecture used in
AlphaGo. The policy network takes a representation of the board position
s as its input, passes it through many convolutional layers with parameters
σ (SL policy network) or ρ (RL policy network), and outputs a probability
distribution (|)σp a s or (|)ρp a s over legal moves a, represented by a
probability map over the board. The value network similarly uses many
convolutional layers with parameters θ, but outputs a scalar value vθ(s′)
that predicts the expected outcome in position s′.

Re
gr

es
si

on

C
la

ss
ifi

ca
tio

nC
lassification

Self Play

Policy gradient

a b

Human expert positions Self-play positions

N
eural netw

ork
D

ata

Rollout policy

pS pV pV�U (a⎪s) QT (s′)pU QT

SL policy network RL policy network Value network Policy network Value network

s s′

Figure 2 | Strength and accuracy of policy and value networks.
a, Plot showing the playing strength of policy networks as a function
of their training accuracy. Policy networks with 128, 192, 256 and 384
convolutional filters per layer were evaluated periodically during training;
the plot shows the winning rate of AlphaGo using that policy network
against the match version of AlphaGo. b, Comparison of evaluation
accuracy between the value network and rollouts with different policies.

Positions and outcomes were sampled from human expert games. Each
position was evaluated by a single forward pass of the value network vθ,
or by the mean outcome of 100 rollouts, played out using either uniform
random rollouts, the fast rollout policy pπ, the SL policy network pσ or
the RL policy network pρ. The mean squared error between the predicted
value and the actual game outcome is plotted against the stage of the game
(how many moves had been played in the given position).

15 45 75 105 135 165 195 225 255 >285
Move number

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
ea

n
sq

ua
re

d
er

ro
r

on
 e

xp
er

t g
am

es

Uniform random
rollout policy
Fast rollout policy
Value network
SL policy network
RL policy network

50 51 52 53 54 55 56 57 58 59
Training accuracy on KGS dataset (%)

0

10

20

30

40

50

60

70
128 filters
192 filters
256 filters
384 filters

A
lp

ha
G

o
w

in
 ra

te
 (%

)

a b

© 2016 Macmillan Publishers Limited. All rights reserved

Figure from Silver et al. (2016)

Alpha Go

• Results of a
tournament

• From Silver et
al. (2016): “a
230 point gap
corresponds to
a 79%
probability of
winning”

36
Figure from Silver et al. (2016)

2 8 J A N U A R Y 2 0 1 6 | V O L 5 2 9 | N A T U R E | 4 8 7

ARTICLE RESEARCH

better in AlphaGo than a value function ()≈ ()θ σv s v sp derived from the
SL policy network.

Evaluating policy and value networks requires several orders of
magnitude more computation than traditional search heuristics. To
efficiently combine MCTS with deep neural networks, AlphaGo uses
an asynchronous multi-threaded search that executes simulations on
CPUs, and computes policy and value networks in parallel on GPUs.
The final version of AlphaGo used 40 search threads, 48 CPUs, and
8 GPUs. We also implemented a distributed version of AlphaGo that

exploited multiple machines, 40 search threads, 1,202 CPUs and
176 GPUs. The Methods section provides full details of asynchronous
and distributed MCTS.

Evaluating the playing strength of AlphaGo
To evaluate AlphaGo, we ran an internal tournament among variants
of AlphaGo and several other Go programs, including the strongest
commercial programs Crazy Stone13 and Zen, and the strongest open
source programs Pachi14 and Fuego15. All of these programs are based

Figure 4 | Tournament evaluation of AlphaGo. a, Results of a
tournament between different Go programs (see Extended Data Tables
6–11). Each program used approximately 5 s computation time per move.
To provide a greater challenge to AlphaGo, some programs (pale upper
bars) were given four handicap stones (that is, free moves at the start of
every game) against all opponents. Programs were evaluated on an
Elo scale37: a 230 point gap corresponds to a 79% probability of winning,
which roughly corresponds to one amateur dan rank advantage on
KGS38; an approximate correspondence to human ranks is also shown,

horizontal lines show KGS ranks achieved online by that program. Games
against the human European champion Fan Hui were also included;
these games used longer time controls. 95% confidence intervals are
shown. b, Performance of AlphaGo, on a single machine, for different
combinations of components. The version solely using the policy network
does not perform any search. c, Scalability study of MCTS in AlphaGo
with search threads and GPUs, using asynchronous search (light blue) or
distributed search (dark blue), for 2 s per move.

3,500

3,000

2,500

2,000

1,500

1,000

500

0

c

1 2 4 8 16 32

1 2 4 8

12

64

24

112

40

176

64

280

40

Single machine Distributed

a

Rollouts

Value network

Policy network

3,500

3,000

2,500

2,000

1,500

1,000

500

0

b

40

8

Threads

GPUs

3,500

3,000

2,500

2,000

1,500

1,000

500

0
El

o
R

at
in

g

G
nuG

o

Fuego

P
achi

=HQ

C
razy S

tone

Fan H
ui

A
lphaG

o

A
lphaG

o
distributed

P
rofessional
 dan (p)

A
m

ateur
dan (d)

B
eginner
kyu (k)

9p
7p
5p
3p
1p

9d

7d

5d

3d

1d
1k

3k

5k

7k

Figure 5 | How AlphaGo (black, to play) selected its move in an
informal game against Fan Hui. For each of the following statistics,
the location of the maximum value is indicated by an orange circle.
a, Evaluation of all successors s′ of the root position s, using the value
network vθ(s′); estimated winning percentages are shown for the top
evaluations. b, Action values Q(s, a) for each edge (s, a) in the tree from
root position s; averaged over value network evaluations only (λ = 0).
c, Action values Q(s, a), averaged over rollout evaluations only (λ = 1).

d, Move probabilities directly from the SL policy network, (|)σp a s ;
reported as a percentage (if above 0.1%). e, Percentage frequency with
which actions were selected from the root during simulations. f, The
principal variation (path with maximum visit count) from AlphaGo’s
search tree. The moves are presented in a numbered sequence. AlphaGo
selected the move indicated by the red circle; Fan Hui responded with the
move indicated by the white square; in his post-game commentary he
preferred the move (labelled 1) predicted by AlphaGo.

Principal variation

Value networka

fPolicy network Percentage of simulations

b c Tree evaluation from rolloutsTree evaluation from value net

d e g

© 2016 Macmillan Publishers Limited. All rights reserved

Learning Objectives
Reinforcement Learning: Q-Learning

You should be able to…
1. Apply Q-Learning to a real-world environment
2. Implement Q-learning
3. Identify the conditions under which the Q-

learning algorithm will converge to the true
value function

4. Adapt Q-learning to Deep Q-learning by
employing a neural network approximation to
the Q function

5. Describe the connection between Deep Q-
Learning and regression

37

