
Bayesian Networks

+

Reinforcement

Learning

1

10-601 Introduction to Machine Learning

Matt Gormley

Lecture 22

Nov. 14, 2018

Machine Learning Department

School of Computer Science

Carnegie Mellon University

GRAPHICAL MODELS:

DETERMINING CONDITIONAL

INDEPENDENCIES

What Independencies does a Bayes Net Model?

• In order for a Bayesian network to model a probability

distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants

in the graph given the value of all its parents.

• This follows from

• But what else does it imply?

P(X1…Xn) = P(Xi | parents(Xi))
i=1

n

∏

= P(Xi | X1…Xi−1)
i=1

n

∏

Slide from William Cohen

Common Parent V-StructureCascade

What Independencies does a Bayes Net Model?

4

Three cases of interest…

Z

Y

X

Y

X Z

ZX

YY

Common Parent V-StructureCascade

What Independencies does a Bayes Net Model?

5

Z

Y

X

Y

X Z

ZX

YY

X �� Z | Y X �� Z | Y X ��� Z | Y

Knowing Y

decouples X and Z

Knowing Y

couples X and Z

Three cases of interest…

Whiteboard

(The other two

cases can be

shown just as

easily.)

6

Common Parent

Y

X Z

X �� Z | Y

Proof of

conditional

independence

The �Burglar Alarm� example

• Your house has a twitchy burglar

alarm that is also sometimes

triggered by earthquakes.

• Earth arguably doesn’t care

whether your house is currently

being burgled

• While you are on vacation, one of

your neighbors calls and tells you

your home’s burglar alarm is

ringing. Uh oh!

Burglar Earthquake

Alarm

Phone Call

Slide from William Cohen

Quiz: True or False?

Burglar �� Earthquake | PhoneCall

Markov Blanket

9

Def: the Markov Blanket of a

node is the set containing the

node’s parents, children, and

co-parents.

Def: the co-parents of a node

are the parents of its children

Thm: a node is conditionally

independent of every other

node in the graph given its

Markov blanket

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11

Markov Blanket

10

Def: the Markov Blanket of a

node is the set containing the

node’s parents, children, and

co-parents.

Def: the co-parents of a node

are the parents of its children

Theorem: a node is

conditionally independent of

every other node in the graph

given its Markov blanket

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11

Example: The Markov

Blanket of X6 is

{X3, X4, X5, X8, X9, X10}

Markov Blanket

11

Def: the Markov Blanket of a

node is the set containing the

node’s parents, children, and

co-parents.

Def: the co-parents of a node

are the parents of its children

Theorem: a node is

conditionally independent of

every other node in the graph

given its Markov blanket

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11

Example: The Markov

Blanket of X6 is

{X3, X4, X5, X8, X9, X10}

ParentsChildren

ParentsCo-parents

ParentsParents

D-Separation

Definition #1:
Variables X and Z are d-separated given a set of evidence variables E

iff every path from X to Z is “blocked”.

A path is “blocked” whenever:

1. �Y on path s.t. Y � E and Y is a “common parent”

2. �Y on path s.t. Y � E and Y is in a “cascade”

3. �Y on path s.t. {Y, descendants(Y)} � E and Y is in a “v-structure”

12

If variables X and Z are d-separated given a set of variables E

Then X and Z are conditionally independent given the set E

YX Z… …

YX Z… …

YX Z… …

D-Separation

Definition #2:
Variables X and Z are d-separated given a set of evidence variables E iff there does

not exist a path in the undirected ancestral moral graph with E removed.

1. Ancestral graph: keep only X, Z, E and their ancestors

2. Moral graph: add undirected edge between all pairs of each node’s parents

3. Undirected graph: convert all directed edges to undirected

4. Givens Removed: delete any nodes in E

13

If variables X and Z are d-separated given a set of variables E

Then X and Z are conditionally independent given the set E

�A and B connected

� not d-separated

A B

C

D E

F

Original:

A B

C

D E

Ancestral:

A B

C

D E

Moral:

A B

C

D E

Undirected:

A B

C

Givens Removed:

Example Query: A ⫫ B | {D, E}

SUPERVISED LEARNING FOR

BAYES NETS

14

Machine Learning

15

The data inspires

the structures

we want to

predict
It also tells us

what to optimize

Our model

defines a score

for each structure

Learning tunes the

parameters of the

model

Inference finds

{best structure, marginals,

partition function} for a

new observation

Domain

Knowledge

Mathematical

Modeling

OptimizationCombinatorial
Optimization

ML

(Inference is usually

called as a subroutine

in learning)

Machine Learning

16

Data
Model

Learning

Inference

(Inference is usually

called as a subroutine

in learning)

3

A

l

i

c

e

s

a

w

B

o

b

o

n

a

h

i

l

l

w

i

t

h

a

t

e

l

e

s

c

o

p

e

A

l

i

c

e

s

a

w

B

o

b

o

n

a

h

i

l

l

w

i

t

h

a

t

e

l

e

s

c

o

p

e

4

t

i

m

e

fl

i

e

s

l

i

k

e

a

n

a

r

r

o

w

t

i

m

e

fl

i

e

s

l

i

k

e

a

n

a

r

r

o

w

t

i

m

e

fl

i

e

s

l

i

k

e

a

n

a

r

r

o

w

t

i

m

e

fl

i

e

s

l

i

k

e

a

n

a

r

r

o

w

t

i

m

e

fl

i

e

s

l

i

k

e

a

n

a

r

r

o

w

2

Objective

X1

X3X2

X4 X5

Learning Fully Observed BNs

17

X1

X3X2

X4 X5

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

Learning Fully Observed BNs

18

X1

X3X2

X4 X5

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

Learning Fully Observed BNs

How do we learn these conditional and

marginal distributions for a Bayes Net?

19

X1

X3X2

X4 X5

Learning Fully Observed BNs

20

X1

X3X2

X4 X5

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

X1

X2

X1

X3

X3X2

X4

X3

X5

Learning this fully observed

Bayesian Network is

equivalent to learning five

(small / simple) independent

networks from the same data

Learning Fully Observed BNs

21

X1

X3X2

X4 X5

✓⇤
= argmax

✓
log p(X1, X2, X3, X4, X5)

= argmax

✓
log p(X5|X3, ✓5) + log p(X4|X2, X3, ✓4)

+ log p(X3|✓3) + log p(X2|X1, ✓2)

+ log p(X1|✓1)

✓⇤1 = argmax

✓1

log p(X1|✓1)

✓⇤2 = argmax

✓2

log p(X2|X1, ✓2)

✓⇤3 = argmax

✓3

log p(X3|✓3)

✓⇤4 = argmax

✓4

log p(X4|X2, X3, ✓4)

✓⇤5 = argmax

✓5

log p(X5|X3, ✓5)

✓⇤
= argmax

✓
log p(X1, X2, X3, X4, X5)

= argmax

✓
log p(X5|X3, ✓5) + log p(X4|X2, X3, ✓4)

+ log p(X3|✓3) + log p(X2|X1, ✓2)

+ log p(X1|✓1)

How do we learn these

conditional and marginal

distributions for a Bayes Net?

Learning Fully Observed BNs

22

INFERENCE FOR BAYESIAN

NETWORKS

26

A Few Problems for Bayes Nets

Suppose we already have the parameters of a Bayesian Network…

1. How do we compute the probability of a specific assignment to the

variables?

P(T=t, H=h, A=a, C=c)

2. How do we draw a sample from the joint distribution?

t,h,a,c � P(T, H, A, C)

3. How do we compute marginal probabilities?

P(A) = …

4. How do we draw samples from a conditional distribution?

t,h,a � P(T, H, A | C = c)

5. How do we compute conditional marginal probabilities?

P(H | C = c) = …

27

Can we

use

samples

?

Gibbs Sampling

30

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

370 29 — Monte Carlo Methods

(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2)

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j ̸=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

p(x1|x(t)
2)

x

(t)
x

(t+1)

Gibbs Sampling

31

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

370 29 — Monte Carlo Methods

(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2)

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j ̸=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

x

(t+1)

x

(t+2)

p(x2|x(t+1)
1)

x

(t)

Gibbs Sampling

32

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

370 29 — Monte Carlo Methods

(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2)

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j ̸=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

x

(t+1)

x

(t+2)

x

(t)

x

(t+3)

x

(t+4)

Gibbs Sampling

Question:
How do we draw samples from a conditional distribution?

y
1
, y

2
, …, y

J
� p(y

1
, y

2
, …, y

J
| x

1
, x

2
, …, x

J
)

(Approximate) Solution:
– Initialize y

1

(0), y
2

(0), …, y
J

(0) to arbitrary values

– For t = 1, 2, …:

• y
1

(t+1) � p(y
1

| y
2

(t), …, y
J

(t), x
1
, x

2
, …, x

J
)

• y
2

(t+1) � p(y
2

| y
1

(t+1), y
3

(t), …, y
J

(t), x
1
, x

2
, …, x

J
)

• y
3

(t+1) � p(y
3

| y
1

(t+1), y
2

(t+1), y
4

(t), …, y
J

(t), x
1
, x

2
, …, x

J
)

• …

• y
J

(t+1) � p(y
J

| y
1

(t+1), y
2

(t+1), …, y
J-1

(t+1), x
1
, x

2
, …, x

J
)

Properties:
– This will eventually yield samples from

p(y
1
, y

2
, …, y

J
| x

1
, x

2
, …, x

J
)

– But it might take a long time -- just like other Markov Chain Monte Carlo

methods

33

Gibbs Sampling

Full conditionals

only need to

condition on the

Markov Blanket

34

• Must be “easy” to sample from

conditionals

• Many conditionals are log-concave

and are amenable to adaptive

rejection sampling

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11

Learning Objectives

Bayesian Networks

You should be able to…
1. Identify the conditional independence assumptions given by a generative

story or a specification of a joint distribution

2. Draw a Bayesian network given a set of conditional independence

assumptions

3. Define the joint distribution specified by a Bayesian network

4. User domain knowledge to construct a (simple) Bayesian network for a real-

world modeling problem

5. Depict familiar models as Bayesian networks

6. Use d-separation to prove the existence of conditional indenpendencies in a

Bayesian network

7. Employ a Markov blanket to identify conditional independence assumptions

of a graphical model

8. Develop a supervised learning algorithm for a Bayesian network

9. Use samples from a joint distribution to compute marginal probabilities

10. Sample from the joint distribution specified by a generative story

11. Implement a Gibbs sampler for a Bayesian network

35

Reminders

• Homework 7: HMMs

– Out: Wed, Nov 7

– Due: Mon, Nov 19 at 11:59pm

• Schedule Changes

– Lecture on Fri, Nov 16

– Recitation Lecture on Mon, Nov 19

– Recitation on Mon, Nov 26

36

Q&A

37

LEARNING PARADIGMS

38

Learning Paradigms

Whiteboard
– Supervised

• Regression

• Classification

• Binary Classification

• Structured Prediction

– Unsupervised

– Semi-supervised

– Online

– Active Learning

– Reinforcement Learning

39

REINFORCEMENT LEARNING

40

Eric Xing

Examples of Reinforcement Learning

• How should a robot behave so as

to optimize its “performance”?

(Robotics)

• How to automate the motion of

a helicopter? (Control Theory)

• How to make a good chess-playing

program? (Artificial Intelligence)

41© Eric Xing @ CMU, 2006-2011

Autonomous Helicopter

Video:

42

https://www.youtube.com/watch?v=VCdxqn0fcnE

Eric Xing

Robot in a room

• what’s the strategy to achieve max reward?

• what if the actions were NOT deterministic?

43© Eric Xing @ CMU, 2006-2011

Eric Xing

History of Reinforcement Learning

• Roots in the psychology of animal learning

(Thorndike,1911).

• Another independent thread was the problem of

optimal control, and its solution using dynamic

programming (Bellman, 1957).

• Idea of temporal difference learning (on-line

method), e.g., playing board games (Samuel, 1959).

• A major breakthrough was the discovery of Q-

learning (Watkins, 1989).

44© Eric Xing @ CMU, 2006-2011

Eric Xing

What is special about RL?

• RL is learning how to map states to actions, so

as to maximize a numerical reward over time.

• Unlike other forms of learning, it is a multistage

decision-making process (often Markovian).

• An RL agent must learn by trial-and-error. (Not

entirely supervised, but interactive)

• Actions may affect not only the immediate

reward but also subsequent rewards (Delayed

effect).

45© Eric Xing @ CMU, 2006-2011

Eric Xing

Elements of RL

• A policy

- A map from state space to action space.

- May be stochastic.

• A reward function

- It maps each state (or, state-action pair) to

a real number, called reward.

• A value function

- Value of a state (or, state-action pair) is the

total expected reward, starting from that

state (or, state-action pair).

46© Eric Xing @ CMU, 2006-2011

Eric Xing

Policy

47© Eric Xing @ CMU, 2006-2011

Eric Xing

Reward for each step -2

48© Eric Xing @ CMU, 2006-2011

Eric Xing

Reward for each step: -0.1

49© Eric Xing @ CMU, 2006-2011

Eric Xing

The Precise Goal

• To find a policy that maximizes the Value function.

– transitions and rewards usually not available

• There are different approaches to achieve this goal in

various situations.

• Value iteration and Policy iteration are two more

classic approaches to this problem. But essentially

both are dynamic programming.

• Q-learning is a more recent approaches to this

problem. Essentially it is a temporal-difference

method.

50© Eric Xing @ CMU, 2006-2011

MARKOV DECISION PROCESSES

51

Markov Decision Process

Whiteboard
– Components: states, actions, state transition

probabilities, reward function

– Markovian assumption

– MDP Model

– MDP Goal: Infinite-horizon Discounted Reward

– deterministic vs. nondeterministic MDP

– deterministic vs. stochastic policy

52

Exploration vs. Exploitation

Whiteboard
– Explore vs. Exploit Tradeoff

– Ex: k-Armed Bandits

– Ex: Traversing a Maze

53

FIXED POINT ITERATION

54

Fixed Point Iteration for Optimization

• Fixed point iteration is a general tool for solving systems of

equations

• It can also be applied to optimization.

55

1. Given objective function:

2. Compute derivative, set to

zero (call this function f).

3. Rearrange the equation s.t.

one of parameters appears on

the LHS.

4. Initialize the parameters.

5. For i in {1,...,K}, update each

parameter and increment t:
6. Repeat #5 until convergence

J(✓)

dJ(✓)

d✓i
= 0 = f(✓)

0 = f(✓)) ✓i = g(✓)

✓(t+1)
i = g(✓(t))

Fixed Point Iteration for Optimization

• Fixed point iteration is a general tool for solving systems of

equations

• It can also be applied to optimization.

56

1. Given objective function:

2. Compute derivative, set to

zero (call this function f).

3. Rearrange the equation s.t.

one of parameters appears on

the LHS.

4. Initialize the parameters.

5. For i in {1,...,K}, update each

parameter and increment t:
6. Repeat #5 until convergence

J(x) =
x

3

3
+

3

2
x

2 + 2x

dJ(x)

dx

= f(x) = x

2 � 3x+ 2 = 0

) x =
x

2 + 2

3
= g(x)

x x

2 + 2

3

Fixed Point Iteration for Optimization

We can implement our

example in a few lines of

python.

57

J(x) =
x

3

3
+

3

2
x

2 + 2x

dJ(x)

dx

= f(x) = x

2 � 3x+ 2 = 0

) x =
x

2 + 2

3
= g(x)

x x

2 + 2

3

Fixed Point Iteration for Optimization

58

$ python fixed-point-iteration.py
i= 0 x=0.0000 f(x)=2.0000
i= 1 x=0.6667 f(x)=0.4444
i= 2 x=0.8148 f(x)=0.2195
i= 3 x=0.8880 f(x)=0.1246
i= 4 x=0.9295 f(x)=0.0755
i= 5 x=0.9547 f(x)=0.0474
i= 6 x=0.9705 f(x)=0.0304
i= 7 x=0.9806 f(x)=0.0198
i= 8 x=0.9872 f(x)=0.0130
i= 9 x=0.9915 f(x)=0.0086
i=10 x=0.9944 f(x)=0.0057
i=11 x=0.9963 f(x)=0.0038
i=12 x=0.9975 f(x)=0.0025
i=13 x=0.9983 f(x)=0.0017
i=14 x=0.9989 f(x)=0.0011
i=15 x=0.9993 f(x)=0.0007
i=16 x=0.9995 f(x)=0.0005
i=17 x=0.9997 f(x)=0.0003
i=18 x=0.9998 f(x)=0.0002
i=19 x=0.9999 f(x)=0.0001
i=20 x=0.9999 f(x)=0.0001

J(x) =
x

3

3
+

3

2
x

2 + 2x

dJ(x)

dx

= f(x) = x

2 � 3x+ 2 = 0

) x =
x

2 + 2

3
= g(x)

x x

2 + 2

3

VALUE ITERATION

59

Definitions for Value Iteration

Whiteboard
– State trajectory

– Value function

– Bellman equations

– Optimal policy

– Optimal value function

– Computing the optimal policy

– Ex: Path Planning

60

Example: Path Planning

61

Example: Robot Localization

62

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

Figure from Tom Mitchell

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

Value Iteration

Whiteboard
– Value Iteration Algorithm

– Synchronous vs. Asychronous Updates

– Convergence Properties

63

Value Iteration

64

Policy Iteration

Whiteboard
– Policy Iteration Algorithm

– Solving the Bellman Equations for Fixed Policy

– Convergence Properties

– Value Iteration vs. Policy Iteration

65

Policy Iteration

66

Policy Iteration

67

System of |S|

equations and |S|

variables

Compute value

function for fixed

policy is easy

Greedy policy

w.r.t. current

value function

Greedy policy might remain the
same for a particular state if there is

no better action

Policy Iteration Convergence

In-Class Exercise:

How many policies are there for a finite sized state and

action space?

68

In-Class Exercise:

Suppose policy iteration is shown to improve the policy at

every iteration. Can you bound the number of iterations it

will take to converge?

Value Iteration vs. Policy Iteration

• Value iteration requires

O(|A| |S|2)

computation per iteration

• Policy iteration requires

O(|A| |S|2 + |S|3)

computation per iteration

• In practice, policy iteration

converges in fewer

iterations

69

Learning Objectives

Reinforcement Learning: Value and Policy Iteration

You should be able to…
1. Compare the reinforcement learning paradigm to other learning paradigms

2. Cast a real-world problem as a Markov Decision Process

3. Depict the exploration vs. exploitation tradeoff via MDP examples

4. Explain how to solve a system of equations using fixed point iteration

5. Define the Bellman Equations

6. Show how to compute the optimal policy in terms of the optimal value

function

7. Explain the relationship between a value function mapping states to

expected rewards and a value function mapping state-action pairs to

expected rewards

8. Implement value iteration

9. Implement policy iteration

10. Contrast the computational complexity and empirical convergence of value

iteration vs. policy iteration

11. Identify the conditions under which the value iteration algorithm will

converge to the true value function

12. Describe properties of the policy iteration algorithm

70

