10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Matt Gormley Lecture 20 Oct 29, 2018 # Q&A ## PROBABILISTIC LEARNING # Probabilistic Learning #### **Function Approximation** Previously, we assumed that our output was generated using a deterministic target function: $$\mathbf{x}^{(i)} \sim p^*(\cdot)$$ $$y^{(i)} = c^*(\mathbf{x}^{(i)})$$ Our goal was to learn a hypothesis h(x) that best approximates c*(x) #### **Probabilistic Learning** Today, we assume that our output is **sampled** from a conditional **probability distribution**: $$\mathbf{x}^{(i)} \sim p^*(\cdot)$$ $$y^{(i)} \sim p^*(\cdot|\mathbf{x}^{(i)})$$ Our goal is to learn a probability distribution p(y|x) that best approximates $p^*(y|x)$ # Robotic Farming | | Deterministic | Probabilistic | |--------------------------------------|---|---------------------------------------| | Classification (binary output) | Is this a picture of a wheat kernel? | Is this plant drought resistant? | | Regression
(continuous
output) | How many wheat kernels are in this picture? | What will the yield of this plant be? | # Oracles and Sampling #### Whiteboard - Sampling from common probability distributions - Bernoulli - Categorical - Uniform - Gaussian - Pretending to be an Oracle (Regression) - Case 1: Deterministic outputs - Case 2: Probabilistic outputs - Probabilistic Interpretation of Linear Regression - Adding Gaussian noise to linear function - Sampling from the noise model - Pretending to be an Oracle (Classification) - Case 1: Deterministic labels - Case 2: Probabilistic outputs (Logistic Regression) - Case 3: Probabilistic outputs (Gaussian Naïve Bayes) ## In-Class Exercise - 1. With your neighbor, write a function which returns samples from a Categorical - Assume access to the rand() function - Function signature should be: categorical_sample(theta) where theta is the array of parameters - Make your implementation as **efficient** as possible! - 2. What is the **expected runtime** of your function? ## Generative vs. Discrminative #### Whiteboard - Generative vs. Discriminative Models - Chain rule of probability - Maximum (Conditional) Likelihood Estimation for Discriminative models - Maximum Likelihood Estimation for Generative models # Categorical Distribution #### Whiteboard - Categorical distribution details - Independent and Identically Distributed (i.i.d.) - Example: Dice Rolls ## Takeaways - One view of what ML is trying to accomplish is function approximation - The principle of maximum likelihood estimation provides an alternate view of learning - Synthetic data can help debug ML algorithms - Probability distributions can be used to model real data that occurs in the world (don't worry we'll make our distributions more interesting soon!) # Learning Objectives # Oracles, Sampling, Generative vs. Discriminative You should be able to... - 1. Sample from common probability distributions - Write a generative story for a generative or discriminative classification or regression model - 3. Pretend to be a data generating oracle - 4. Provide a probabilistic interpretation of linear regression - 5. Use the chain rule of probability to contrast generative vs. discriminative modeling - 6. Define maximum likelihood estimation (MLE) and maximum conditional likelihood estimation (MCLE) ## **PROBABILITY** ## Random Variables: Definitions | Discrete
Random
Variable | X | Random variable whose values come from a countable set (e.g. the natural numbers or {True, False}) | |---------------------------------|------|--| | Probability mass function (pmf) | p(x) | Function giving the probability that discrete r.v. X takes value x. $p(x) := P(X = x)$ | ## Random Variables: Definitions | Continuous
Random
Variable | X | Random variable whose values come from an interval or collection of intervals (e.g. the real numbers or the range (3, 5)) | |------------------------------------|------|---| | Probability density function (pdf) | f(x) | Function the returns a nonnegative real indicating the relative likelihood that a continuous r.v. X takes value x | - For any continuous random variable: P(X = x) = 0 - Non-zero probabilities are only available to intervals: $$P(a \le X \le b) = \int_a^b f(x)dx$$ ## Random Variables: Definitions #### **Cumulative** distribution **function** F(x) | that a random variable X is less than or equal to x: $$F(x) = P(X \le x)$$ For discrete random variables: $$F(x) = P(X \le x) = \sum_{x' < x} P(X = x') = \sum_{x' < x} p(x')$$ For continuous random variables: $$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x')dx'$$ ## **Notational Shortcuts** #### A convenient shorthand: $$P(A|B) = \frac{P(A,B)}{P(B)}$$ \Rightarrow For all values of a and b: $$P(A = a|B = b) = \frac{P(A = a, B = b)}{P(B = b)}$$ ## **Notational Shortcuts** But then how do we tell P(E) apart from P(X)? Instead of writing: $$P(A|B) = \frac{P(A,B)}{P(B)}$$ We should write: $$P_{A|B}(A|B) = \frac{P_{A,B}(A,B)}{P_{B}(B)}$$... but only probability theory textbooks go to such lengths. # COMMON PROBABILITY DISTRIBUTIONS - For Discrete Random Variables: - Bernoulli - Binomial - Multinomial - Categorical - Poisson - For Continuous Random Variables: - Exponential - Gamma - Beta - Dirichlet - Laplace - Gaussian (1D) - Multivariate Gaussian #### **Beta Distribution** probability density function: $$f(\phi|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$ #### Dirichlet Distribution probability density function: $$f(\phi|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$ #### Dirichlet Distribution probability density function: $$p(\vec{\phi}|\boldsymbol{\alpha}) = \frac{1}{B(\boldsymbol{\alpha})} \prod_{k=1}^{K} \phi_k^{\alpha_k - 1} \quad \text{where } B(\boldsymbol{\alpha}) = \frac{\prod_{k=1}^{K} \Gamma(\alpha_k)}{\Gamma(\sum_{k=1}^{K} \alpha_k)}$$ ## **EXPECTATION AND VARIANCE** ## **Expectation and Variance** The **expected value** of X is E[X]. Also called the mean. Discrete random variables: Suppose X can take any value in the set X. $$E[X] = \sum_{x \in \mathcal{X}} xp(x)$$ Continuous random variables: $$E[X] = \int_{-\infty}^{+\infty} x f(x) dx$$ ## **Expectation and Variance** The **variance** of X is Var(X). $$Var(X) = E[(X - E[X])^2]$$ Discrete random variables: $$Var(X) = \sum_{x \in \mathcal{X}} (x - \mu)^2 p(x)$$ Continuous random variables: $$Var(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$$ Joint probability Marginal probability Conditional probability ## **MULTIPLE RANDOM VARIABLES** # Joint Probability - Key concept: two or more random variables may interact. Thus, the probability of one taking on a certain value depends on which value(s) the others are taking. - We call this a joint ensemble and write p(x,y) = prob(X = x and Y = y) # Marginal Probabilities We can "sum out" part of a joint distribution to get the marginal distribution of a subset of variables: $$p(x) = \sum_{y} p(x, y)$$ • This is like adding slices of the table together. • Another equivalent definition: $p(x) = \sum_{y} p(x|y)p(y)$. ## **Conditional Probability** - If we know that some event has occurred, it changes our belief about the probability of other events. - This is like taking a "slice" through the joint table. $$p(x|y) = p(x,y)/p(y)$$ # Independence and Conditional Independence Two variables are independent iff their joint factors: Two variables are conditionally independent given a third one if for all values of the conditioning variable, the resulting slice factors: $$p(x, y|z) = p(x|z)p(y|z) \qquad \forall z$$ ## **MLE AND MAP** Suppose we have data $\mathcal{D} = \{x^{(i)}\}_{i=1}^{N}$ ## Principle of Maximum Likelihood Estimation: Choose the parameters that maximize the likelihood of the data. $\frac{N}{N}$ $$\boldsymbol{\theta}^{\mathsf{MLE}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{i=1} p(\mathbf{x}^{(i)} | \boldsymbol{\theta})$$ Maximum Likelihood Estimate (MLE) What does maximizing likelihood accomplish? - There is only a finite amount of probability mass (i.e. sum-to-one constraint) - MLE tries to allocate as much probability mass as possible to the things we have observed... ... at the expense of the things we have not observed ## Example: MLE of Exponential Distribution - pdf of Exponential(λ): $f(x) = \lambda e^{-\lambda x}$ - Suppose $X_i \sim \text{Exponential}(\lambda)$ for $1 \leq i \leq N$. - Find MLE for data $\mathcal{D} = \{x^{(i)}\}_{i=1}^N$ - First write down log-likelihood of sample. - Compute first derivative, set to zero, solve for λ . - Compute second derivative and check that it is concave down at λ^{MLE} . ## Example: MLE of Exponential Distribution • First write down log-likelihood of sample. $$\ell(\lambda) = \sum_{i=1}^{N} \log f(x^{(i)}) \tag{1}$$ $$= \sum_{i=1}^{N} \log(\lambda \exp(-\lambda x^{(i)}))$$ (2) $$=\sum_{i=1}^{N}\log(\lambda) + -\lambda x^{(i)} \tag{3}$$ $$= N \log(\lambda) - \lambda \sum_{i=1}^{N} x^{(i)}$$ (4) ## Example: MLE of Exponential Distribution • Compute first derivative, set to zero, solve for λ . $$\frac{d\ell(\lambda)}{d\lambda} = \frac{d}{d\lambda} N \log(\lambda) - \lambda \sum_{i=1}^{N} x^{(i)}$$ (1) $$= \frac{N}{\lambda} - \sum_{i=1}^{N} x^{(i)} = 0$$ (2) $$\Rightarrow \lambda^{\mathsf{MLE}} = \frac{N}{\sum_{i=1}^{N} x^{(i)}} \tag{3}$$ ## Example: MLE of Exponential Distribution - pdf of Exponential(λ): $f(x) = \lambda e^{-\lambda x}$ - Suppose $X_i \sim \text{Exponential}(\lambda)$ for $1 \leq i \leq N$. - Find MLE for data $\mathcal{D} = \{x^{(i)}\}_{i=1}^N$ - First write down log-likelihood of sample. - Compute first derivative, set to zero, solve for λ . - Compute second derivative and check that it is concave down at λ^{MLE} . #### **In-Class Exercise** Show that the MLE of parameter ϕ for N samples drawn from Bernoulli(ϕ) is: $$\phi_{MLE} = rac{ ext{Number of } x_i = 1}{N}$$ ## Steps to answer: - Write log-likelihood of sample - 2. Compute derivative w.r.t. ϕ - 3. Set derivative to zero and solve for ϕ # Learning from Data (Frequentist) #### Whiteboard - Optimization for MLE - Examples: 1D and 2D optimization - Example: MLE of Bernoulli - Example: MLE of Categorical - Aside: Method of Langrange Multipliers #### MLE vs. MAP Suppose we have data $\mathcal{D} = \{x^{(i)}\}_{i=1}^{N}$ ## Principle of Maximum Likelihood Estimation: Choose the parameters that maximize the likelihood of the data. $\frac{N}{N}$ $$\boldsymbol{\theta}^{\mathsf{MLE}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{i=1} p(\mathbf{x}^{(i)} | \boldsymbol{\theta})$$ Maximum Likelihood Estimate (MLE) ## Principle of Maximum a posteriori (MAP) Estimation: Choose the parameters that maximize the posterior of the parameters given the data. $$\boldsymbol{\theta}^{\mathsf{MAP}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{i=1}^{N} p(\boldsymbol{\theta}|\mathbf{x}^{(i)})$$ Maximum a posteriori (MAP) estimate #### MLE vs. MAP Suppose we have data $\mathcal{D} = \{x^{(i)}\}_{i=1}^{N}$ ## Principle of Maximum Likelihood Estimation: Choose the parameters that maximize the likelihood of the data. $\frac{N}{N}$ $$\boldsymbol{\theta}^{\mathsf{MLE}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{i=1} p(\mathbf{x}^{(i)} | \boldsymbol{\theta})$$ Maximum Likelihood Estimate (MLE) ## Principle of Maximum a posteriori (MAP) Estimation: Choose the parameters that maximize the posterior of the parameters given the data. Prior $$\boldsymbol{\theta}^{\mathsf{MAP}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{i=1}^{N} p(\mathbf{x}^{(i)}|\boldsymbol{\theta}) p(\boldsymbol{\theta})$$ Maximum a posteriori (MAP) estimate # Learning from Data (Bayesian) #### Whiteboard - maximum a posteriori (MAP) estimation - Optimization for MAP - Example: MAP of Bernoulli—Beta ## Takeaways - One view of what ML is trying to accomplish is function approximation - The principle of maximum likelihood estimation provides an alternate view of learning - Synthetic data can help debug ML algorithms - Probability distributions can be used to model real data that occurs in the world (don't worry we'll make our distributions more interesting soon!) # Learning Objectives #### MLE / MAP #### You should be able to... - Recall probability basics, including but not limited to: discrete and continuous random variables, probability mass functions, probability density functions, events vs. random variables, expectation and variance, joint probability distributions, marginal probabilities, conditional probabilities, independence, conditional independence - 2. Describe common probability distributions such as the Beta, Dirichlet, Multinomial, Categorical, Gaussian, Exponential, etc. - 3. State the principle of maximum likelihood estimation and explain what it tries to accomplish - 4. State the principle of maximum a posteriori estimation and explain why we use it - 5. Derive the MLE or MAP parameters of a simple model in closed form