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GRAPHICAL MODELS:
DETERMINING CONDITIONAL
INDEPENDENCIES



What Independencies does a Bayes Net Model?

In order for a Bayesian network to model a probability
distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants
in the graph given the value of all its parents.

* This follows from L
P(X,...X )= HP(X,. | parents(X,))
=1

-l [P X, x)
i=1

* But what else does it imply?

Slide from William Cohen



What Independencies does a Bayes Net Model?

Three cases of interest...




What Independencies does a Bayes Net Model?

Three cases of interest...




Whiteboard

Proof of

conditional
independence @ e

(The other two
cases can be
shown just as
easily.)



The “Burglar Alarm” example

* Your house has a twitchy burglar
alarm that is also sometimes Burglar arthquake
triggered by earthquakes.

* Earth arguably doesn’t care w
whether your house is currently
Phone Call

being burgled

* While you are on vacation, one of
your neighbors calls and tells you
your home’s burglar alarm is
ringing. Uh oh!

Slide from William Cohen



Markov Blanket

Def: the co-parents of a node
are the parents of its children

Def: the Markov Blanket of a
node is the set containing the @

node’s parents, children, and @ @ @

co-parents.

Thm: a node is conditionally @ @ @ @

independent of every other

node in the graph given its
Markov blanket @ @ @



Markov Blanket

Def: the co-parents of a node Example: The Markov
are the parents of its children Blanket of X is

Def: the Markov Blanket of a W3 Xy X5, Xy X X}

node is the set containing the @

node’s parents, children, and @ @ @

co-parents.

Theorem: a node is @ @ @ @

conditionally independent of

every other node in the graph @ @ @

given its Markov blanket



Markov Blanket

Example: The Markov
Blanket of X is
X5 Xy X, X& Xo, X0}

Def: the co-parents of a node
are the parents of its children

Def: the Markov Blanket of a
node is the set containing the
node’s parents, children, and
co-parents.

Theorem: a node is
conditionally independent of
every other node in the graph
given its Markov blanket

X]Z

Parents
v @
-/
Co -parents

Children @



D-Separation

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

Definition #1:
Variables X and Z are d-separated given a set of evidence variables E

iff every path from X to Z is “blocked”.

A pathis “blocked” whenever:
1. dYonpaths.t.Y € Eand Y is a “common parent”

oRNeY Yeio

2. dYonpaths.t.Y € EandYisina “cascade”

®-O-@O -0

3. dYon paths.t. {Y, descendants(Y)} ¢ Eand Y isin a “v-structure”

@ -O-D-O @
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D-Separation

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

Definition #2:
Variables X and Z are d-separated given a set of evidence variables E iff there does

not exist a path in the undirected moral graph

: keep only X, Z, E and their ancestors
2.  Moral graph: add undirected edge between all pairs of each node’s parents
3. Undirected graph: convert all directed edges to undirected
: delete any nodes in E

Example Query: A I B|{D, E}
Original: Moral: Undirected:

OB CNOICNOIRGIOSROJE =
= not d-separated
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SUPERVISED LEARNING FOR
BAYES NETS



Machine Learning




Machine Learning
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Learning Fully Observed BNs

- (x,) p(X1, Xo, X3, X4, X5) =
& p(X5|X3)p(X4| X2, X3)

x) () p(X3)p(Xa2| X1)p(X7)



Learning Fully Observed BNs

(%) - p(X1, Xo, X3, X4, X5) =
& p(X5|X3)p(X4| X2, X3)
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Learning Fully Observed BNs

- (x,) p(X1, Xo, X3, X4, X5) =
& p(X5|X3)p(X4| X2, X3)
x) () p(X3)p(X2| X1 )p(X1)

How do we learn these conditional and
marginal distributions for a Bayes Net?



Learning Fully Observed BNs

Learning this fully observed
Bayesian Network is
equivalent to learning five

p(Xla X27 X37 X47 X5) —
p(X5|X3)p(X4| X2, X3)

(small / simple) independent P(X3)p(X2| X1)p(X1)
networks from the same data




Learning Fully Observed BNs

How do we learn these
conditional and marginal
distributions for a Bayes Net? 0" = argmax log p(X1 , XQ, Xg, X4, X5)
0

= arggnaxlogp(X5]X3, 05) + log p(X4| X2, X3,04)

@ + log p(X3|03) + log p(Xo| X1, 02)
@ @ + log p(X1104)

67 = argmaxlog p(X1|01)

01
@ @ 65 = argmax log p( X5 | X1, 05)

02

05 = argmax log p(X3|03)
03

0, = argmaxlog p(X4[Xo, X3, 04)
04

9; — argmax lng(X5 Xg, (95)

05 21



Learning Fully Observed BNs
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INFERENCE FOR BAYESIAN
NETWORKS



A Few Problems for Bayes Nets

Suppose we already have the parameters of a Bayesian Network...

1.

How do we compute the probability of a specific assignment to the
variables?
P(T=t, H=h, A=a, C=c)

How do we draw a sample from the joint distribution?
t,h,a,c ~ P(T, H, A, C)

How do we compute marginal probabilities?

P(A) =...
<:| Can we

How do we draw samples from a conditional distribution? use
t,h,a~P(T,H,A|C=¢)

samples
How do we compute conditional marginal probabilities? p

PH|C=0)=... <:|



Gibbs Sampling




Gibbs Sampling

L (t+1)




Gibbs Sampling




Gibbs Sampling

Question:
How do we draw samples from a conditional distribution?
Yis Yos eees Y3 ™ p(yv Yo eees Y l Kip Ky ooy X )

(Approximate) Solution:
— Initialize y,(©), y,(©), ..., y (9 to arbitrary values
— Fort=1,2,...:
v, E~p(y, | v, ey O X X, e, X))
¢ YZ(tH) - p(Yz I Y1(t+1)f yS(t)’ N YJ(t)’ USTRSTERFRS )
© Y~ plys [y, v, 00y, 0,y O X %, el X))

© Y0~ plyy [y O, v,y X X, e X))

Properties:
— This will eventually yield samples from
p(yw Yo eeer Y I USTRASYRTTFIN )

— But it might take a long time -- just like other Markov Chain Monte Carlo
methods

33



Gibbs Sampling

Full conditionals
only need to

condition on the
Markov Blanket

* Must be “easy” to sample from
conditionals

* Many conditionals are log-concave
and are amenable to adaptive
rejection sampling

Inp(x)




Learning Objectives

Bayesian Networks

You should be able to...

1.

2.

W

o 1

|dentify the conditional independence assumptions given by a generative
story or a specification of a joint distribution

Draw a Bayesian network given a set of conditional independence
assumptions

Define the joint distribution specified by a Bayesian network

User domain knowledge to construct a (simple) Bayesian network for a real-
world modeling problem

Depict familiar models as Bayesian networks

Use d-separation to prove the existence of conditional indenpendencies in a
Bayesian network

Employ a Markov blanket to identify conditional independence assumptions
of a graphical model

Develop a supervised learning algorithm for a Bayesian network

Use samples from a joint distribution to compute marginal probabilities
Sample from the joint distribution specified by a generative story
Implement a Gibbs sampler for a Bayesian network



Reminders

* Homework 7: HMMs
— Out: Wed, Nov 7
— Due: Mon, Nov 19 at 11:59pm

* Schedule Changes

— Lecture on Fri, Nov 16
—Racitation Lecture on Mon, Nov 19
— Recitation on Mon, Nov 26







LEARNING PARADIGMS



Learning Paradigms

Whiteboard

— Supervised
* Regression
* Classification
* Binary Classification
* Structured Prediction

— Unsupervised

— Semi-supervised

— Online

— Active Learning

— Reinforcement Learning



REINFORCEMENT LEARNING



Examples of Reinforcement Learning

» How should a robot behave so as C@!,@;\'Jﬁé)
m ®

to optimize its “performance’”? m i
(Robotics) LW |

Y T

* How to automate the motion of e .
a helicopter? (Control Theory) '

* How to make a good chess-playing -
program? (Artificial Intelligence)  G=_

Eric Xing © Eric Xing @ CMU, 2006-2011



Autonomous Helicopter

Video:



Robotin a room

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP '
10% move LEFT

10% move RIGHT

« reward +1 at [4,3], -1 at [4,2]

« reward -0.04 for each step
* what’s the strategy to achieve max reward?
 what if the actions were NOT deterministic?

Eric Xing

© Eric Xing @ CMU, 2006-2011
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History of Reinforcement Learning

* Roots in the psychology of animal learning
(Thorndike,1911).

* Another independent thread was the problem of
optimal control, and its solution using dynamic
programming (Bellman, 1957).

* ldea of temporal difference learning (on-line
method), e.g., playing board games (Samuel, 1959).

* A major breakthrough was the discovery of Q-
learning (Watkins, 1989).

Eric Xing © Eric Xing @ CMU, 2006-2011
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What is special about RL?

RL is learning how to map states to actions, so
as to maximize a numerical reward over time.

Unlike other forms of learning, it is a multistage
decision-making process (often Markovian).

An RL agent must learn by trial-and-error. (Not
entirely supervised, but interactive)

Actions may affect not only the immediate
reward but also subsequent rewards (Delayed
effect).



Elements of RL

* Apolicy
- A map from state space to action space.
- May be stochastic.
* Areward function
- It maps each state (or, state-action pair) to
a real number, called reward.
* Avalue function
- Value of a state (or, state-action pair) is the
total expected reward, starting from that
state (or, state-action pair).

Eric Xing © Eric Xing @ CMU, 2006-2011
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Eric Xin

© Eric Xing @ CMU, 2006-2011
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Eric Xin

Reward for each step -2

© Eric Xing @ CMU, 2006-2011
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Eric Xin

Reward for each step: -0.1

© Eric Xing @ CMU, 2006-2011
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The Precise Goal

* To find a policy that maximizes the Value function.
— transitions and rewards usually not available

* There are different approaches to achieve this goal in
various situations.

* Value iteration and Policy iteration are two more
classic approaches to this problem. But essentially
both are dynamic programming.

* Q-learning is a more recent approaches to this
problem. Essentially it is a temporal-difference
method.

Eric Xing © Eric Xing @ CMU, 2006-2011
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MARKOV DECISION PROCESSES



Markov Decision Process

Whiteboard

— Components: states, actions, state transition
probabilities, reward function

— Markovian assumption

— MDP Model

— MDP Goal: Infinite-horizon Discounted Reward
— deterministic vs. nondeterministic MDP

— deterministic vs. stochastic policy



Exploration vs. Exploitation

Whiteboard

— Explore vs. Exploit Tradeoff
— Ex: k-Armed Bandits
— Ex: Traversing a Maze



FIXED POINT ITERATION



Fixed Point Iteration for Optimization

* Fixed pointiteration is a general tool for solving systems of
equations

* [t canalso be applied to optimization.

J(6)

dJj(@) . _
i AC
:f(g)j‘gz: (9)

0, = g(6")

/1
2
a
/4.
P
6

Given objective function:

Compute derivative, set to
zero (call this function f).

Rearrange the equation s.t.
one of parameters appears on
the LHS.

Initialize the parameters.

Foriin {/,...,K}, update each
parameter and increment

Repeat #5 until convergence



Fixed Point Iteration for Optimization

Fixed point iteration is a general tool for solving systems of

equations

It can also be applied to optimization.

3 3 1
J(x):%—l—ix2+2x 'y
dJ

) _ ) ::132—3:1:+2:O/3.
dx /
x2 + 2
— — —
T 3 g(x) .
2 + 2 5§
T <
3
6.

Given objective function:

Compute derivative, set to
zero (call this function f).

Rearrange the equation s.t.
one of parameters appears on
the LHS.

Initialize the parameters.

Foriin {/,...,K}, update each
parameter and increment

Repeat #5 until convergence



Fixed Point Iteration for Optimization

> 3,
J(x)—g%—ia: + 2x
d.J
d;x):f(x):x2—3x+2:o
x% + 2
= o= —— =9(2)
T2 + 2
T <
3

We can implement our

example in a few lines of
python.

0
f(x) z L
Fs 3.* r4
Jalx)
') {3
x ‘.) /J ’
(g, =@, )
‘Cptimize o DY d
Irting et -~ ter A
LUSes 4" 14 o
W
1 1A range(n)
e L ST W L N45° % x, f(x)))
gilx
% . 4 x)))
''''' - - -
- fpi(gl, 0, 20, 1)

57



Fixed Point Iteration for Optimization

$ python fixed-point-iteration.py

i= 0 x=0.0000 f(x)=2.0000

1= 1 x=0.6667 f(x)=0.4444

i= 2 x=0.8148 £(x)=0.2195

i= 3 x=0.8880 f(x)=0.1246

i= 4 x=0.9295 £(x)=0.0755

3 3 i= 5 x=0.9547 £(x)=0.0474

- 2 1= 6 x=0.9705 f(x)=0.0304
(z) =5 + 52" +22 i= 7 x=0.9806 f(x)=0.0198
e i= 8 x=0.9872 f(xg=®.®13®
_ 2 _ i= 9 x=0.9915 £(x)=0.0086

a1 =flz)=2"-3z+2=0 =10 x=0.9944 f(x)=0.0057
> i=11 x=0.9963 £(x)=0.0038
I e () =12 x=0.9975 f(x)=0.0025
— 3 9 =13 x=0.9983 f(x)=0.0017

; i=14 x=0.9989 £(x)=0.0011
T+ 2 i=15 x=0.9993 f(x)=0.0007
<3 i=16 x=0.9995 f(x)=0.0005
i=17 x=0.9997 £(x)=0.0003

=18 x=0.9998 f(x)=0.0002

=19 x=0.9999 f(x)=0.0001

=20 x=0.9999 f(x)=0.0001



VALUE ITERATION



Definitions for Value Iteration

Whiteboard

— State trajectory

— Value function

— Bellman equations

— Optimal policy

— Optimal value function

— Computing the optimal policy
— Ex: Path Planning



Example: Path Planning




Example: Robot Localization

= )
OHO ! CHO | :cc*
T ==

0 0

r(s,a) (immediate reward) values

— —b(; 901100_’0(9

f H—1H1
T T o 3 s0 F o

One optimal policy V*(s) values

Figure from Tom Mitchell



Value Iteration

Whiteboard

— Value Iteration Algorithm
— Synchronous vs. Asychronous Updates
— Convergence Properties



Value Iteration

Algorithm 1 Value Iteration

1: procedure VALUEITERATION(F(s,a) reward function, p(:|s,a)
transition probabilities)
Initialize value function V' (s) = 0 or randomly
while not converged do
fors € Sdo
fora € Ado

Q(s,a) = R(s,a) + 72 s P(s'|s,a)V(s)
V(s) = max, Q(s,a)

Let (s) = argmax, Q(s,a), Vs
9: return 7

VM EWN
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Policy Iteration

Whiteboard

— Policy Iteration Algorithm

— Solving the Bellman Equations for Fixed Policy
— Convergence Properties

— Value Iteration vs. Policy Iteration



Policy Iteration

Algorithm 1 Policy Iteration

1: procedure POLICYITERATION(R(s,a) reward function, p(-|s,a)

transition probabilities)
2: Initialize policy m randomly

3: while not converged do
Solve Bellman equations for fixed policy

4:
V™(s) = R(s,m(s)) + 7 ) _ p(s'|s,(s))V7™(s'), Vs
s'eS
5 Improve policy m using new value function

7(s) = argmax R(s,a) + v Z p(s'|s,a)V™(s")
a s'GS

6: return =
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Policy Iteration

Algorithm 1 Policy Iteration
- Compute value
1: procedure POLICYITERATION(F(s,a function forfixed ", p(-|s,a)

transition probabilities) policy is easy System of |3
2 Initialize policy m randomly equations and [S]
3:  while not converged do variables
4: Solve Bellman equations for fixed policy 7

V7™(s) = R(s,n(s)) +7 Y _ p(s’ "(s"), Vs
s'eS
5: Improve policy 7 using new value function
w(s) = dI‘gIIld\ R(s,a) 4+~ Z p(s'|s,a)V7(s")
s'eS
Greedy policy Greedy policy might remain the

6: return 7 w.r.t. current same for a particular state if thereis

value function no better action
67



Policy Iteration Convergence

In-Class Exercise:
How many policies are there for a finite sized state and
action space?

In-Class Exercise:

Suppose policy iteration is shown to improve the policy at
every iteration. Can you bound the number of iterations it

will take to converge?



Value Iteration vs. Policy Iteration

* Value iteration requires

O(|A[ |S]?) o
computation per iteration

Policy iteration requires
O(ATISE + [SP)
computation per iteration
In practice, policy iteration
converges in fewer
iterations

Algorithm 1 Value Iteration

1. procedure VALUEITERATION([(s,a) reward function, p(:|s,a)

2
3
4
5:
6:
7
8
9

transition probabilities)
Initialize value function V'(s) = 0 or randomly
while not converged do
fors € Sdo
fora € Ado
Q(s,a) = R(s,a) + v ycsp(s']s,a)V(s")

V(s) = max, Q(s,a)

Let 7(s) = argmax, Q(s,a), Vs

return 7

Algorithm 1 Policy Iteration

1. procedure POLICYITERATION(R(s,a) reward function, p(:|s,a)

2:
3:

transition probabilities)

Initialize policy m randomly
while not converged do
Solve Bellman equations for fixed policy 7

V™(s) = R(s,m(s)) +~ Z p(s'|s, w(s))V™(s"), Vs
s'eS

Improve policy m using new value function

7(s) = argmax R(s,a) + vy Z p(s|s,a)V7(s")

s'eS

return
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Learning Objectives

Reinforcement Learning: Value and Policy Iteration

You should be able to...

OV AW NP

11.

12.

Compare the reinforcement learning paradigm to other learning paradigms
Cast a real-world problem as a Markov Decision Process

Depict the exploration vs. exploitation tradeoff via MDP examples

Explain how to solve a system of equations using fixed point iteration
Define the Bellman Equations

Show how to compute the optimal policy in terms of the optimal value
function

Explain the relationship between a value function mapping states to
expected rewards and a value function mapping state-action pairs to
expected rewards

Implement value iteration
Implement policy iteration

Contrast the computational complexity and empirical convergence of value
iteration vs. policy iteration

|dentify the conditions under which the value iteration algorithm will
converge to the true value function

Describe properties of the policy iteration algorithm



