10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Deep Learning

Matt Gormley
Lecture 13
Oct. 15, 2018

Reminders

- Homework 5: Neural Networks
- Out: Tue, Oct 9
- Due: Sat, Oct 20 at 11:59pm

Q\&A

NEURAL NETWORKS

Background

A Recipe for Machine Learning

1. Given training data:

$$
\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\}_{i=1}^{N}
$$

2. Choose each of these:

- Decision function

$$
\hat{\boldsymbol{y}}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)
$$

- Loss function

$$
\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{R}
$$

Examples: Linear regression, Logistic regression, Neural Network

Examples: Mean-squared error, Cross Entropy

Background

A Recipe for

Machine Learning

1. Given training data:

$$
\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\}_{i=1}^{N}
$$

3. Define goal:

$$
\boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} \sum_{i=1}^{N} \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)
$$

2. Choose each of these:

- Decision function

$$
\hat{\boldsymbol{y}}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)
$$

- Loss function

$$
\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{R}
$$

4. Train with SGD:
(take small steps
opposite the gradient)

$$
\boldsymbol{\theta}^{(t+1)}=\boldsymbol{\theta}^{(t)}-\eta_{t} \nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)
$$

Background

A Recipe for

Gradients

1. Given training dad

Backpropagation can compute this

$$
\left\{\boldsymbol{x}_{i}, y_{i}\right\}_{i=1}^{N}
$$ gradient!

And it's a special case of a more general algorithm called reversemode automatic differentiation that

- Decision functior can compute the gradient of any $\hat{y}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)$ differentiable function efficiently!
- Loss function

$$
\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{R}
$$

opp-site the gradient)
2. Choose each of ti

A Recipe for

Goals for Today's Lecture

1. 2. Explore a new class of decision functions (Neural Networks)
1. Consider variants of this recipe for training

- Decision function

$$
\hat{y}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)
$$

$$
\begin{aligned}
& \text { Train with SGD: } \\
& \text { ke small steps } \\
& \text { opposite the gradient) }
\end{aligned}
$$

- Loss function

$$
\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{R}
$$

$$
\theta^{(t+1)}=\theta^{(t)}-\eta_{t} \nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)
$$

Decision
 Functions

Linear Regression

$$
y=h_{\boldsymbol{\theta}}(\boldsymbol{x})=\sigma\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)
$$

Output
where $\sigma(a)=a$

Input
x_{1}

Decision

Functions

Logistic Regression

Decision
Functions

Logistic Regression

Decision
Functions

Logistic Regression

Decision Functions

Perceptron

