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GRAPHICAL MODELS:

DETERMINING CONDITIONAL 

INDEPENDENCIES



What Independencies does a Bayes Net Model?

• In order for a Bayesian network to model a probability 

distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants 

in the graph given the value of all its parents.

• This follows from

• But what else does it imply?

P(X1…Xn ) = P(Xi | parents(Xi ))
i=1

n

∏

= P(Xi | X1…Xi−1)
i=1

n

∏

Slide from William Cohen



Common Parent V-StructureCascade

What Independencies does a Bayes Net Model?
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Three cases of interest…
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Common Parent V-StructureCascade

What Independencies does a Bayes Net Model?
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Z

Y

X

Y

X Z

ZX

YY

X �� Z | Y X �� Z | Y X ��� Z | Y

Knowing Y 

decouples X and Z

Knowing Y 

couples X and Z

Three cases of interest…



Whiteboard

(The other two 

cases can be 

shown just as 

easily.)
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Common Parent

Y

X Z

X �� Z | Y

Proof of 

conditional 

independence



The �Burglar Alarm� example

• Your house has a twitchy burglar 

alarm that is also sometimes 

triggered by earthquakes.

• Earth arguably doesn’t care 

whether your house is currently 

being burgled

• While you are on vacation, one of 

your neighbors calls and tells you 

your home’s burglar alarm is 

ringing.  Uh oh!

Burglar Earthquake

Alarm

Phone Call

Slide from William Cohen

Quiz: True or False?  

Burglar �� Earthquake | PhoneCall



Markov Blanket

9

Def: the Markov Blanket of a 

node is the set containing the 

node’s parents, children, and 

co-parents. 

Def: the co-parents of a node 

are the parents of its children

Thm: a node is conditionally 

independent of every other 

node in the graph given its 

Markov blanket

X1
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X6 X7
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Markov Blanket
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Def: the Markov Blanket of a 

node is the set containing the 

node’s parents, children, and 

co-parents. 

Def: the co-parents of a node 

are the parents of its children

Theorem: a node is 

conditionally independent of 

every other node in the graph 

given its Markov blanket

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11

Example: The Markov 

Blanket of X6 is 

{X3, X4, X5, X8, X9, X10}



Markov Blanket
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Def: the Markov Blanket of a 

node is the set containing the 

node’s parents, children, and 

co-parents. 

Def: the co-parents of a node 

are the parents of its children

Theorem: a node is 

conditionally independent of 

every other node in the graph 

given its Markov blanket

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11

Example: The Markov 

Blanket of X6 is 

{X3, X4, X5, X8, X9, X10}

ParentsChildren

ParentsCo-parents

ParentsParents



D-Separation

Definition #1: 
Variables X and Z are d-separated given a set of evidence variables E 

iff every path from X to Z is “blocked”.

A path is “blocked” whenever:

1. �Y on path s.t. Y � E and Y is a “common parent”

2. �Y on path s.t. Y � E and Y is in a “cascade”

3. �Y on path s.t. {Y, descendants(Y)}  � E and Y is in a “v-structure”
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If variables X and Z are d-separated given a set of variables E

Then X and Z are conditionally independent given the set E

YX Z… …

YX Z… …

YX Z… …



D-Separation

Definition #2: 
Variables X and Z are d-separated given a set of evidence variables E iff there does 

not exist a path in the undirected ancestral moral graph with E removed.

1. Ancestral graph: keep only X, Z, E and their ancestors

2. Moral graph: add undirected edge between all pairs of each node’s parents

3. Undirected graph: convert all directed edges to undirected

4. Givens Removed: delete any nodes in E

13

If variables X and Z are d-separated given a set of variables E

Then X and Z are conditionally independent given the set E

�A and B connected

� not d-separated

A B

C

D E

F

Original:

A B

C

D E

Ancestral:

A B

C

D E

Moral:

A B

C

D E

Undirected:

A B

C

Givens Removed:

Example Query: A ⫫ B | {D, E}



SUPERVISED LEARNING FOR 

BAYES NETS

14



Machine Learning
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The data inspires 

the structures 

we want to 

predict
It also tells us 

what to optimize

Our model

defines a score 

for each structure

Learning tunes the 

parameters of the 

model

Inference finds 

{best structure, marginals, 

partition function} for a 

new observation

Domain 

Knowledge

Mathematical 

Modeling

OptimizationCombinatorial 
Optimization

ML

(Inference is usually 

called as a subroutine 

in learning)



Machine Learning
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Data
Model

Learning

Inference

(Inference is usually 

called as a subroutine 

in learning)
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Learning Fully Observed BNs
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X1

X3X2

X4 X5

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)



p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

Learning Fully Observed BNs
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X1

X3X2

X4 X5



p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

Learning Fully Observed BNs

How do we learn these conditional and 

marginal distributions for a Bayes Net?

19

X1

X3X2

X4 X5



Learning Fully Observed BNs
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X1

X3X2

X4 X5

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

X1

X2

X1

X3

X3X2

X4

X3

X5

Learning this fully observed 

Bayesian Network is 

equivalent to learning five 

(small / simple) independent 

networks from the same data



Learning Fully Observed BNs
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X1

X3X2

X4 X5

✓⇤
= argmax

✓
log p(X1, X2, X3, X4, X5)

= argmax

✓
log p(X5|X3, ✓5) + log p(X4|X2, X3, ✓4)

+ log p(X3|✓3) + log p(X2|X1, ✓2)

+ log p(X1|✓1)

✓⇤1 = argmax

✓1

log p(X1|✓1)

✓⇤2 = argmax

✓2

log p(X2|X1, ✓2)

✓⇤3 = argmax

✓3

log p(X3|✓3)

✓⇤4 = argmax

✓4

log p(X4|X2, X3, ✓4)

✓⇤5 = argmax

✓5

log p(X5|X3, ✓5)

✓⇤
= argmax

✓
log p(X1, X2, X3, X4, X5)

= argmax

✓
log p(X5|X3, ✓5) + log p(X4|X2, X3, ✓4)

+ log p(X3|✓3) + log p(X2|X1, ✓2)

+ log p(X1|✓1)

How do we learn these 

conditional and marginal

distributions for a Bayes Net?



Learning Fully Observed BNs
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INFERENCE FOR BAYESIAN 

NETWORKS

26



A Few Problems for Bayes Nets

Suppose we already have the parameters of a Bayesian Network…

1. How do we compute the probability of a specific assignment to the 

variables?

P(T=t, H=h, A=a, C=c)

2. How do we draw a sample from the joint distribution?

t,h,a,c � P(T, H, A, C)

3. How do we compute marginal probabilities?

P(A) = …

4. How do we draw samples from a conditional distribution? 

t,h,a � P(T, H, A | C = c)

5. How do we compute conditional marginal probabilities?

P(H | C = c) = …

27

Can we 

use 

samples

?



Gibbs Sampling

30

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

370 29 — Monte Carlo Methods

(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2 )

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j ̸=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

p(x1|x(t)
2 )

x

(t)
x

(t+1)



Gibbs Sampling
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370 29 — Monte Carlo Methods

(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2 )

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j ̸=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

x

(t+1)

x

(t+2)

p(x2|x(t+1)
1 )

x

(t)



Gibbs Sampling
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(a)
x1
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P (x)

(b)
x1

x2

P (x1 |x(t)
2 )

x(t)

(c)
x1

x2

P (x2 |x1)
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x1
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Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j ̸=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

x

(t+1)

x

(t+2)

x

(t)

x

(t+3)

x

(t+4)



Gibbs Sampling

Question:
How do we draw samples from a conditional distribution? 

y
1
, y

2
, …, y

J
� p(y

1
, y

2
, …, y

J
| x

1
, x

2
, …, x

J
)

(Approximate) Solution:
– Initialize y

1

(0), y
2

(0), …, y
J

(0) to arbitrary values

– For t = 1, 2, …:

• y
1

(t+1) � p(y
1

| y
2

(t), …, y
J

(t), x
1
, x

2
, …, x

J
)

• y
2

(t+1) � p(y
2

| y
1

(t+1), y
3

(t), …, y
J

(t), x
1
, x

2
, …, x

J
)

• y
3

(t+1) � p(y
3

| y
1

(t+1), y
2

(t+1), y
4

(t), …, y
J

(t), x
1
, x

2
, …, x

J
)

• …

• y
J

(t+1) � p(y
J

| y
1

(t+1), y
2

(t+1), …, y
J-1

(t+1), x
1
, x

2
, …, x

J
)

Properties:
– This will eventually yield samples from 

p(y
1
, y

2
, …, y

J
| x

1
, x

2
, …, x

J
)

– But it might take a long time -- just like other Markov Chain Monte Carlo 

methods
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Gibbs Sampling

Full conditionals 

only need to 

condition on the 

Markov Blanket

34

• Must be “easy” to sample from 

conditionals

• Many conditionals are log-concave 

and are amenable to adaptive 

rejection sampling

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11



Learning Objectives

Bayesian Networks

You should be able to…
1. Identify the conditional independence assumptions given by a generative 

story or a specification of a joint distribution

2. Draw a Bayesian network given a set of conditional independence 

assumptions

3. Define the joint distribution specified by a Bayesian network

4. User domain knowledge to construct a (simple) Bayesian network for a real-

world modeling problem

5. Depict familiar models as Bayesian networks

6. Use d-separation to prove the existence of conditional indenpendencies in a 

Bayesian network

7. Employ a Markov blanket to identify conditional independence assumptions 

of a graphical model

8. Develop a supervised learning algorithm for a Bayesian network

9. Use samples from a joint distribution to compute marginal probabilities

10. Sample from the joint distribution specified by a generative story

11. Implement a Gibbs sampler for a Bayesian network

35



Reminders

• Homework 7: HMMs

– Out: Wed, Nov 7

– Due: Mon, Nov 19 at 11:59pm

• Schedule Changes

– Lecture on Fri, Nov 16

– Recitation Lecture on Mon, Nov 19

– Recitation on Mon, Nov 26

36



Q&A
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LEARNING PARADIGMS

38



Learning Paradigms

Whiteboard
– Supervised

• Regression

• Classification

• Binary Classification

• Structured Prediction

– Unsupervised

– Semi-supervised

– Online

– Active Learning

– Reinforcement Learning

39



REINFORCEMENT LEARNING

40



Eric Xing

Examples of Reinforcement Learning 

• How should a robot behave so as 

to optimize its “performance”? 

(Robotics)

• How to automate the motion of 

a helicopter? (Control Theory)

• How to make a good chess-playing 

program? (Artificial Intelligence)

41© Eric Xing @ CMU, 2006-2011



Autonomous Helicopter

Video:

42

https://www.youtube.com/watch?v=VCdxqn0fcnE



Eric Xing

Robot in a room

• what’s the strategy to achieve max reward?

• what if the actions were NOT deterministic?

43© Eric Xing @ CMU, 2006-2011



Eric Xing

History of Reinforcement Learning

• Roots in the psychology of animal learning

(Thorndike,1911).

• Another independent thread was the problem of 

optimal control, and its solution using dynamic 

programming (Bellman, 1957).

• Idea of temporal difference learning (on-line 

method), e.g., playing board games (Samuel, 1959).

• A major breakthrough was the discovery of Q-

learning (Watkins, 1989).

44© Eric Xing @ CMU, 2006-2011



Eric Xing

What is special about RL?

• RL is learning how to map states to actions, so 

as to maximize a numerical reward over time.

• Unlike other forms of learning, it is a multistage 

decision-making process (often Markovian).

• An RL agent must learn by trial-and-error. (Not 

entirely supervised, but interactive)

• Actions may affect not only the immediate 

reward but also subsequent rewards (Delayed 

effect). 

45© Eric Xing @ CMU, 2006-2011



Eric Xing

Elements of RL

• A policy

- A map from state space to action space.

- May be stochastic.

• A reward function

- It maps each state (or, state-action pair) to

a real number, called reward. 

• A value function

- Value of a state (or, state-action pair) is the

total expected reward, starting from that 

state (or, state-action pair).

46© Eric Xing @ CMU, 2006-2011



Eric Xing

Policy

47© Eric Xing @ CMU, 2006-2011



Eric Xing

Reward for each step -2

48© Eric Xing @ CMU, 2006-2011



Eric Xing

Reward for each step: -0.1

49© Eric Xing @ CMU, 2006-2011



Eric Xing

The Precise Goal

• To find a policy that maximizes the Value function.

– transitions and rewards usually not available

• There are different approaches to achieve this goal in 

various situations.

• Value iteration and Policy iteration are two more 

classic approaches to this problem. But essentially 

both are dynamic programming.

• Q-learning is a more recent approaches to this 

problem. Essentially it is a temporal-difference 

method.

50© Eric Xing @ CMU, 2006-2011



MARKOV DECISION PROCESSES
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Markov Decision Process

Whiteboard
– Components: states, actions, state transition 

probabilities, reward function

– Markovian assumption

– MDP Model

– MDP Goal: Infinite-horizon Discounted Reward

– deterministic vs. nondeterministic MDP

– deterministic vs. stochastic policy

52



Exploration vs. Exploitation

Whiteboard
– Explore vs. Exploit Tradeoff

– Ex: k-Armed Bandits

– Ex: Traversing a Maze

53



FIXED POINT ITERATION
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Fixed Point Iteration for Optimization

• Fixed point iteration is a general tool for solving systems of 

equations

• It can also be applied to optimization.

55

1. Given objective function:

2. Compute derivative, set to 

zero (call this function f ).

3. Rearrange the equation s.t.

one of parameters appears on 

the LHS.

4. Initialize the parameters.

5. For i in {1,...,K}, update each 

parameter and increment t:
6. Repeat #5 until convergence

J(✓)

dJ(✓)

d✓i
= 0 = f(✓)

0 = f(✓) ) ✓i = g(✓)

✓(t+1)
i = g(✓(t))



Fixed Point Iteration for Optimization

• Fixed point iteration is a general tool for solving systems of 

equations

• It can also be applied to optimization.

56

1. Given objective function:

2. Compute derivative, set to 

zero (call this function f ).

3. Rearrange the equation s.t.

one of parameters appears on 

the LHS.

4. Initialize the parameters.

5. For i in {1,...,K}, update each 

parameter and increment t:
6. Repeat #5 until convergence

J(x) =
x

3

3
+

3

2
x

2 + 2x

dJ(x)

dx

= f(x) = x

2 � 3x+ 2 = 0

) x =
x

2 + 2

3
= g(x)

x x

2 + 2

3



Fixed Point Iteration for Optimization

We can implement our 

example in a few lines of 

python.
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J(x) =
x

3

3
+

3

2
x

2 + 2x

dJ(x)

dx

= f(x) = x

2 � 3x+ 2 = 0

) x =
x

2 + 2

3
= g(x)

x x

2 + 2

3



Fixed Point Iteration for Optimization
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$ python fixed-point-iteration.py
i= 0 x=0.0000 f(x)=2.0000
i= 1 x=0.6667 f(x)=0.4444
i= 2 x=0.8148 f(x)=0.2195
i= 3 x=0.8880 f(x)=0.1246
i= 4 x=0.9295 f(x)=0.0755
i= 5 x=0.9547 f(x)=0.0474
i= 6 x=0.9705 f(x)=0.0304
i= 7 x=0.9806 f(x)=0.0198
i= 8 x=0.9872 f(x)=0.0130
i= 9 x=0.9915 f(x)=0.0086
i=10 x=0.9944 f(x)=0.0057
i=11 x=0.9963 f(x)=0.0038
i=12 x=0.9975 f(x)=0.0025
i=13 x=0.9983 f(x)=0.0017
i=14 x=0.9989 f(x)=0.0011
i=15 x=0.9993 f(x)=0.0007
i=16 x=0.9995 f(x)=0.0005
i=17 x=0.9997 f(x)=0.0003
i=18 x=0.9998 f(x)=0.0002
i=19 x=0.9999 f(x)=0.0001
i=20 x=0.9999 f(x)=0.0001

J(x) =
x

3

3
+

3

2
x

2 + 2x

dJ(x)

dx

= f(x) = x

2 � 3x+ 2 = 0

) x =
x

2 + 2

3
= g(x)

x x

2 + 2

3



VALUE ITERATION
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Definitions for Value Iteration

Whiteboard
– State trajectory

– Value function

– Bellman equations

– Optimal policy

– Optimal value function

– Computing the optimal policy

– Ex: Path Planning
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Example: Path Planning
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Example: Robot Localization
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Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

Figure from Tom Mitchell

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)



Value Iteration

Whiteboard
– Value Iteration Algorithm

– Synchronous vs. Asychronous Updates

– Convergence Properties
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Value Iteration
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Policy Iteration

Whiteboard
– Policy Iteration Algorithm

– Solving the Bellman Equations for Fixed Policy

– Convergence Properties

– Value Iteration vs. Policy Iteration
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Policy Iteration
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Policy Iteration
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System of |S| 

equations and |S| 

variables

Compute value 

function for fixed 

policy is easy

Greedy policy 

w.r.t. current 

value function

Greedy policy might remain the 
same for a particular state if there is 

no better action



Policy Iteration Convergence

In-Class Exercise: 

How many policies are there for a finite sized state and 

action space?
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In-Class Exercise: 

Suppose policy iteration is shown to improve the policy at 

every iteration. Can you bound the number of iterations it 

will take to converge?



Value Iteration vs. Policy Iteration

• Value iteration requires 

O(|A| |S|2) 

computation per iteration

• Policy iteration requires 

O(|A| |S|2 + |S|3) 

computation per iteration

• In practice, policy iteration 

converges in fewer 

iterations
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Learning Objectives

Reinforcement Learning: Value and Policy Iteration

You should be able to…
1. Compare the reinforcement learning paradigm to other learning paradigms

2. Cast a real-world problem as a Markov Decision Process

3. Depict the exploration vs. exploitation tradeoff via MDP examples

4. Explain how to solve a system of equations using fixed point iteration

5. Define the Bellman Equations

6. Show how to compute the optimal policy in terms of the optimal value 

function

7. Explain the relationship between a value function mapping states to 

expected rewards and a value function mapping state-action pairs to 

expected rewards

8. Implement value iteration

9. Implement policy iteration

10. Contrast the computational complexity and empirical convergence of value 

iteration vs. policy iteration

11. Identify the conditions under which the value iteration algorithm will 

converge to the true value function

12. Describe properties of the policy iteration algorithm
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