### 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University # **Course Overview** Matt Gormley Lecture 1 August 27, 2018 ## WHAT IS MACHINE LEARNING? ## Artificial Intelligence The basic goal of AI is to develop intelligent machines. This consists of many sub-goals: - Perception - Reasoning - Control / Motion / Manipulation - Planning - Communication - Creativity - Learning # What is Machine Learning? ## Speech Recognition ### 1. Learning to recognize spoken words #### **THEN** "...the SPHINX system (e.g. Lee 1989) learns speaker-specific strategies for recognizing the primitive sounds (phonemes) and words from the observed speech signal...neural network methods...hidden Markov models..." #### NOW **Source**: https://www.stonetemple.com/great-knowledge-box-showdown/#VoiceStudyResults ### Robotics ### 2. Learning to drive an autonomous vehicle #### **THEN** "...the ALVINN system (Pomerleau 1989) has used its learned strategies to drive unassisted at 70 miles per hour for 90 miles on public highways among other cars..." (Mitchell, 1997) #### NOW waymo.com ### Robotics ### 2. Learning to drive an autonomous vehicle #### **THEN** "...the ALVINN system (Pomerleau 1989) has used its learned strategies to drive unassisted at 70 miles per hour for 90 miles on public highways among other cars..." #### **NOW** (Mitchell, 1997) https://www.geek.com/wp-content/uploads/2016/03/uber.jpg # Games / Reasoning ### 3. Learning to beat the masters at board games #### **THEN** "...the world's top computer program for backgammon, TD-GAMMON (Tesauro, 1992, 1995), learned its strategy by playing over one million practice games against itself..." #### **NOW** (Mitchell, 1997) ## Computer Vision ### 4. Learning to recognize images THEN NOW "...The recognizer is a convolution network that can be spatially replicated. From the network output, a hidden Markov model produces word scores. The entire system is globally trained to minimize word-level errors...." (LeCun et al., 1995) ## **Learning Theory** ### 5. In what cases and how well can we learn? #### Sample Complexity Results **Definition 0.1.** The **sample complexity** of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1). #### Four Cases we care about... | | Realizable | Agnostic | |--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Finite $ \mathcal{H} $ | $N \geq rac{1}{\epsilon} \left[ \log( \mathcal{H} ) + \log( rac{1}{\delta}) ight]$ labeled examples are sufficient so that with probability $(1-\delta)$ all $h \in \mathcal{H}$ with $R(h) \geq \epsilon$ have $\hat{R}(h) > 0$ . | $\begin{array}{ll} N & \geq \frac{1}{2\epsilon^2} \left[ \log( \mathcal{H} ) + \log(\frac{2}{\delta}) \right] \text{ labeled examples are sufficient so} \\ \text{that with probability } (1-\delta) \text{ for all } h \in \mathcal{H} \text{ we have that } R(h) - \hat{R}(h) < \epsilon. \end{array}$ | | Infinite $ \mathcal{H} $ | $\begin{array}{ll} N &=& O(\frac{1}{\epsilon}\left[\mathrm{VC}(\mathcal{H})\log(\frac{1}{\epsilon}) + \log(\frac{1}{\delta})\right]) \text{ labeled examples are sufficient so that} \\ \text{with probability } (1-\delta) \text{ all } h \in \mathcal{H} \text{ with } \\ R(h) \geq \epsilon \text{ have } \hat{R}(h) > 0. \end{array}$ | $\begin{array}{ll} N &= O(\frac{1}{\epsilon^2} \left[ \mathrm{VC}(\mathcal{H}) + \log(\frac{1}{\delta}) \right]) \text{ labeled examples are sufficient so} \\ \text{that with probability } (1-\delta) \text{ for all } h \in \mathcal{H} \text{ we have that } R(h) - \hat{R}(h) \leq \epsilon. \end{array}$ | - 1. How many examples do we need to learn? - 2. How do we quantify our ability to generalize to unseen data? 12 3. Which algorithms are better suited to specific learning settings? # What is Machine Learning? ## **Topics** - Foundations - Probability - MLE, MAP - Optimization - Classifiers - KNN - Naïve Bayes - Logistic Regression - Perceptron - SVM - Regression - Linear Regression - Important Concepts - Kernels - Regularization and Overfitting - Experimental Design - Unsupervised Learning - K-means / Lloyd's method - PCA - EM/GMMs - Neural Networks - Feedforward Neural Nets - Basic architectures - Backpropagation - CNNs - Graphical Models - Bayesian Networks - HMMs - Learning and Inference - Learning Theory - Statistical Estimation (covered right before midterm) - PAC Learning - Other Learning Paradigms - Matrix Factorization - Reinforcement Learning - Information Theory ## ML Big Picture #### **Learning Paradigms:** What data is available and when? What form of prediction? - supervised learning - unsupervised learning - semi-supervised learning - reinforcement learning - active learning - imitation learning - domain adaptation - online learning - density estimation - recommender systems - feature learning - manifold learning - dimensionality reduction - ensemble learning - distant supervision - hyperparameter optimization #### **Theoretical Foundations:** What principles guide learning? - probabilistic - ☐ information theoretic - evolutionary search - ML as optimization #### **Problem Formulation:** What is the structure of our output prediction? boolean Binary Classification categorical Multiclass Classification ordinal Ordinal Classification real Regression ordering Ranking multiple discrete Structured Prediction multiple continuous (e.g. dynamical systems) both discrete & (e.g. mixed graphical models) cont. Application Areas Key challenges? NLP, Speech, Computer Vision, Robotics, Medicine Search ### Facets of Building ML Systems: How to build systems that are robust, efficient, adaptive, effective? - 1. Data prep - 2. Model selection - 3. Training (optimization / search) - 4. Hyperparameter tuning on validation data - 5. (Blind) Assessment on test #### Big Ideas in ML: Which are the ideas driving development of the field? - inductive bias - generalization / overfitting - bias-variance decomposition - generative vs. discriminative - deep nets, graphical models - PAC learning - distant rewards ## **DEFINING LEARNING PROBLEMS** ## Well-Posed Learning Problems ### Three components < T,P,E>: - 1. Task, *T* - 2. Performance measure, P - 3. Experience, E ### **Definition of learning:** A computer program **learns** if its performance at tasks in *T*, as measured by *P*, improves with experience *E*. ## Example Learning Problems - 3. Learning to beat the masters at chess - 1. Task, *T*: - 2. Performance measure, P: - 3. Experience, E: ## Example Learning Problems - 4. Learning to respond to voice commands (Siri) - 1. Task, *T*: - 2. Performance measure, P: - 3. Experience, E: ### Solution #1: Expert Systems - Over 20 years ago, we had rule based systems - Ask the expert to - Obtain a PhD in Linguistics - 2. Introspect about the structure of their native language - 3. Write down the rules they devise #### Give me directions to Starbucks If: "give me directions to X" Then: directions(here, nearest(X)) #### How do I get to Starbucks? If: "how do i get to X" Then: directions(here, nearest(X)) #### Where is the nearest Starbucks? If: "where is the nearest X" Then: directions(here, nearest(X)) ### Solution #1: Expert Systems - Over 20 years ago, we had rule based systems - Ask the expert to - Obtain a PhD in Linguistics - 2. Introspect about the structure of their native language - 3. Write down the rules they devise #### I need directions to Starbucks If: "I need directions to X" Then: directions(here, nearest(X)) #### Starbucks directions If: "X directions" Then: directions(here, nearest(X)) #### Is there a Starbucks nearby? If: "Is there an X nearby" Then: directions(here, nearest(X)) ### Solution #2: Annotate Data and Learn - Experts: - Very good at answering questions about specific cases - Not very good at telling HOW they do it - 1990s: So why not just have them tell you what they do on SPECIFIC CASES and then let MACHINE LEARNING tell you how to come to the same decisions that they did ### Solution #2: Annotate Data and Learn - 1. Collect raw sentences $\{x_1, ..., x_n\}$ - 2. Experts annotate their meaning $\{y_1, ..., y_n\}$ x<sub>1</sub>: How do I get to Starbucks? $y_1$ : directions (here, nearest (Starbucks)) x<sub>2</sub>: Show me the closest Starbucks y<sub>2</sub>: map (nearest (Starbucks)) x<sub>3</sub>: Send a text to John that I'll be late $y_3$ : txtmsg(John, I'll be late) x<sub>4</sub>: Set an alarm for seven in the $y_4$ : setalarm (7:00AM) ## **Example Learning Problems** - 4. Learning to respond to voice commands (Siri) - Task, T: predicting action from speech - Performance measure, P: percent of correct actions taken in user pilot study - 3. Experience, E:examples of (speech, action) pairs ### **Problem Formulation** - Often, the same task can be formulated in more than one way: - Ex: Loan applications - creditworthiness/score (regression) - probability of default (density estimation) - loan decision (classification) #### **Problem Formulation:** What is the structure of our output prediction? boolean Binary Classification categorical Multiclass Classification ordinal Ordinal Classification real Regression ordering Ranking multiple discrete Structured Prediction multiple continuous (e.g. dynamical systems) both discrete & (e.g. mixed graphical models) cont. # Well-posed Learning Problems ### **In-Class Exercise** - 1. Select a task, T - Identify performance measure, P - 3. Identify experience, E - 4. Report ideas back to rest of class #### **Example Tasks** - Identify objects in an image - Translate from one human language to another - Recognize speech - Assess risk (e.g. in loan application) - Make decisions (e.g. in loan application) - Assess potential (e.g. in admission decisions) - Categorize a complex situation (e.g. medical diagnosis) - Predict outcome (e.g. medical prognosis, stock prices, inflation, temperature) - Predict events (default on loans, quitting school, war) - Plan ahead under perfect knowledge (chess) - Plan ahead under partial knowledge (Poker, Bridge) ## Machine Learning & Ethics What ethical responsibilities do we have as machine learning experts? Some topics that we won't cover are probably deserve an entire course If our search results for news are optimized for ad revenue, might they reflect gender / racial / socioeconomic biases? http://bing.com/ http://arstechnica.com/ How do autonomous vehicles make decisions when all of the outcomes are likely to be negative? Should restrictions be placed on intelligent agents that are capable of interacting with the world? http://vizdoom.cs.put.edu.pl/ ## **SYLLABUS HIGHLIGHTS** ## Syllabus Highlights The syllabus is located on the course webpage: http://www.cs.cmu.edu/~mgormley/courses/10601-s18 The course policies are required reading. ## Syllabus Highlights - Grading: 45% homework, 25% midterm exam, 30% final exam - Midterm Exam: evening exam, October 25, 2018 - **Final Exam:** final exam week, date TBD - Homework: ~5 written and ~5 programming - 6 grace days for programming assignments only - Late submissions: 80% day 1, 60% day 2, 40% day 3, 20% day 4 - No submissions accepted after 4 days w/o extension - Extension requests: see syllabus - Recitations: Fridays, same time/place as lecture (optional, interactive sessions) - Readings: required, online PDFs, recommended for after lecture - Technologies: Piazza (discussion), Autolab (programming), Canvas (quiz-style), Gradescope (openended) - Academic Integrity: - Collaboration encouraged, but must be documented - Solutions must always be written independently - No re-use of found code / past assignments - Severe penalties (i.e., failure) - Office Hours: posted on Google Calendar on "People" page ### Lectures - You should ask lots of questions - Interrupting (by raising a hand) to ask your question is strongly encouraged - Asking questions later (or in real time) on Piazza is also great - When I ask a question... - I want you to answer - Even if you don't answer, think it through as though I'm about to call on you - Interaction improves learning (both in-class and at my office hours) ### **Textbooks** You are not required to read a textbook, but it will help immensely! # **PREREQUISITES** ### What they are: - Significant programming experience (15-122) - Written programs of 100s of lines of code - Comfortable learning a new language - Probability and statistics (36-217, 36-225, etc.) - Mathematical maturity: discrete mathematics (21-127, 15-151), linear algebra, and calculus #### What if you need additional review? - Consider first taking 10-606/607: Mathematical/Computational Foundations for Machine Learning - More details here: <u>http://bit.ly/math4ml</u> #### How to describe 606/607 to a friend #### 606/607 is... a formal presentation of mathematics and computer science... motivated by (carefully chosen) **real-world problems** that arise in **machine learning...** where the **broader picture** of how those problems arise is treated **somewhat informally**. #### What if you need additional review? - Consider first taking 10-606/607: Mathematical/Computational Foundations for Machine Learning - More details here: http://bit.ly/math4ml ## **Supervised Classification** Naïve Bayes $$p(y|x_1, x_2, \dots, x_n) = \frac{1}{Z}p(y) \prod_{i=1}^n p(x_i|y)$$ Logistic regression $$P(Y = y | X = x; \boldsymbol{\theta}) = p(y | x; \boldsymbol{\theta})$$ $$= \frac{\exp(\boldsymbol{\theta}_y \cdot \mathbf{f}(x))}{\sum_{y'} \exp(\boldsymbol{\theta}_{y'} \cdot \mathbf{f}(x))}$$ Note: This is just motivation – we'll cover these topics later! ### **ML Theory** (Example: Sample Complexity) Goal: h has small error over D. True error: $$err_D(h) = \Pr_{x \sim D}(h(x) \neq c^*(x))$$ How often $h(x) \neq c^*(x)$ over future instances drawn at random from D • But, can only measure: Training error: $$err_S(h) = \frac{1}{m} \sum_i I(h(x_i) \neq c^*(x_i))$$ How often $h(x) \neq c^*(x)$ over training instances Sample complexity: bound $err_D(h)$ in terms of $err_S(h)$ Note: This is just motivation – we'll cover these topics later! ### **Deep Learning** (Example: Deep Bi-directional RNN) ### **Graphical Models** Hidden Markov Model (HMM) Conditional Random Field (CRF) ### What if I'm not sure whether I meet them? - Don't worry: we're not sure either - However, we've designed a way to assess your background knowledge so that you know what to study! (see instructions of Canvas portion of HW1) ### Reminders - Homework 1: Background - Out: Tue, Aug 28 (tomorrow) - Due: Wed, Aug 05 at 11:59pm - Two parts: - 1. written part to Gradescope, - 2. programming part to Autolab - unique policy for this assignment: - two submissions for written (see writeup for details) - 2. unlimited submissions for programming (i.e. keep submitting until you get 100%), ## Learning Objectives #### You should be able to... - Formulate a well-posed learning problem for a realworld task by identifying the task, performance measure, and training experience - 2. Describe common learning paradigms in terms of the type of data available, when it's available, the form of prediction, and the structure of the output prediction - Implement Decision Tree training and prediction (w/simple scoring function) - Explain the difference between memorization and generalization [CIML] - 5. Identify examples of the ethical responsibilities of an ML expert