

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Deep Learning

Matt Gormley Lecture 13 Oct. 15, 2018

Reminders

- Homework 5: Neural Networks
 - Out: Tue, Oct 9
 - Due: Sat, Oct 20 at 11:59pm

Q&A

NEURAL NETWORKS

Background

A Recipe for Machine Learning

- 1. Given training data: $\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$
- 2. Choose each of these:
 - Decision function
 - $\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$
 - Loss function
 - $\ell(\hat{oldsymbol{y}},oldsymbol{y}_i)\in\mathbb{R}$

Examples: Linear regression, Logistic regression, Neural Network

Examples: Mean-squared error, Cross Entropy

Background

A Recipe for Machine Learning

- 1. Given training data: $\{m{x}_i,m{y}_i\}_{i=1}^N$
- 2. Choose each of these:
 - Decision function
 - $\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$
 - Loss function

$$\ell(\hat{oldsymbol{y}},oldsymbol{y}_i)\in\mathbb{R}$$

3. Define goal: $\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^N \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$

4. Train with SGD:(take small steps opposite the gradient)

 $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$

Background

A Recipe for Gradients

1. Given training dat

 $\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$

2. Choose each of t

Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

 $\ell(\hat{oldsymbol{y}},oldsymbol{y}_i)\in\mathbb{R}$

Backpropagation can compute this gradient!

And it's a **special case of a more general algorithm** called reversemode automatic differentiation that can compute the gradient of any differentiable function efficiently!

opposite the gradient)

 $(t) - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i))$

A Recipe for

Goals for Today's Lecture

- 1. Explore a **new class of decision functions** (Neural Networks)
 - 2. Consider variants of this recipe for training

2. Choose each or these.

– Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

 $\ell(\hat{oldsymbol{y}},oldsymbol{y}_i)\in\mathbb{R}$

Train with SGD:
ke small steps
opposite the gradient)

 $oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$

Decision Functions

Perceptron

