

10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Decision Trees

Matt Gormley & Geoff Gordon Lecture 3 Sep. 3, 2025

Q&A

Q: How do these In-Class Polls work?

- A: Sign into Google Form (click [Poll] link on Schedule page http://mlcourse.org/schedule.html) using Andrew Email
 - Answer during lecture for full credit, or within 24 hours for half credit
 - Avoid the toxic option which gives negative points!
 - 8 "free poll points" but can't use more than 3 free polls consecutively. All the questions for one lecture are worth 1 point total.

Latest Poll link: http://poll.mlcourse.org

First In-Class Poll

Question: Which of **Answer:** the following did you bring to class today? Select all that apply. A. Smartphone B. Flip phone C. Pay phone D. No phone E. None of the above

Reminders

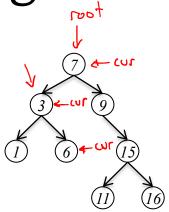
- Homework 1: Background
 - Out: Mon, Aug 25
 - Due: Wed, Sep 3 at 11:59pm
 - unique policy for this assignment: we will grant (essentially) any and all extension requests
- Homework 2: Decision Trees
 - Out: Wed, Sep. 3
 - Due: Mon, Sep. 15 at 11:59pm

MAKING PREDICTIONS WITH A DECISION TREES

Background: Recursion

contains (root, 6) = true

- Def: a binary search tree (BST) consists of nodes, where each node:
 - has a value, v
 - up to 2 children
 - all its left descendants have values less than v, and its right descendants have values greater than v
- We like BSTs because they permit search in O(log(n)) time, assuming n nodes in the tree



Node Data Structure

class Node:

int value Node left Node right

Iterative Search

```
def contains(node, key):
      cur = node
   while true:
            if key < cur.value & cur.left != null:
                   cur = cur.left
            else if cur.value < key & cur.right != null:
                   cur = cur.right
            else:
                   break
      return key == cur.value
```

```
Recursive Search
def contains(node, key):
   →if key < node.value & node.left != null: > 1et
            return contains(node.left, key)
  → else if node.value < key & node.right != null:
            return contains(node.right, key)
      else:
            return key == node.value
```

Algorithms for Classification

Algorithm 3 decision stump: based on a single feature, x_d , predict the most common label in the training dataset among all data points that have the same value for x_d

	у	X_1	X_2	X_3	X ₄
predictions	allergic?	hives?	sneezing?	red eye?	has cat?
-	-	Y	N	N	N
+	-	N	Υ	N	N
+	+	Υ	Υ	N	N
-	-	Υ	N	Υ	Υ
+	+	N	Υ	Υ	N

But why use just one feature...

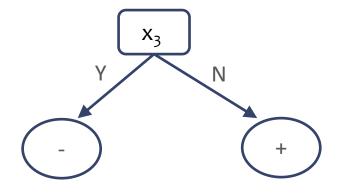
Nonzero training error, but perhaps still better than the memorizer

Example decision stump:

$$h(x) = \begin{cases} + \text{ if sneezing} = Y \\ - \text{ otherwise} \end{cases}$$

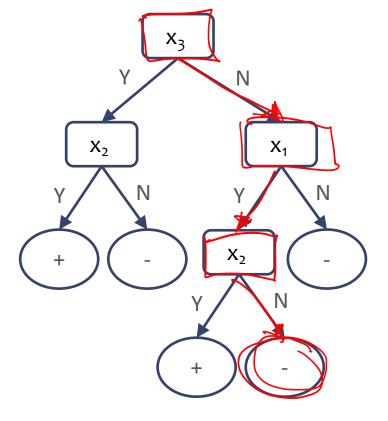
From Decision Stump to Decision Tree

	у	X_1	X_2	X ₃	X_4
predic- tions	allergic?	hives?	sneezing?	red eye?	has cat?
-	-	Y	N	N	N
-	-	N	Υ	N	N
+	+	Υ	Υ	N	N
-	-	Υ	N	Υ	Υ
+	+	N	Υ	Υ	N



From Decision Stump to Decision Tree

		у	X_1	X_2	X_3	X_4
	predic- tions	allergic?	hives?	sneezing?	red eye?	has cat?
X	(·	$\left(\begin{array}{c} - \\ - \end{array}\right)$	Y	N	Ñ	N
	-	-	N	Y	N	N
	+	+	Y	Y	N	N
	-	-	Υ	N	Υ	Υ
	+	+	N	Y	Υ	N



Decision Tree: In-Class Activity

- 1. Group 1: Answer the questions to determine which leaf node corresponds to your feature values
- 2. Group 2: (part 1)
 - a) Take a blue sticky note if you prefer dogs to cats; otherwise, take a red sticky note
 - b) Answer the questions to determine which leaf node corresponds to your feature values and place your sticky note there
- 3. Group 2: (part 2)
 - a) Answer the new question to determine which new leaf node to move your sticky note to

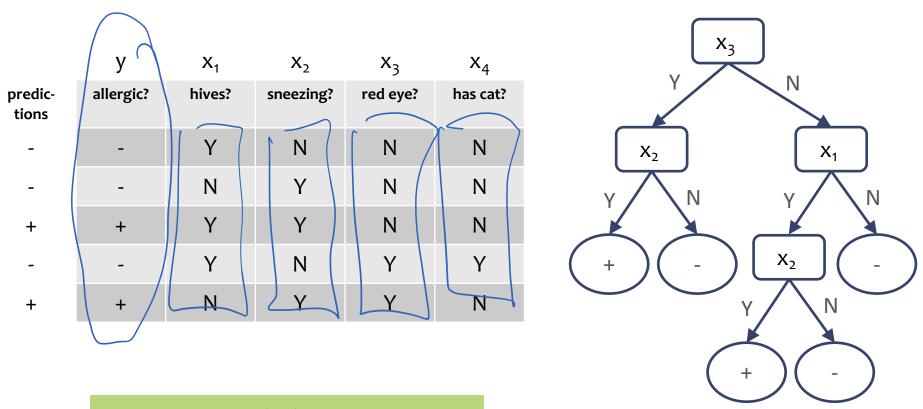
Decision Tree: Prediction Seaches = 2 "cold" Node Troot

```
def h(x'):
   Let current node = root
   while(true):
      if current node is internal (non-leaf):
          Let m = attribute associated with current node
          Go down branch labeled with value x'<sub>m</sub>
      if current node is a leaf:
           return label y stored at that leaf
```

```
class Node:
    str type // "leaf" or "internal"
    y vote // label for leaf node
    } branches // map from feature
    // values to Node objects
    int m // feature for internal node
```

Decision Tree: Prediction

Algorithm 4 decision tree: recursively walk from root to a leaf, following the attribute values labeled on the branches, and return the label at the leaf



Zero training error!

Decision Tree: Prediction (Iterative)

```
def h(x'):
   Let current node = root
   while(true):
      if current node is internal (non-leaf):
          Let m = attribute associated with current node
          Go down branch labeled with value x'<sub>m</sub>
      if current node is a leaf:
           return label y stored at that leaf
```

Question: The original h(x') pseudocode is an iterative implementation. Can you implement h(x') recursively?

```
class Node:
str type // "leaf" or "internal"

Y vote // label for leaf node
} branches // map from feature
// values to Node objects
int m // feature for internal node
```

Decision Tree: Prediction (Recursive)

```
def h(\vec{x}'):
    return h_recurse (root, *)
det h_recurse (node, x):
      if node type == "lead":
return node vote
       e 82:
             m = node.m
            next = branches [Xm]
return h_recurs (next, x)
```

Question: The original h(x') pseudocode is an iterative implementation. Can you implement h(x') recursively?

```
class Node:

str type // "leaf" or "internal"

Y vote // label for leaf node

{} branches // map from feature

// values to Node objects

int m // feature for internal node
```

Decision Tree Example

Learned from medical records of 1000 women (Sims et al., 2000)

Negative examples are C-sections

```
[833+,167-] .83+ .17-
```

```
Fetal_Presentation = 1: [822+,116-] .88+ .12-

| Previous_Csection = 0: [767+,81-] .90+ .10-

| Primiparous = 0: [399+,13-] .97+ .03-

| Primiparous = 1: [368+,68-] .84+ .16-

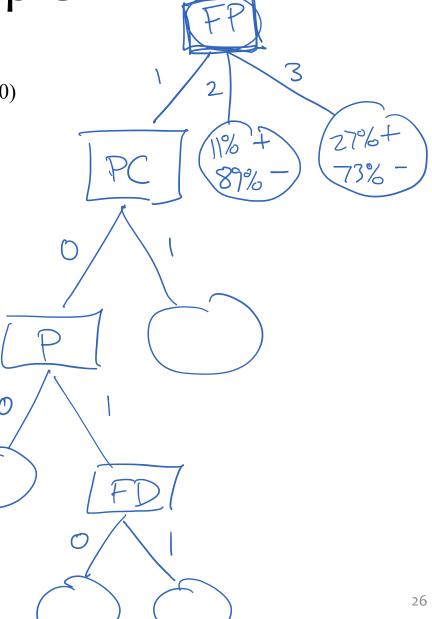
| | Fetal_Distress = 0: [334+,47-] .88+ .12-

| | Fetal_Distress = 1: [34+,21-] .62+ .38-

| Previous_Csection = 1: [55+,35-] .61+ .39-

Fetal_Presentation = 2: [3+,29-] .11+ .89-

Fetal_Presentation = 3: [8+,22-] .27+ .73-
```



LEARNING A DECISION TREE

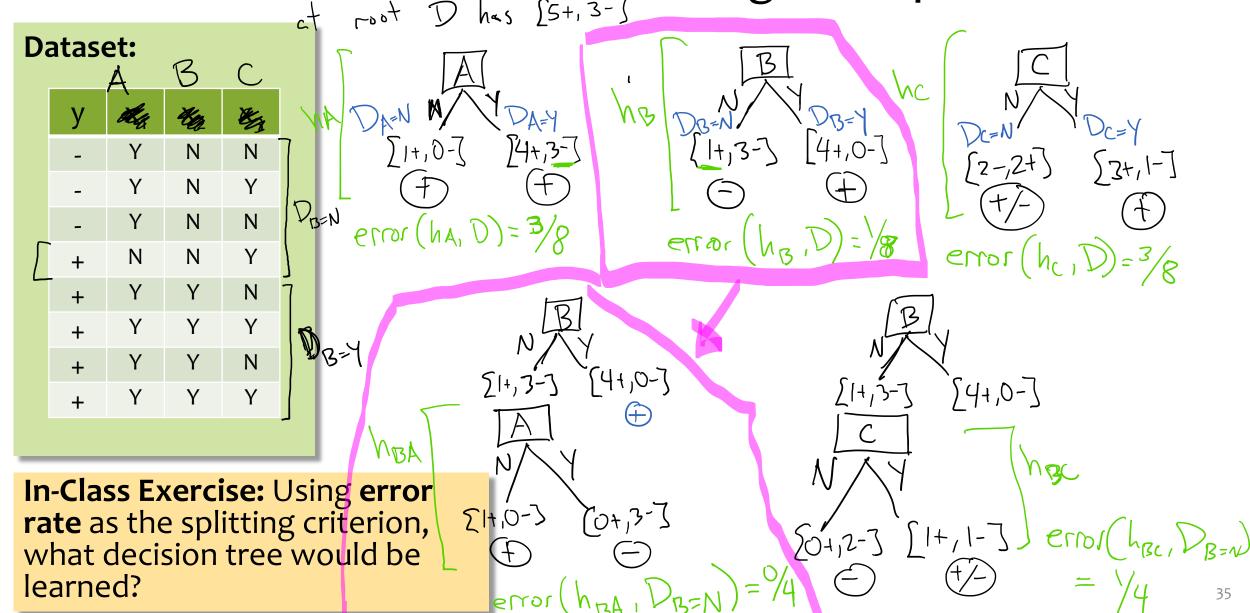
Decision Tree Learning

- Definition: a **splitting criterion** is a function that measures the effectiveness of splitting on a particular attribute
- Our decision tree learner selects the "best" attribute as the one that maximizes the splitting criterion
- Lots of options for a splitting criterion:
 - error rate (minimize)
 - accuracy = 1 error rate (maximize)
 - Mutual information (maximize)
 - Gini gain (maximize)

Decision Tree Learning

```
def train-recurse (D'):
      Let p = new Node ()
       Base Case If (a) D' is empty

(b) D' has all labels identical
                       (c) For each feature, all values in D' are identical
          p.type= "leaf" leaf"
           p.vote = majority-vote (D')
     return P
Recursive Case [ Else:
            p.type = "internal"
            p. M = best feature according to splitting criterion on D'
                 = argmax splitting-criterin (D', m)
            for each value v of feature p.m:
                  Dxm=v = E(x,y) & D': Xm = v } - partition of D'
                  child_v = train_recurse (DXIN=V) + recursion
                  p.branches[v] = child-v = add a branch w/ lakel V
           return p
```



Recursive Training for Decision Trees

- def train(dataset D'):
 - Let p = new Node()
 - Base Case: If (1) all labels y⁽ⁱ⁾ in D' are identical (2) D' is empty (3) for each attribute, all values are identical

```
    p.type = Leaf  // The node p is a leaf node
    p.label = majority_vote(D')  // Store the label
    return p
```

- **Recursive Step:** Otherwise
 - Make an internal node

```
• p.type = Internal // The node p is an internal node
```

• Pick the *best* attribute X_m according to splitting criterion

```
    p.attr = argmax<sub>m</sub> splitting_criterion(D', X<sub>m</sub>)
    // Store the attribute on which to split
```

• For each value v of attribute X_m:

```
    D<sub>Xm=v</sub> = {(x,y) in D': x<sub>m</sub> = v} // Select a partition of the data
    child<sub>v</sub> = train(D<sub>Xm=v</sub>) // Recursively build the child
    p.branches[v] = child<sub>v</sub> // Create a branch with label v
    return p
```

SPLITTING CRITERION: ERROR RATE

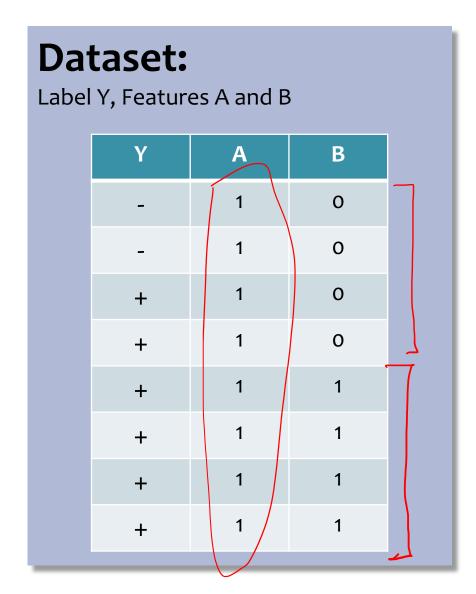
Dataset:

Label Y, Features A and B

Y	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

Poll Question 2

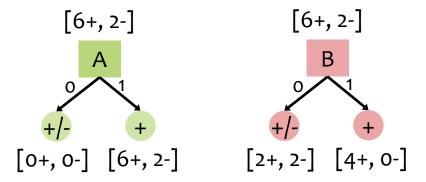
Which attribute would **error rate** select for the next split?



Dataset:

Label Y, Features A and B

Α	В
1	0
1	0
1	0
1	0
1	1
1	1
1	1
1	1
	1 1 1 1 1



Error Rate

error(
$$h_A$$
, D) = 2/8
error(h_B , D) = 2/8

error rate treats attributes A and B as equally good

Decision Tree Learning

- Definition: a **splitting criterion** is a function that measures the effectiveness of splitting on a particular attribute
- Our decision tree learner selects the "best" attribute as the one that maximizes the splitting criterion
- Lots of options for a splitting criterion:
 - error rate (minimize)
 - accuracy = 1 error rate (maximize)
 - Mutual information (maximize)
 - Gini gain (maximize)

SPLITTING CRITERION: MUTUAL INFORMATION

T.V. over say

Entropy

• The **entropy** of a *random variable* describes the uncertainty of its outcome: the higher the entropy, the less certain we are about what the outcome will be.

$$H(X) = -\sum_{v \in V(X)} P(X = v) \log_2(P(X = v))$$

where X is a (discrete) random variable

V(X) is the set of possible values X can take on

Sis a Rabels

Entropy

• The **entropy** of a *set* describes how uniform or pure it is: the higher the entropy, the more impure or "mixed-up"

$$H(S) = -\sum_{v \in V(S)} \frac{|S_v|}{|S|} \log_2\left(\frac{|S_v|}{|S|}\right) \text{ the elements in } S_V$$
 where S is a collection of values, $\#$ elements in S

V(S) is the set of unique values in S

 S_v is the collection of elements in S with value v

• If all the elements in S are the same, then

the set is

$$H(S) = -\left(\frac{9}{9}\log_2\frac{9}{9} + \frac{0}{9}\log_2\frac{0}{9}\right) = 0$$

Entropy

 The entropy of a set describes how uniform or pure it is: the higher the entropy, the more impure or "mixed-up" the set is

$$H(S) = -\sum_{v \in V(S)} \frac{|S_v|}{|S|} \log_2 \left(\frac{|S_v|}{|S|}\right)$$

where *S* is a collection of values,

V(S) is the set of unique values in S

 S_v is the collection of elements in S with value v

• If *S* is split fifty-fifty between two values, then

$$H(S) = -\left(\frac{5}{10}\log \frac{5}{10} + \frac{5}{10}\log \frac{5}{10}\right) = 1$$

Mutual Information

The mutual information between two random variables
 describes how much clarity knowing the value of one random
 variables provides about the other

$$I(Y;X) = H(Y) - H(Y|X)$$

$$= H(Y) - \sum_{v \in V(X)} P(X=v)H(Y|X=v)$$

where *X* and *Y* are random variables

V(X) is the set of possible values X can take on

H(Y|X=v) is the conditional entropy of Y given X=v

Mutual Information

 The mutual information between a feature and the label describes how much clarity knowing the feature provides about the label

about the label
$$I(y; x_d) = H(y) - H(y|x_d)$$

$$= H(y) - \sum_{v \in V(x_d)} f_v * H(Y_{x_d=v})$$
where x_d is a feature and y is the set of all labels.

where x_d is a feature and y is the set of all labels

 $V(x_d)$ is the set of possible values x_d can take on

 f_{ν} is the fraction of data points where $x_d = v$

 $Y_{x_d=v}$ is the set of all labels where $x_d=v$

Slide from Henry Chai 58

Dataset:

Label Y, Features A and B

Υ	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

Poll Question 3

Which feature would mutual information select for the next split?

- 1. A
- 2. B
- 3. A or B (tie)
- 4. Neither

Dataset:

Label Y, Features A and B

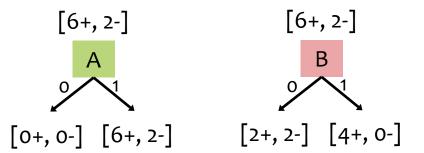
Υ	А	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

-/

Dataset:

Label Y, Features A and B

Y	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1



Mutual Information

$$H(Y) = -2/8 \log(2/8) - 6/8 \log(6/8)$$

$$H(Y|A=0) =$$
 "undefined"
 $H(Y|A=1) = -2/8 \log(2/8) - 6/8 \log(6/8)$
 $= H(Y)$
 $H(Y|A) = P(A=0)H(Y|A=0) + P(A=1)H(Y|A=1)$
 $= 0 + H(Y|A=1) = H(Y)$
 $I(Y; A) = H(Y) - H(Y|A=1) = 0$

$$H(Y|B=0) = -2/4 \log(2/4) - 2/4 \log(2/4)$$

 $H(Y|B=1) = -0 \log(0) - 1 \log(1) = 0$
 $H(Y|B) = 4/8(0) + 4/8(H(Y|B=0))$
 $I(Y;B) = H(Y) - 4/8 H(Y|B=0) > 0$