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PROBABILISTIC LEARNING



Probabilistic Learning

Function Approximation

Previously, we assumed that our
output was generated using a
deterministic target function:

x) ~ p* ()
y) = ¢*(x)

Our goal was to learn a
hypothesis h(x) that best
approximates ¢*(x)

Probabilistic Learning

Today, we assume that our
output is sampled from a
conditional probability
distribution:

x) ~ p* ()
y ~ p (- x1)

Our goal is to learn a probability
distribution p(y|x) that best
approximates p*(y|x)



Robotic F?rming

Deterministic Probabilistic
Classification s this a picture of | Is this plant
(binary output) a wheat kernel? drought resistant?
Regression How many wheat | What will the yield
(continuous kernels are in this | of this plant be?
picture?




Oracles and Sampling

Whiteboard

— Sampling from common probability distributions
* Bernoulli
* Categorical
e Uniform
* Gaussian
— Pretending to be an Oracle (Regression)
e (Case 1: Deterministic outputs
* Case 2: Probabilistic outputs
— Probabilistic Interpretation of Linear Regression
* Adding Gaussian noise to linear function
* Sampling from the noise model
— Pretending to be an Oracle (Classification)
* Case 1: Deterministic labels
* Case 2: Probabilistic outputs (Logistic Regression)
* (ase 3: Probabilistic outputs (Gaussian Naive Bayes)



In-Class Exercise

1. With your neighbor, write a function which
returns samples from a Categorical

— Assume access to the rand() function

— Function signature should be:

categorical_sample(theta)
where theta is the array of parameters

— Make your implementation as efficient as
possible!

2. What is the expected runtime of your
function?



Generative vs. Discrminative

Whiteboard

— Generative vs. Discriminative Models

* Chain rule of probability

* Maximum (Conditional) Likelihood Estimation for
Discriminative models

* Maximum Likelihood Estimation for Generative
models



Categorical Distribution

Whiteboard

— Categorical distribution details
* Independent and Identically Distributed (i.i.d.)
* Example: Dice Rolls



Takeaways

One view of what ML is trying to accomplish is
function approximation

The principle of maximum likelihood
estimation provides an alternate view of
learning

Synthetic data can help debug ML algorithms

Probability distributions can be used to model
real data that occurs in the world



Learning Objectives

Oracles, Sampling, Generative vs. Discriminative
You should be able to...
1. Sample from common probability distributions

2. Write a generative story for a generative or
discriminative classification or regression model

Pretend to be a data generating oracle

4. Provide a probabilistic interpretation of linear
regression

5. Use the chain rule of probability to contrast
generative vs. discriminative modeling

6. Define maximum likelihood estimation (MLE) and
maximum conditional likelihood estimation (MCLE)

W



PROBABILITY



Random Variables: Definitions

Discrete Random variable whose values come
Random X from a countable set (e.g. the natural
Variable numbers or {True, False})

Probability p(x) Function giving the probability that
mass discrete r.v. X takes value x.

function

(pmf)

p(z) := P(X = x)

22



Random Variables: Definitions

Continuous
Random
Variable

X

Random variable whose values come
from an interval or collection of
intervals (e.g. the real numbers or the

range (3, 5))

Probability
density
function

(pdf)

f(z)

Function the returns a nonnegative
real indicating the relative likelihood
that a continuous r.v. X takes value x

* For any continuous random variable: P(X =x) = 0

* Non-zero probabilities are only available to intervals:

P(angb):/bf(x)d:C




Random Variables: Definitions

Cumulative
distribution
function

F(x)

Function that returns the probability
that a random variable X is less than or
equal to x:

F(z) = P(X < z)

e Fordiscrete random variables:

F(z) =

P(X <ux)

=) P(X=2")= ) p)

/' <x /' <x

* For continuous random variables:

F(zx) =

P(X <

0= [ 1)




Notational Shortcuts

A convenient shorthand:
P(A, B)
P(B)
= For all values of a and b:

P(A|B) =

P(A=a|B=0b) =



Notational Shortcuts
But then how do we tell P(E) apart from P(X) ?
Event @ nandom @
Instead of writing: P(A, B)
P(A|B) =
(AIB) = —p 5
We should write: Pa (A, B)

... but only probability theory textbooks go to such lengths.



COMMON PROBABILITY
DISTRIBUTIONS



Common Probability Distributions

e For Discrete Random Variables:
— Bernoulli
— Binomial
— Multinomial
— Categorical
— Poisson

 For Continuous Random Variables:
— Exponential
— Gamma
— Beta
— Dirichlet
— Laplace
— Gaussian (1D)
— Multivariate Gaussian



Common Probability Distributions

Beta Distribution

probability density function:
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Common Probability Distributions

Dirichlet Distribution

probability density function:
1
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Common Probability Distributions

Dirichlet Distribution

probability density function:

K
p(dla) = —— J[ e+ where B(a) =
k=1

B(a)




EXPECTATION AND VARIANCE



Expectation and Variance

The expected value of X'is £/X]. Also called the mean.

 Discrete random variables:

Suppose X can take any value in the set X'.

E[X]= ) ap(z)

reX




Expectation and Variance

The variance of Xis Var(X).
Var(X) = E[(X — E[X])?]

* Discrete random variables: \

Var(X) = > (z — p)*p(x)

reX




MULTIPLE RANDOM VARIABLES



Joint Probability

e Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

e \We call this a joint ensemble and write
p(x,y) = prob(X =x and Y = y)

Z

AN

p(x.y.z)

Slide from Sam Roweis (MLSS, 2005)



Marginal Probabilities

e We can "sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(z) = plz,y)
Yy

e This is like adding slices of the table together.

y p(x.y)
e

e Another equivalent definition: p(x) = > _, p(x|y)p(y).

Slide from Sam Roweis (MLSS, 2005)



Conditional Probability

e If we know that some event has occurred, it changes our belief
about the probability of other events.

e This is like taking a "slice” through the joint table.

p(zly) = p(z,y)/p(y)

Z
P

BN

p(x.ylz)

Slide from Sam Roweis (MLSS, 2005)



Independence and
Conditional Independence

e Two variables are independent iff their joint factors:

p(z,y) = p(x)p(y)

p(x.y)

p(x)

p(y)

e Two variables are conditionally independent given a third one if for
all values of the conditioning variable, the resulting slice factors:

p(z,y|z) = p(z|z)p(ylz)  Vz

Slide from Sam Roweis (MLSS, 2005)



MLE AND MAP



MLE

Suppose we have data D = {z(W} ¥

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood

of the data. Ll .
™" = argmax Hp(x(z) 0)
o i1

Maximum Likelihood Estimate (MLE)



MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability
mass (i.e. sum-to-one constraint)

* MLE tries to allocate as much probability

mass as possible to the things we have
observed...

... at the expense of the things we have not
observed



MLE

Example: MLE of Exponential Distribution

pdf of Exponential(\): f(x) = \e™®

Suppose X; ~ Exponential(\) for1 < < N.
Find MLE for data D = {z()} |

First write down log-likelihood of sample.
Compute first derivative, set to zero, solve for \.
Compute second derivative and check that it is
concave down at AMLE,









MLE

Example: MLE of Exponential Distribution

pdf of Exponential(\): f(x) = \e™®

Suppose X; ~ Exponential(\) for1 < < N.
Find MLE for data D = {z()} |

First write down log-likelihood of sample.
Compute first derivative, set to zero, solve for \.
Compute second derivative and check that it is
concave down at AMLE,



MLE

In-Class Exercise Steps to answer:
Show that the MLE of | 1. Write log-likelihood
parameter ¢ for N of sample
samples drawn from |5 Compute derivative
Bernoulli(¢) is: w.r.t. ¢
3. Set derivative to

Number of z; = 1 zero and solve for ¢

PMLE =

N



Learning from Data (Frequentist)

Whiteboard

— Optimization for MLE
— Examples: 1D and 2D optimization
— Example: MLE of Bernoulli

— Example: MLE of Categorical
— Aside: Method of Langrange Multipliers



MLE vs. MAP

Suppose we have data D = {z(V1V




MLE vs. MAP

Suppose we have data D = {z(V1V




Learning from Data (Bayesian)

Whiteboard

— maximum a posteriori (MAP) estimation
— Optimization for MAP
— Example: MAP of Bernoulli—Beta



Takeaways

One view of what ML is trying to accomplish is
function approximation

The principle of maximum likelihood
estimation provides an alternate view of
learning

Synthetic data can help debug ML algorithms

Probability distributions can be used to model
real data that occurs in the world



Learning Objectives

MLE /| MAP

You should be able to...

1.

Recall probability basics, including but not limited to: discrete
and continuous random variables, probability mass functions,
probability density functions, events vs. random variables,
expectation and variance, joint probability distributions,
marginal probabilities, conditional probabilities, independence,
conditional independence

Describe common probability distributions such as the Beta,
Dirichlet, Multinomial, Categorical, Gaussian, Exponential, etc.

State the principle of maximum likelihood estimation and
explain what it tries to accomplish

State the principle of maximum a posteriori estimation and
explain why we use it

Derive the MLE or MAP parameters of a simple model in closed
form



