Autoencoders and dimensionality reduction

10-301/601

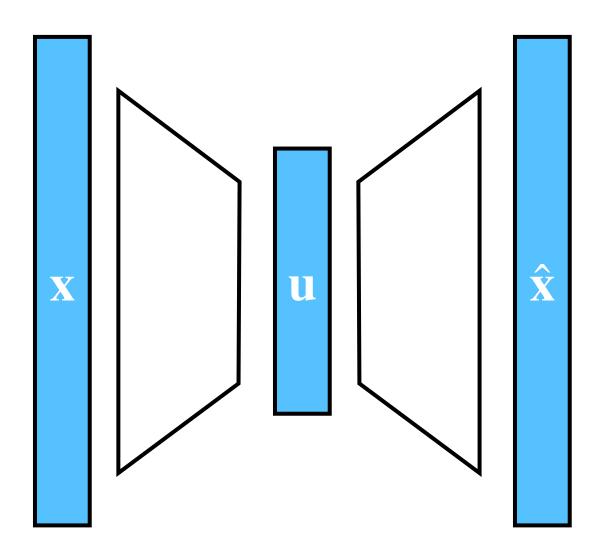
Unsupervised learning

- Recall: unsupervised learning
- Given dataset $\mathcal{D} = \{ \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(N)} \}$
 - ightharpoonup no specific labels $y_1...y_N$
- Goal: better understand 20
 - e.g., exploratory analysis: figure out what info we have
 - e.g., so we can solve some downstream learning problem better

image credit: https://pixabay.com/en/brain-mrt-magnetic-resonance-imaging-1728449/

Example use of unsupervised learning: brain scans

- Unsupervised learning
- Recall: unsupervised learning
- Given dataset $\mathcal{D} = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(N)}\}\$
 - ightharpoonup no specific labels $y_1...y_N$
- ullet Goal: better understand ${\mathcal D}$
 - e.g., exploratory analysis: figure out what info we have
 - e.g., so we can solve some downstream learning problem better

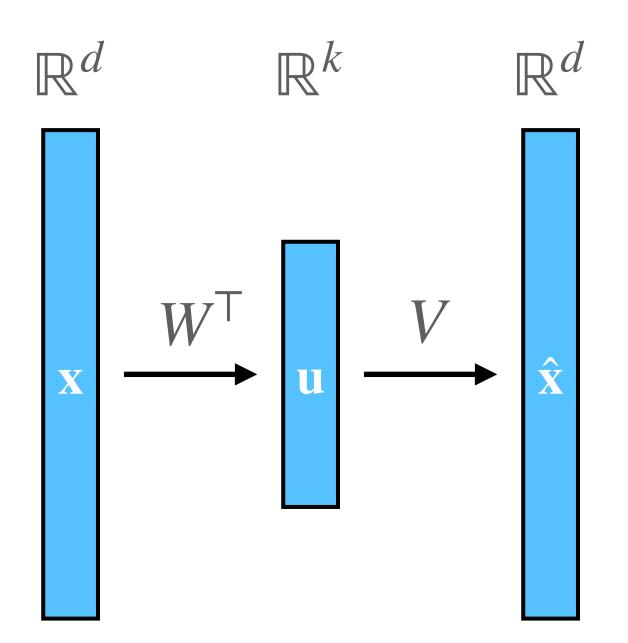


Why the name? "Code" =
hidden activations, so x
encodes (and then
decodes) itself

Autoencoder

- Large, useful class of unsupervised model: autoencoder
- Train a model to predict $\mathbf{x}^{(i)}$ from $\mathbf{x}^{(i)}$ sounds circular!
- The catch: something about the model (the *bottleneck*) prevents us from just copying input to output
 - ightharpoonup e.g., continuous hidden layer $\mathbf{u}^{(i)}$ w/ too few dimensions
 - ightharpoonup e.g., discrete hidden layer $\mathbf{z}^{(i)}$ w/ too few bits
 - e.g., regularizer that disfavors straight copying

Linear autoencoder



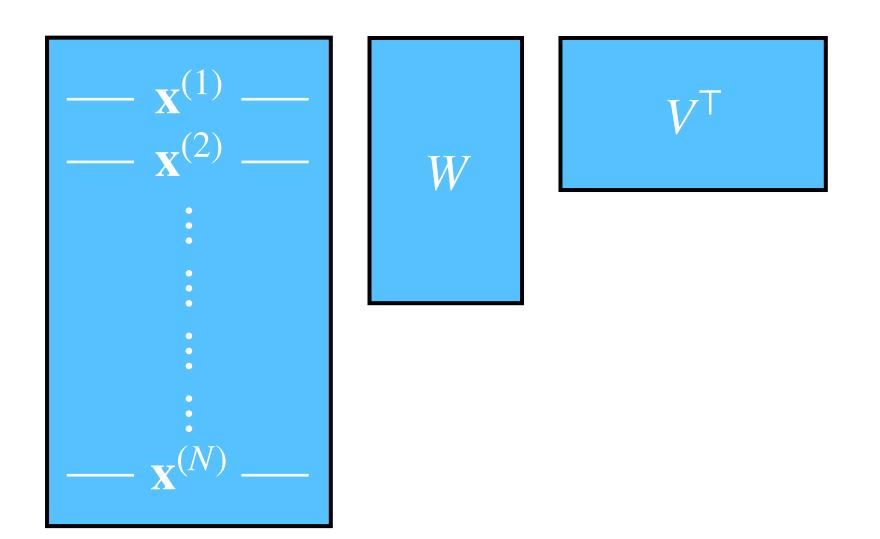
$$\hat{\mathbf{x}} = V\mathbf{u} = VW^{\mathsf{T}}\mathbf{x}$$

$$V, W \in \mathbb{R}^{d \times k}$$

$$k \ll d$$

- Simplest autoencoder: one hidden layer, no nonlinearities
 - min sum squared error: $\min_{V,W} \sum_{i=1}^{N} \|VW^{\mathsf{T}}\mathbf{x}^{(i)} \mathbf{x}^{(i)}\|^2$
 - solve w/ SGD or alternating least squares

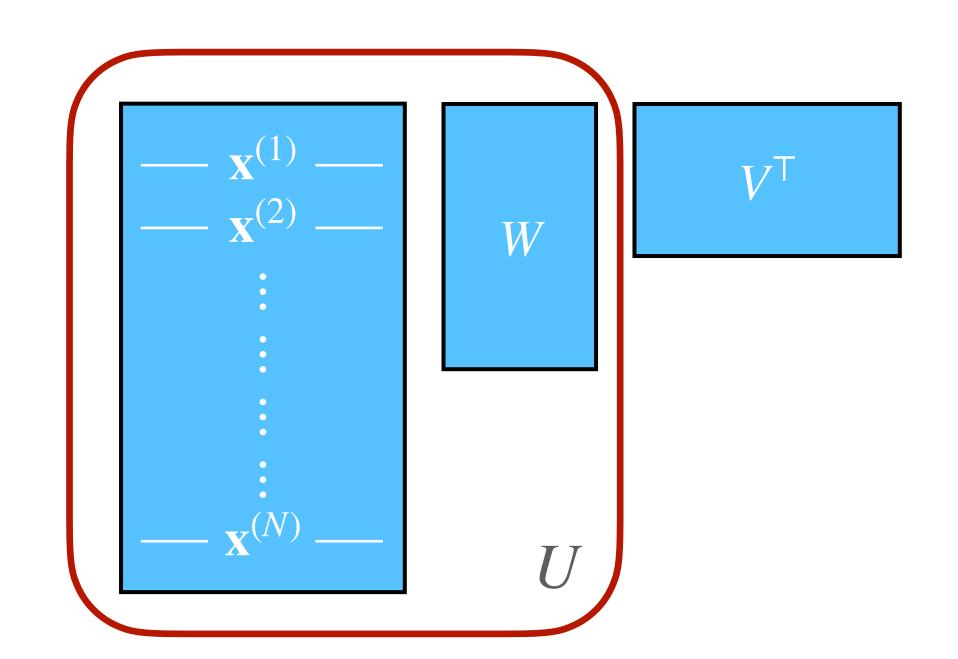
note: no bias weights for now (we'll deal with them later)



$$\hat{\mathbf{x}} = V\mathbf{u} = VW^{\mathsf{T}}\mathbf{x} \qquad \qquad X \in \mathbb{R}^{N \times d}$$

$$\hat{X} = UV^{\mathsf{T}} = XWV^{\mathsf{T}} \qquad \qquad U \in \mathbb{R}^{N \times k}$$

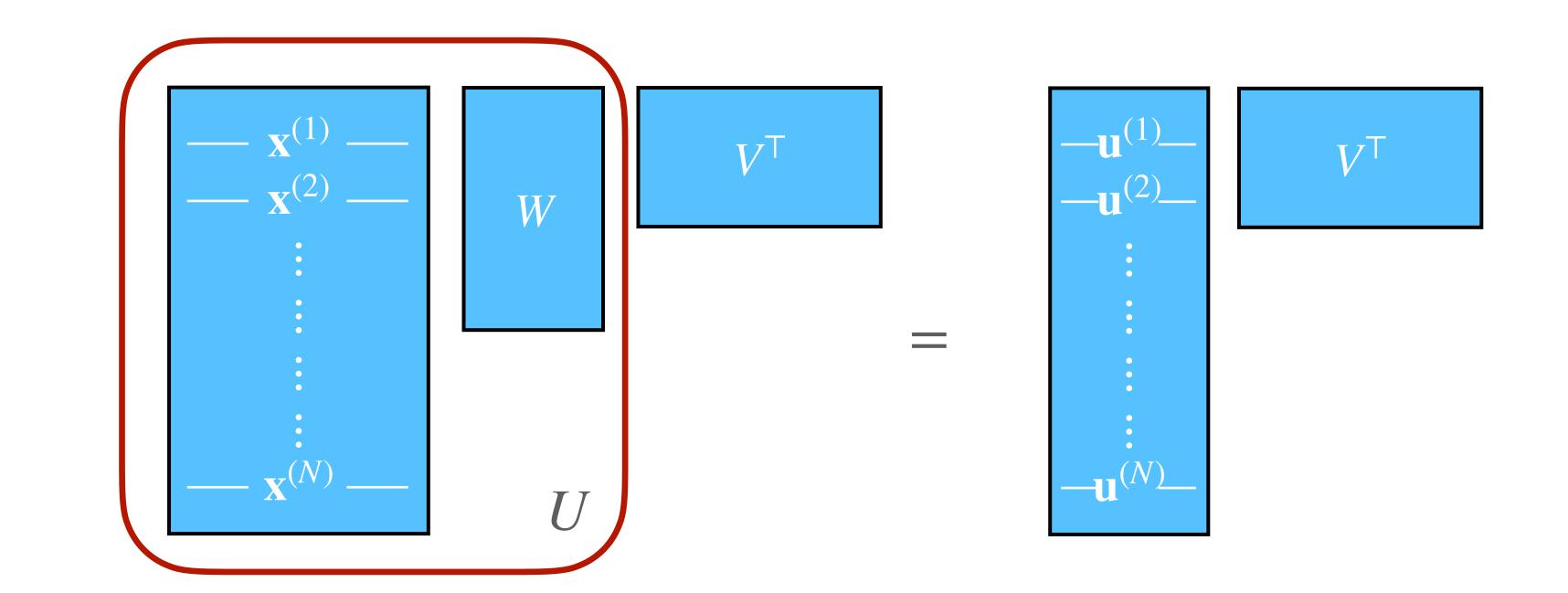
- ullet Collect all examples $\mathbf{x}^{(i)}$ into a matrix X, one per row
- Collect latent vectors $\mathbf{u}^{(i)} = W^{\mathsf{T}} \mathbf{x}^{(i)}$ into matrix U
- Write \mathbf{v}_j for jth row of V (= column of V^{T})



$$\hat{\mathbf{x}} = V\mathbf{u} = VW^{\mathsf{T}}\mathbf{x} \qquad \qquad X \in \mathbb{R}^{N \times d}$$

$$\hat{X} = UV^{\mathsf{T}} = XWV^{\mathsf{T}} \qquad \qquad U \in \mathbb{R}^{N \times k}$$

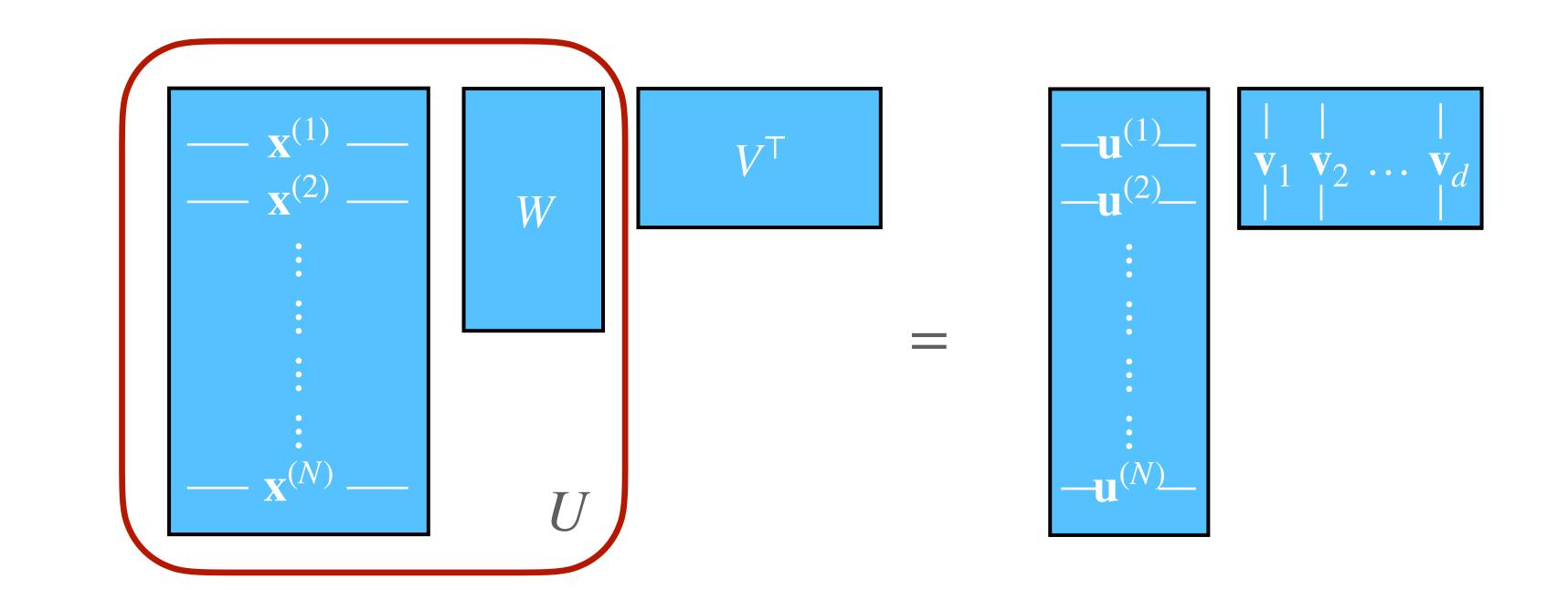
- ullet Collect all examples $\mathbf{x}^{(i)}$ into a matrix X, one per row
- Collect latent vectors $\mathbf{u}^{(i)} = W^{\mathsf{T}} \mathbf{x}^{(i)}$ into matrix U
- Write \mathbf{v}_j for jth row of V (= column of V^{T})



$$\hat{\mathbf{x}} = V\mathbf{u} = VW^{\mathsf{T}}\mathbf{x} \qquad \qquad X \in \mathbb{R}^{N \times d}$$

$$\hat{X} = UV^{\mathsf{T}} = XWV^{\mathsf{T}} \qquad \qquad U \in \mathbb{R}^{N \times k}$$

- ullet Collect all examples $\mathbf{x}^{(i)}$ into a matrix X, one per row
- Collect latent vectors $\mathbf{u}^{(i)} = W^{\mathsf{T}} \mathbf{x}^{(i)}$ into matrix U
- Write \mathbf{v}_j for jth row of V (= column of V^{T})

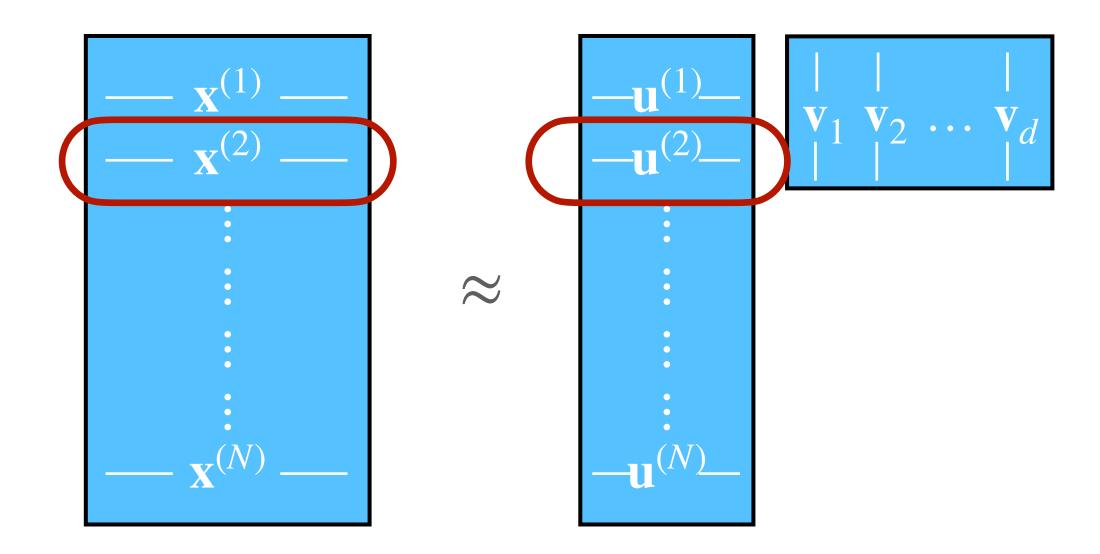


$$\hat{\mathbf{x}} = V\mathbf{u} = VW^{\mathsf{T}}\mathbf{x} \qquad \qquad X \in \mathbb{R}^{N \times d}$$

$$\hat{X} = UV^{\mathsf{T}} = XWV^{\mathsf{T}} \qquad \qquad U \in \mathbb{R}^{N \times k}$$

- ullet Collect all examples $\mathbf{x}^{(i)}$ into a matrix X, one per row
- Collect latent vectors $\mathbf{u}^{(i)} = W^{\mathsf{T}} \mathbf{x}^{(i)}$ into matrix U
- Write \mathbf{v}_j for jth row of V (= column of V^{T})

Best hidden activation vector $u^{(i)}$



- Suppose we could choose $\mathbf{u}^{(i)}$ arbitrarily, instead of $\mathbf{u}^{(i)} = W^{\mathsf{T}} \mathbf{x}^{(i)}$ solve for best $\mathbf{u}^{(i)}$, holding V fixed
- Regression objective: minimize $\sum_{j=1}^{d} (\mathbf{x}_{j}^{(i)} \mathbf{v}_{j}^{\mathsf{T}}\mathbf{u}^{(i)})^{2}$
 - ightharpoonup one "training example" for each dimension of $\mathbf{x}^{(i)}$
 - \mathbf{v}_j : feature vector for example j
 - $\mathbf{x}_{j}^{(i)}$: target output for example j
 - $\mathbf{u}^{(i)}$: learnable regression weights

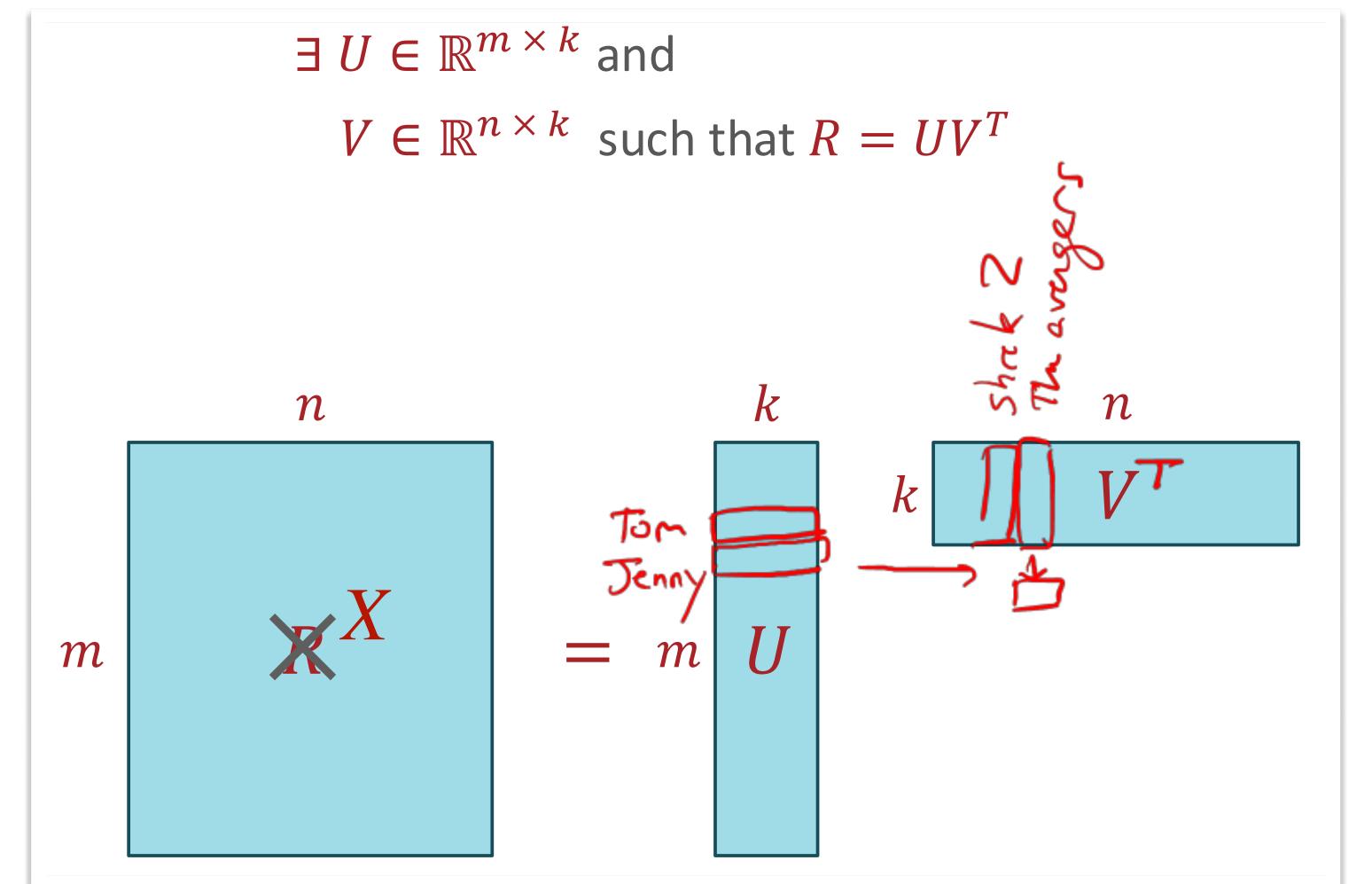
Best hidden activation vector $u^{(i)}$

• Differentiate $\sum_{j=1}^{d} (\mathbf{x}_{j}^{(i)} - \mathbf{v}_{j}^{\mathsf{T}} \mathbf{u}^{(i)})^{2}$ wrt $\mathbf{u}^{(i)}$ and set to 0: $-2 \sum_{j=1}^{d} (\mathbf{x}_{j}^{(i)} - \mathbf{v}_{j}^{\mathsf{T}} \mathbf{v}_{j}^{(i)}) \mathbf{y}_{j} = 0$ $\frac{d}{d} = \frac{d}{d} = \frac{d}$ $(i) = \sqrt{\chi} (i) = \sqrt{\chi} (i)$

Find U, V first

- Min-norm solution: $\mathbf{u}^{(i)} = V^\dagger \mathbf{x}^{(i)} = W^\top \mathbf{x}^{(i)}$
 - $\qquad \qquad \text{or in matrix form } \widetilde{U} = X \overline{W}$
- Best $\mathbf{u}^{(i)}$ is a linear function of $\mathbf{x}^{(i)}$, even though we didn't constrain it to be
- ullet So, to optimize a linear autoencoder, just need to find U and V, then calculate W as above
 - $\min_{\mathbf{u}^{(i)}, \mathbf{v}_j} \sum_{ij} (\mathbf{v}_j^{\mathsf{T}} \mathbf{u}^{(i)} \mathbf{x}_j^{(i)})^2 \text{ or } \min_{U, V} \|UV^{\mathsf{T}} X\|_F^2$
 - can use block coordinate descent (alternating optimization)

We saw almost the same model already!



- If we set data matrix $X = users \times movies ratings$, we get collaborative filtering by matrix factorization!
 - ightharpoonup in autoencoder, just like in collaborative filtering, it's OK if some elements of X are missing (not observed)

Centering and bias weights

- What if we included bias weights:
 - $\hat{\mathbf{x}}^{(i)} = V\mathbf{u}^{(i)} + \mathbf{b}$ and $\mathbf{u}^{(i)} = W^{\mathsf{T}}\mathbf{x}^{(i)} + \mathbf{c}$
- Turns out the optimal biases satisfy

$$\mathbf{b} = \bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{N} \mathbf{x}^{(i)} \text{ and } \mathbf{c} = -W^{\mathsf{T}} \bar{\mathbf{x}}$$

- i.e., subtract mean before fitting, $\mathbf{u}^{(i)} = W^{\mathsf{T}}(\mathbf{x}^{(i)} \bar{\mathbf{x}})$
- and add mean back in at end, $\hat{\mathbf{x}}^{(i)} = V\mathbf{u}^{(i)} + \bar{\mathbf{x}}$
- Algorithm:
 - First *center* data, $\mathbf{x}_{\text{center}}^{(i)} = \mathbf{x}^{(i)} \bar{\mathbf{x}}$
 - by then fit autoencoder to $\mathbf{x}_{\text{center}}^{(i)}$ without bias weights (block coordinate descent, above)
 - by then set b, c as above (i.e., add \bar{x} back into predictions)

Even simpler

- Simplest linear autoencoder: k=1 hidden dimension
 - solution is some $\mathbf{v}_1 \in \mathbb{R}^d$ and (from above) $\mathbf{w}_1 = \frac{\mathbf{v}_1}{\mathbf{v}_1^\mathsf{T} \mathbf{v}_1}$
 - > scaling ambiguity: might as well pick $\|\mathbf{v}_1\| = 1$, $\mathbf{w}_1 = \mathbf{v}_1$
- That is, the k=1 autoencoder picks a unit vector \mathbf{v}_1 and projects $\mathbf{x}^{(i)}$ onto \mathbf{v}_1

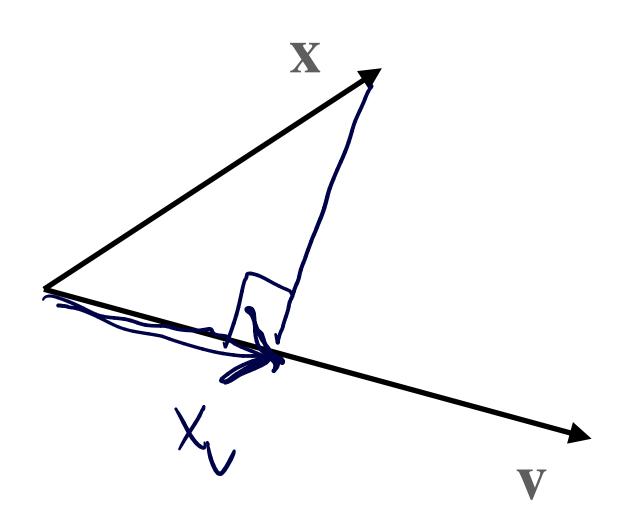
Reminder: vector projection

Length of projection of x onto v:

$$a = \mathbf{v}^\mathsf{T} \mathbf{x} \quad \text{if } ||\mathbf{v}|| = 1$$

Projection of x onto v:

$$\hat{\mathbf{x}} = \mathbf{v}(\mathbf{v}^\mathsf{T}\mathbf{x}) \quad \text{if } ||\mathbf{v}|| = 1$$

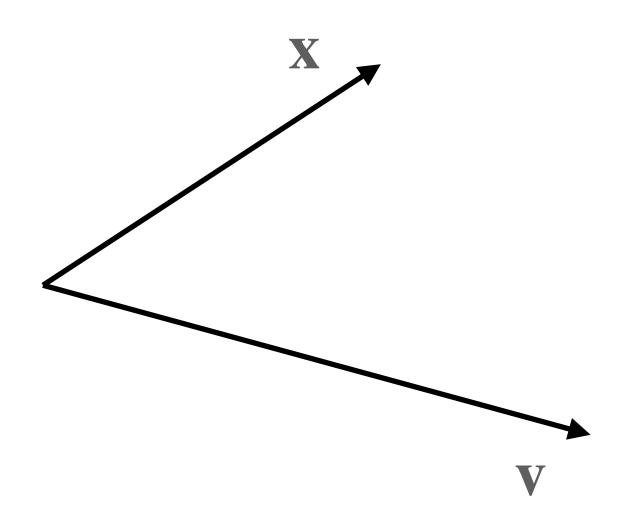


Reminder: vector projection

Length of projection of x onto v:

Projection of x onto v:

$$\hat{\mathbf{x}} = \mathbf{v}(\mathbf{v}^\mathsf{T}\mathbf{x}) \quad \text{if } ||\mathbf{v}|| = 1$$



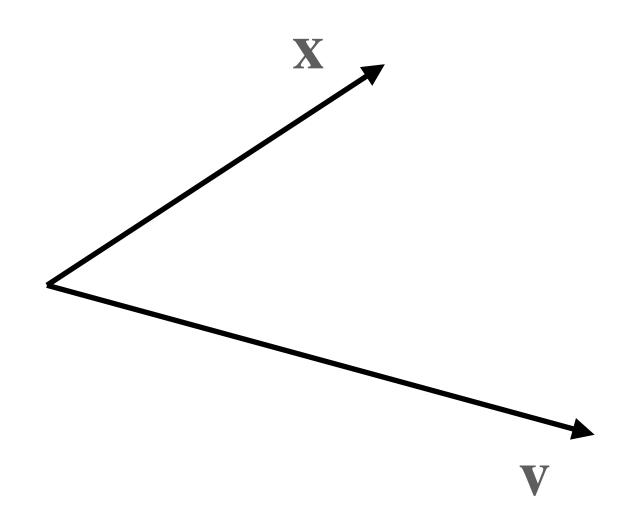
Reminder: vector projection

Length of projection of x onto v:

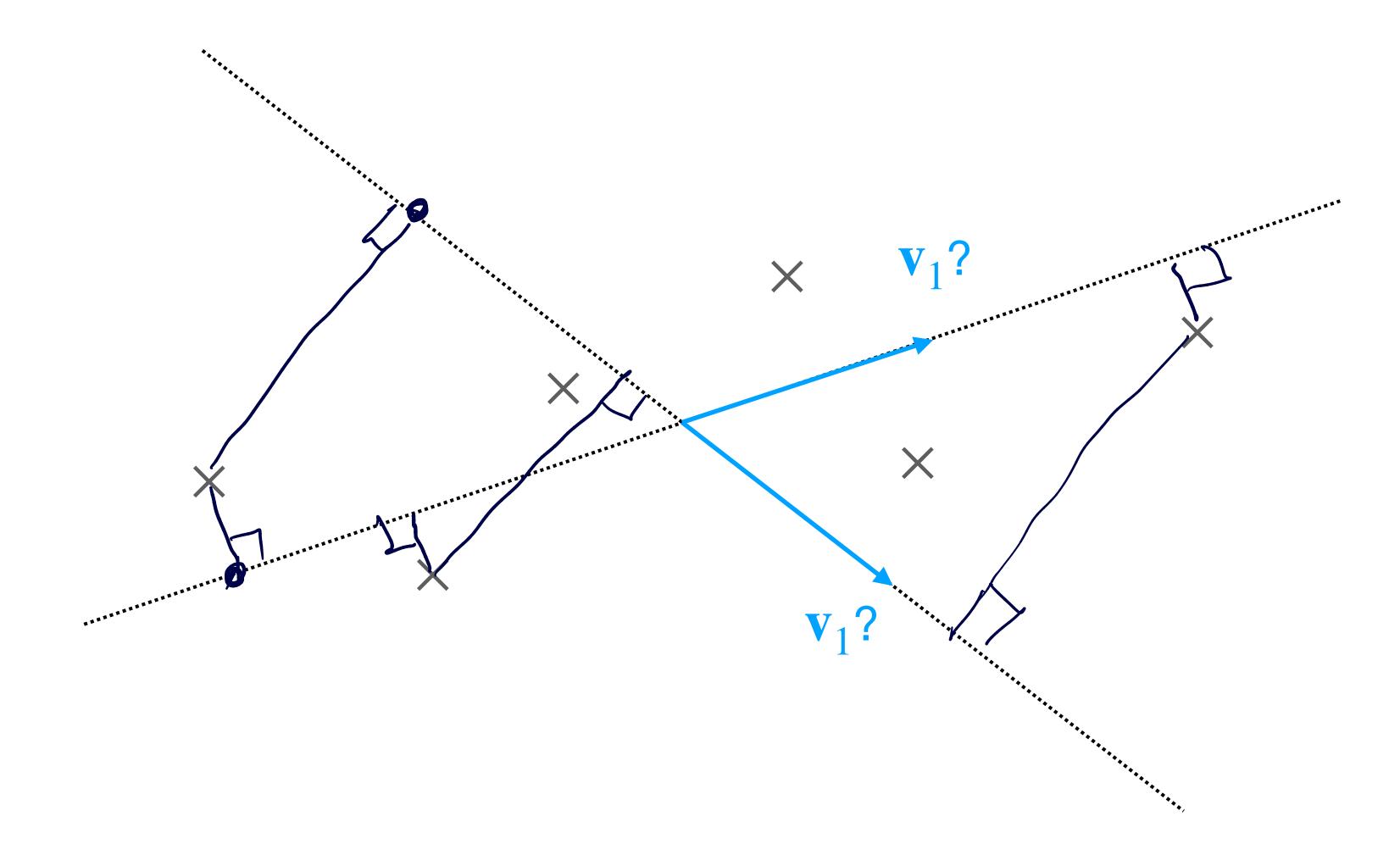
Projection of x onto v:

$$\hat{\mathbf{x}} = \mathbf{v}(\mathbf{v}^{\mathsf{T}}\mathbf{x}) \quad \text{if } ||\mathbf{v}|| = 1$$

$$||\mathbf{v}||^2 \quad \text{o/w}$$

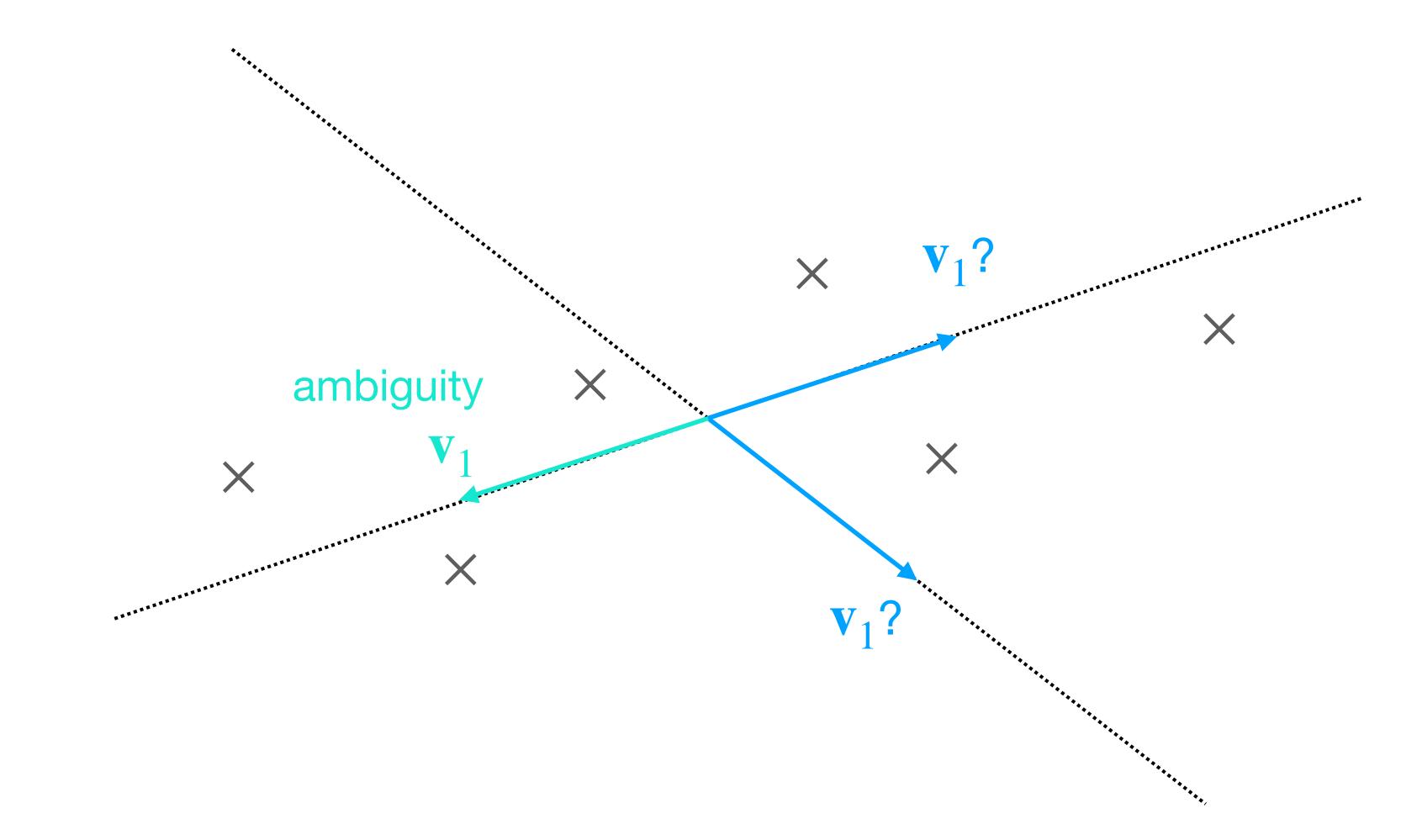


Which vector?



- \bullet We find \boldsymbol{v}_1 by minimizing (sum or mean) squared reconstruction error
 - \blacktriangleright intuitively: if datapoints are spread out, \mathbf{v}_1 should point along the long direction

Which vector?



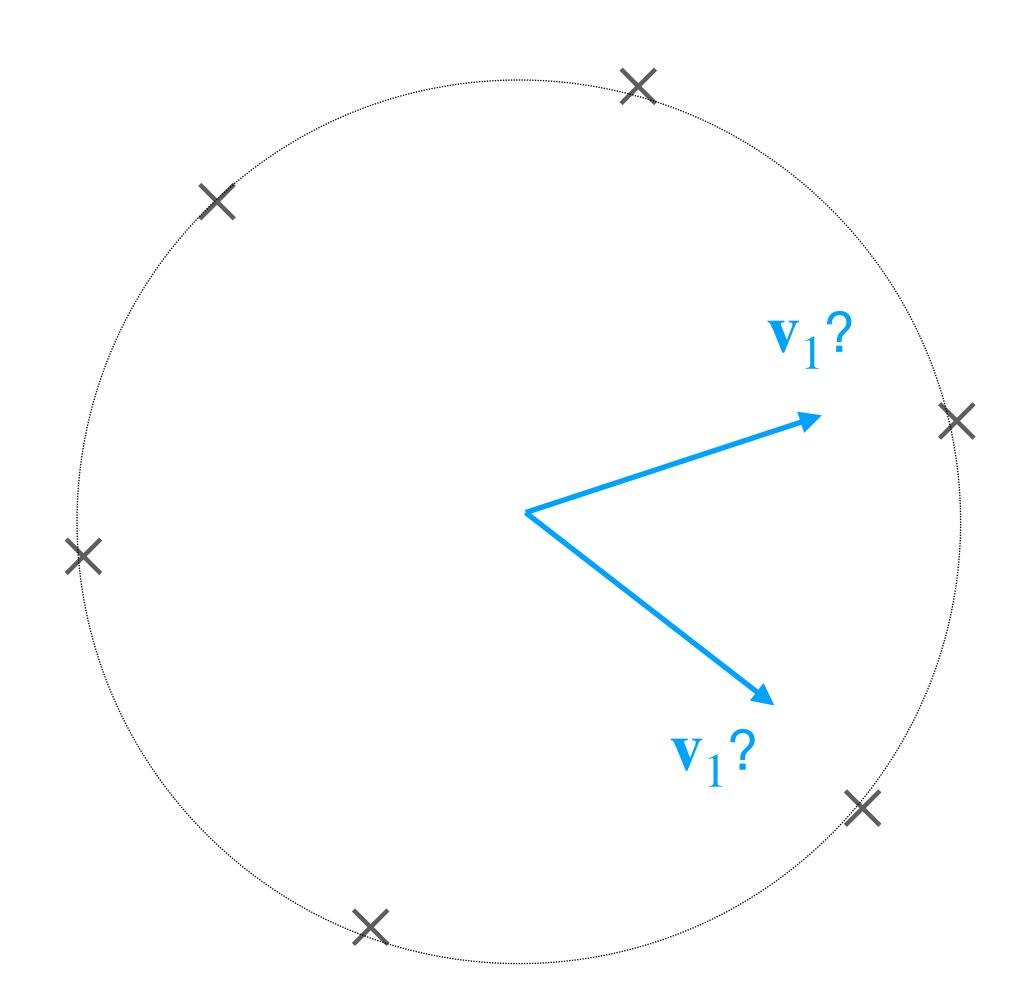
- \bullet We find \boldsymbol{v}_1 by minimizing (sum or mean) squared reconstruction error
 - intuitively: if datapoints are spread out, \mathbf{v}_1 should point along the long direction

Ambiguity



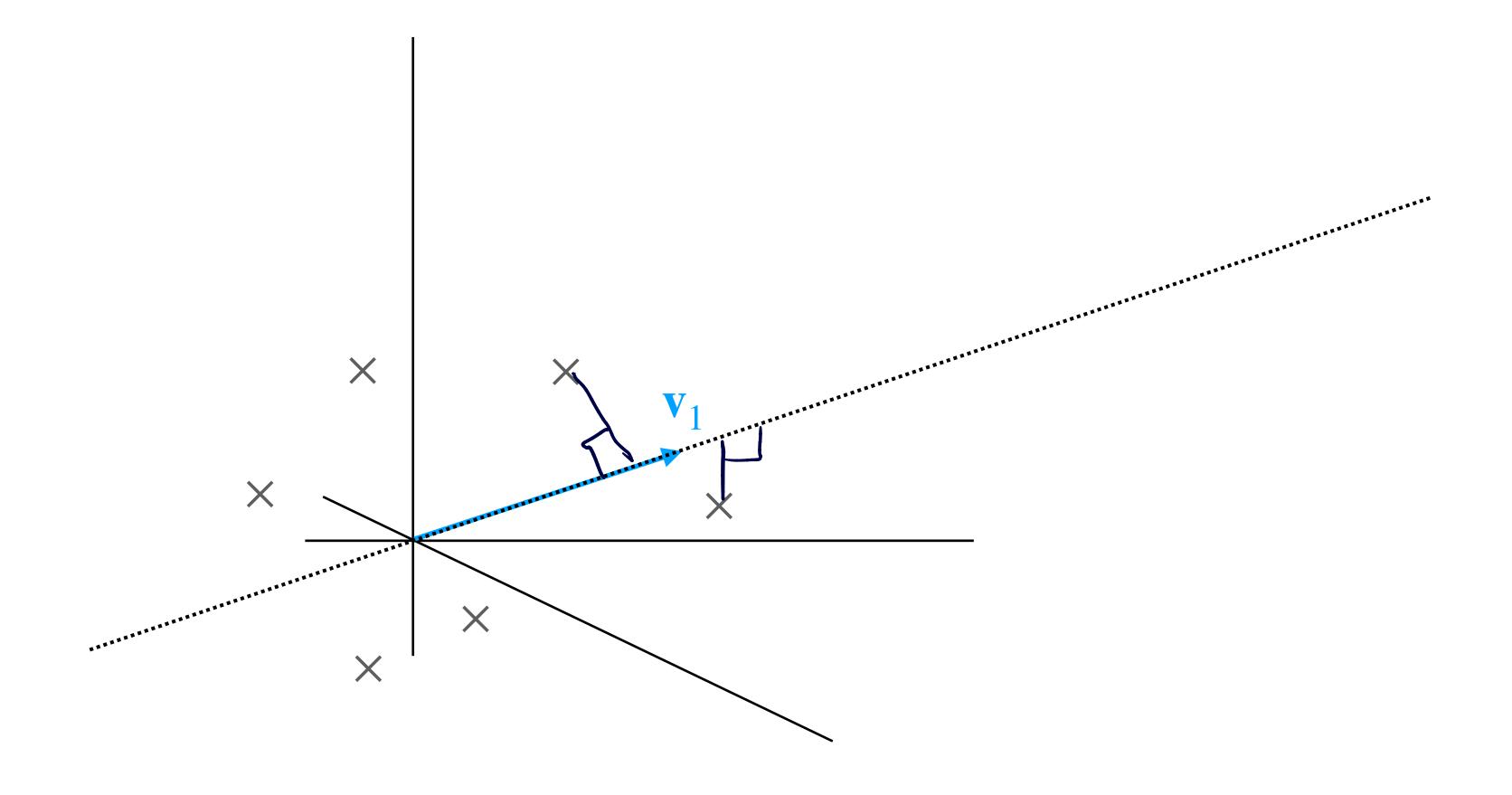
- \bullet Could be a tie for best \boldsymbol{v}_1 if points are equally spread out in two (or more) directions
 - if so, infinitely many solutions
 - we can break the tie arbitrarily

Ambiguity



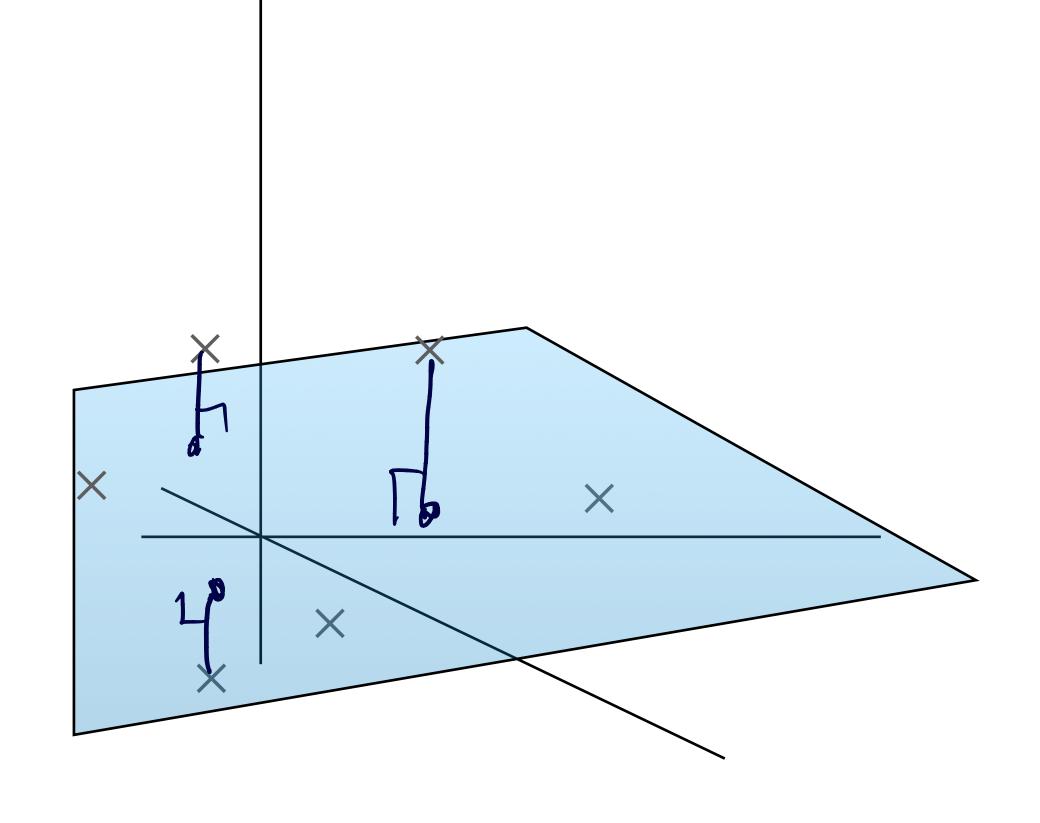
- \bullet Could be a tie for best \boldsymbol{v}_1 if points are equally spread out in two (or more) directions
 - if so, infinitely many solutions
 - we can break the tie arbitrarily

An example in 3D



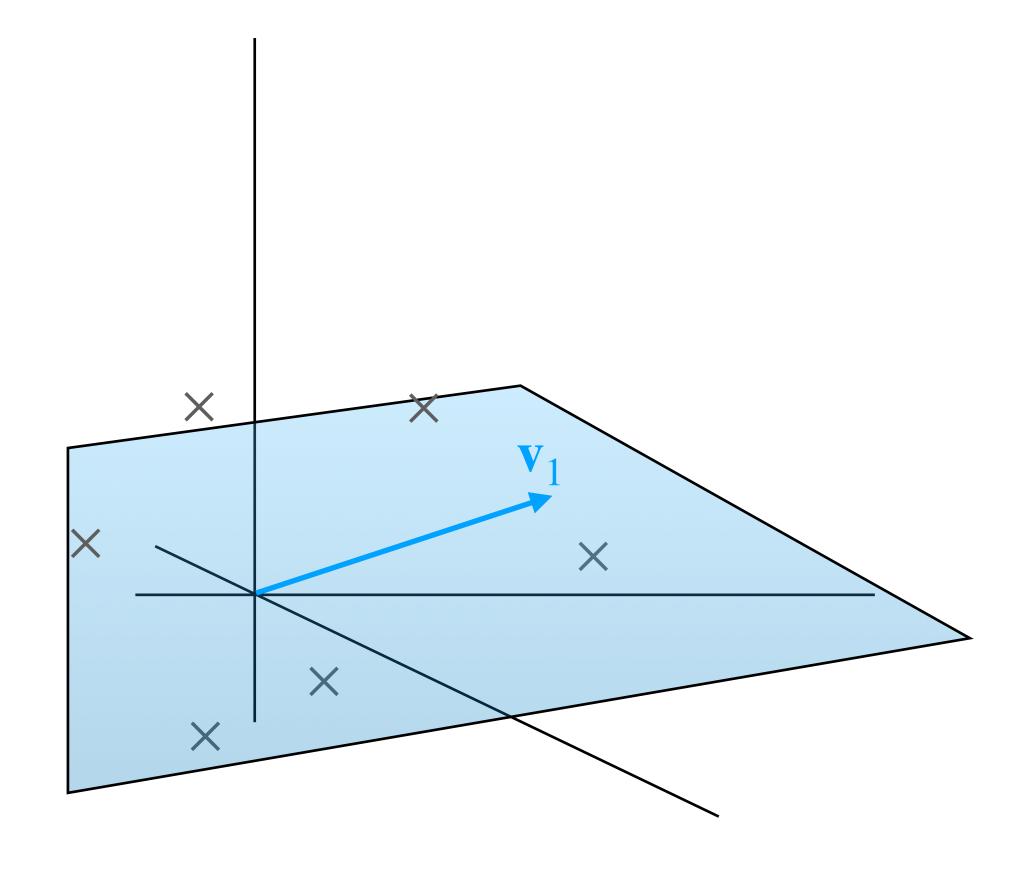
 \bullet v_1 defines a line in 3D - but MSE is still based on orthogonal distance to the line

Best plane



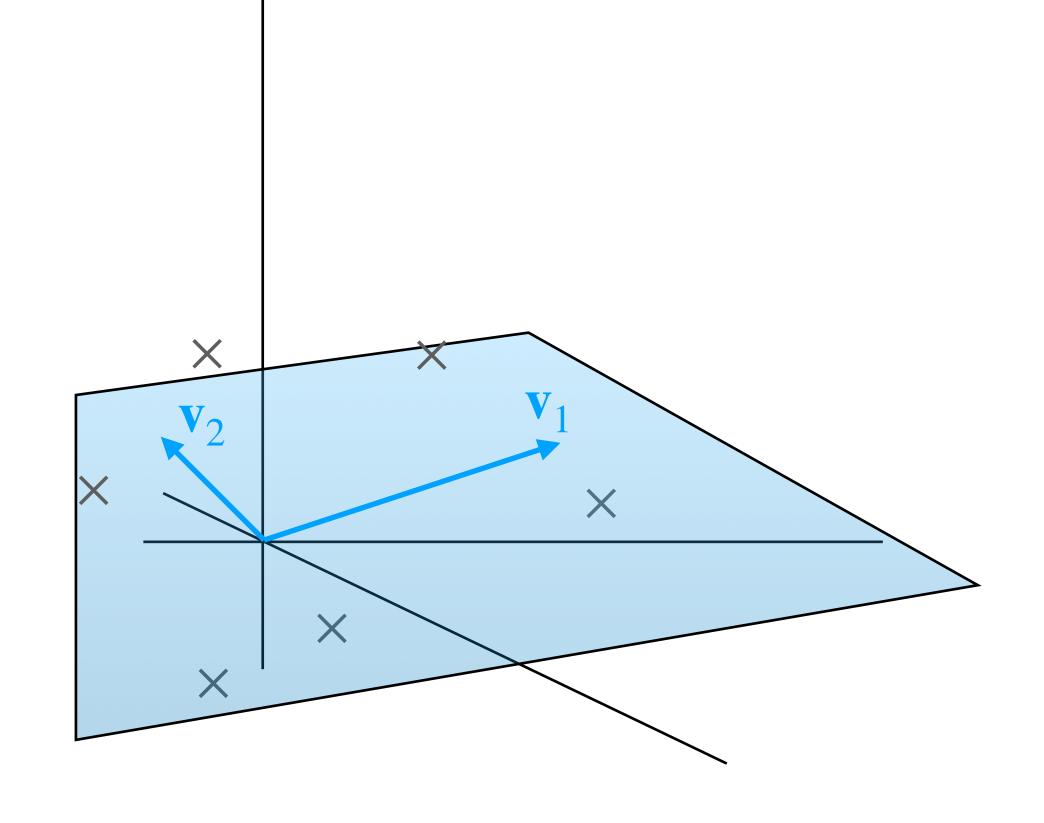
- What about k = 2?
 - project onto best 2D plane (min MSE)

Nesting



- Best plane contains the \mathbf{v}_1 from k=1 solution
 - ightharpoonup else we'd reduce MSE by rotating the plane towards \mathbf{v}_1
 - i.e., solutions are *nested:* if k < k', solution for k is contained in solution for k' (considered as subspaces)

Orthogonal basis



• Can choose any basis for the plane — might as well pick \mathbf{v}_1 and a vector \mathbf{v}_2 that's orthogonal to \mathbf{v}_1 (ie, $\mathbf{v}_2^\mathsf{T}\mathbf{v}_1=0$)

PCA

nb: not "principle"!

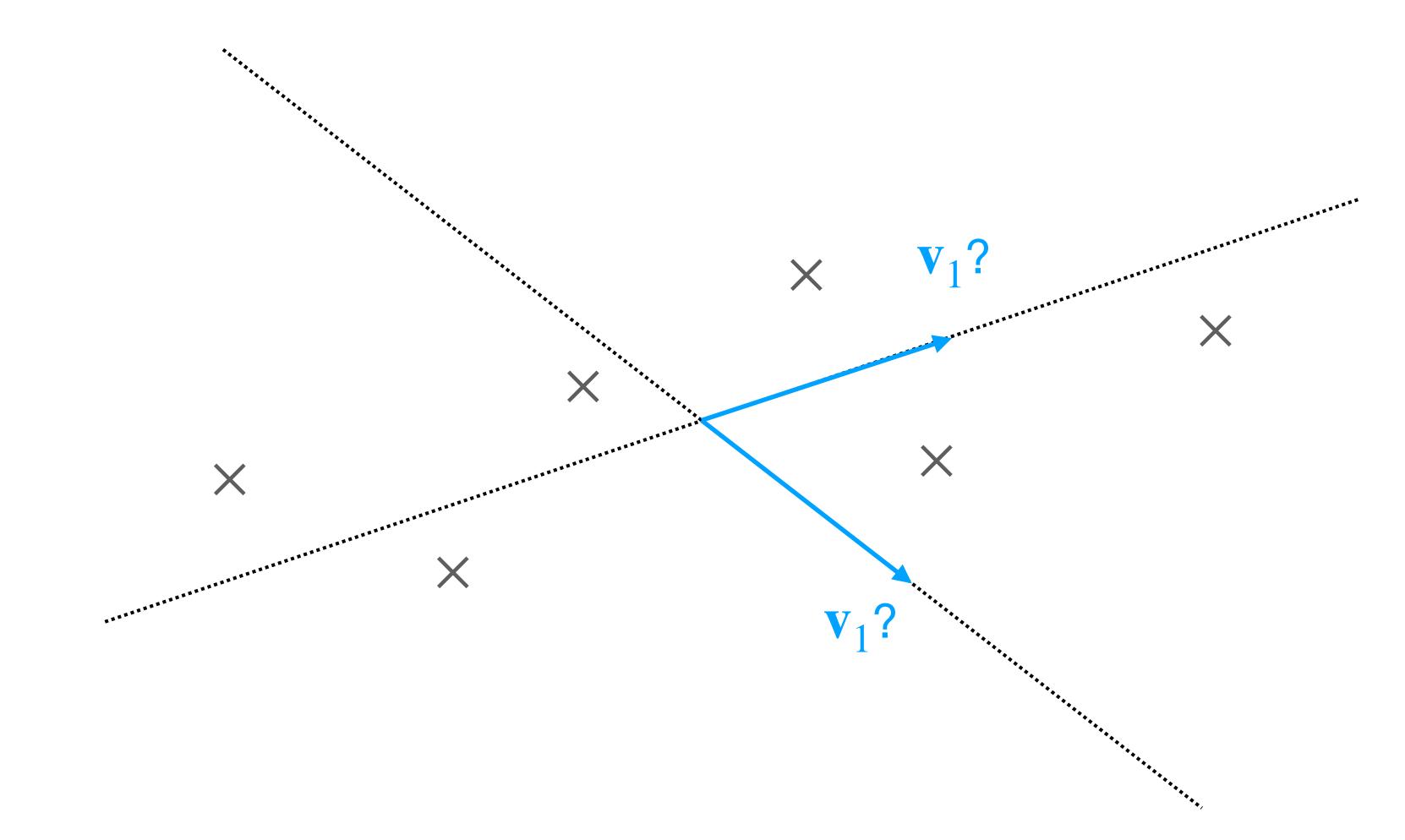
- Definition: principal components analysis
 - the 1st principal component is the unit vector that minimizes mean-squared reconstruction error $\mathbf{v}_1 = \arg\min_{\mathbf{v}} \frac{1}{N} \sum_{i=1}^{N} \|\mathbf{x}^{(i)} (\mathbf{v}^{\mathsf{T}}\mathbf{x}^{(i)})\mathbf{v}\|^2 \text{ st } \|\mathbf{v}\| = 1$
 - $\quad \text{construct residuals } \mathbf{e}_1^{(i)} = \mathbf{x}^{(i)} (\mathbf{v}_1^\mathsf{T} \mathbf{x}^{(i)}) \mathbf{v}_1$
 - by the 2nd PC is the unit vector that minimizes mean-squared reconstruction error of the residuals, while remaining orthogonal to \mathbf{v}_1

remaining orthogonal to
$$\mathbf{v}_1$$

 $\mathbf{v}_2 = \arg\min_{\mathbf{v}} \frac{1}{N} \sum_{i=1}^{N} \|\mathbf{e}_1^{(i)} - (\mathbf{v}^{\mathsf{T}} \mathbf{e}_1^{(i)}) \mathbf{v}\|^2$ st $\|\mathbf{v}\| = 1$, $\mathbf{v}^{\mathsf{T}} \mathbf{v}_1 = 0$

- $\quad \text{construct residuals } \mathbf{e}_2^{(i)} = \mathbf{e}_1^{(i)} (\mathbf{v}_2^\mathsf{T} \mathbf{e}_1^{(i)}) \mathbf{v}_2$
- ..
- by the kth principal component is the vector that minimizes mean-squared reconstruction error while remaining orthogonal to $\mathbf{v}_1 \dots \mathbf{v}_{k-1}$

Thinking about objectives for PCA



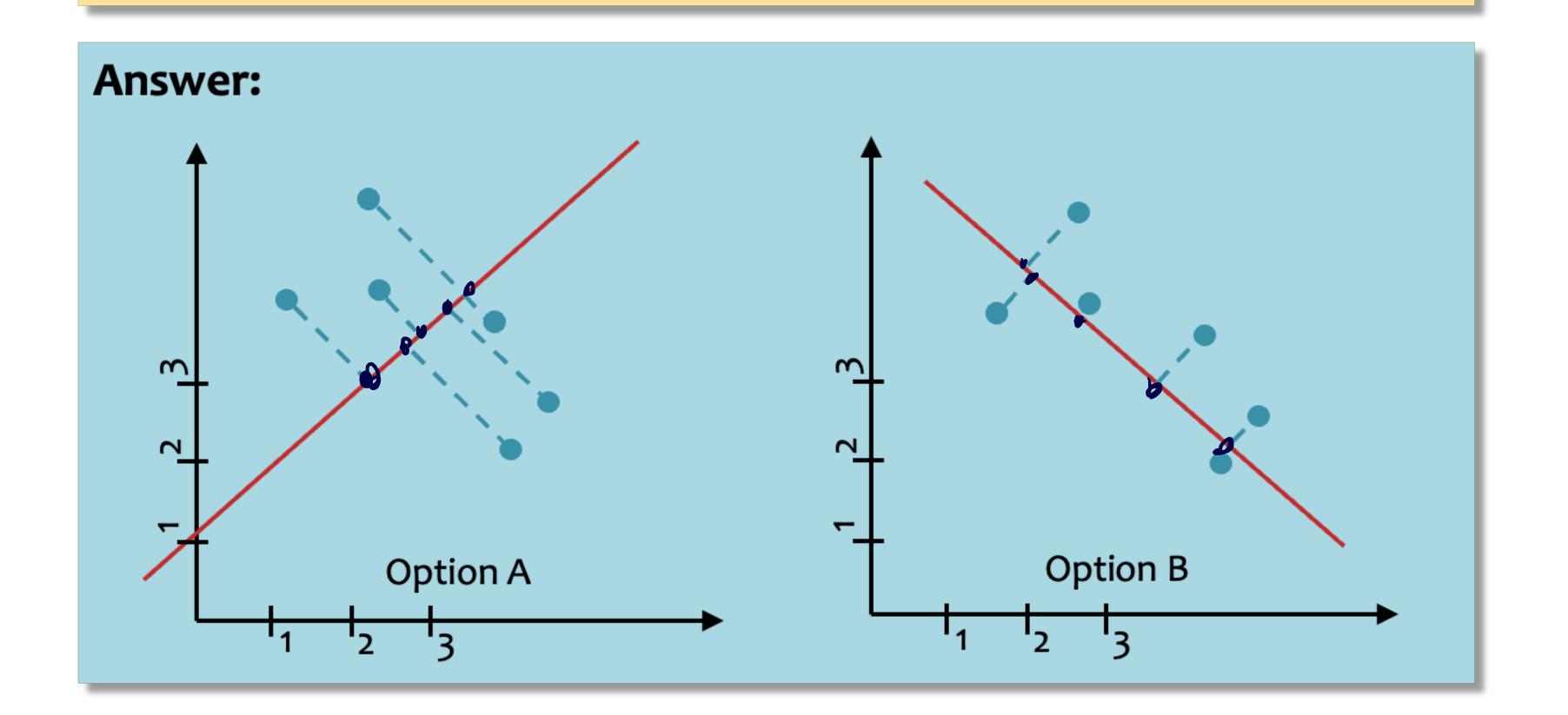
- Best v₁ (min MSE) points along the long direction
 - > side effect: the projections are spread out more
 - maybe another reasonable objective: maximize variance of the projections

Comparison of objectives

Ctoxic

Below are two plots of the same dataset D. Consider the two projections shown.

- 1. Poll Question 1: Which maximizes the variance?
- 2. Poll Question 2: Which minimizes the reconstruction error?



Equivalence

 Minimizing the reconstruction error is the same as maximizing the variance of projections

$$||\mathbf{x} - (\mathbf{v}^{\mathsf{T}}\mathbf{x})\mathbf{v}||^{2} =$$
 reconstruction error
$$||\mathbf{x} - (\mathbf{v}^{\mathsf{T}}\mathbf{x})\mathbf{v}||^{2} =$$

$$\min_{\mathbf{v}} \frac{1}{N} \sum_{i=1}^{N} \left[(\mathbf{x}^{(i)} \mathbf{x}^{(i)} - (\mathbf{v}^{\mathsf{T}} \mathbf{x}^{(i)})^{2} \right] =$$

$$\max_{i \in I} \sum_{i=1}^{N} \left[(\mathbf{x}^{(i)} \mathbf{x}^{(i)} - (\mathbf{v}^{\mathsf{T}} \mathbf{x}^{(i)})^{2} \right] =$$

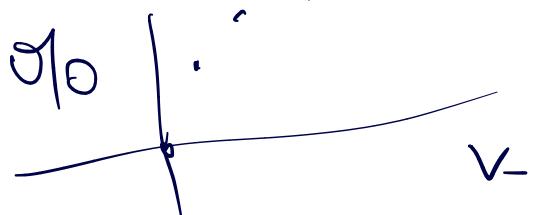
variance of projections

Principal values

- Definition: the *j*th *principal value* is the variance of the projections onto the *j*th principal component \mathbf{v}_i
 - because PCs are orthogonal, the sum of the principal values is equal to the variance of $\mathbf{x}^{(i)}$
- Often report *fraction of variance explained* by a PC:

$$\frac{\frac{1}{N} \sum_{i} (\mathbf{v}_{j}^{\mathsf{T}} \mathbf{x}^{(i)})^{2}}{\frac{1}{N} \sum_{i} (\mathbf{x}^{(i)})^{\mathsf{T}} \mathbf{x}^{(i)}} = \frac{\text{variance of projection}}{\text{variance of } \mathbf{x}^{(i)}}$$

- Or plot the *cumulative sum* of variance explained (sum over first *j* PCs vs. *j*)
 - to decide how many PCs to use (trade off small latent representation vs. explaining more variance)



Covariance matrix

Maximize variance of projections

$$\frac{1}{N} \sum_{i} (\mathbf{v}_{j}^{\mathsf{T}} \mathbf{x}^{(i)})^{2} = \frac{1}{N} \sum_{i} \mathbf{v}_{j}^{\mathsf{T}} \mathbf{x}^{(i)} (\mathbf{x}^{(i)})^{\mathsf{T}} \mathbf{v}_{j} = \mathbf{v}_{j}^{\mathsf{T}} \Sigma \mathbf{v}_{j}$$
• Here $\Sigma = \frac{1}{N} \sum_{i} \mathbf{x}^{(i)} (\mathbf{x}^{(i)})^{\mathsf{T}}$ is the (sample) *covariance*

- *matrix* of datapoints $\mathbf{x}^{(i)}$
 - by diagonal elements: variance of each feature $\mathbf{X}_{i}^{(l)}$
 - off-diagonal: covariance of pair of features

$$ex: X = \begin{pmatrix} 1 & -1 \\ -1 & 1 \\ 2 & 2 \\ -2 & -2 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} \frac{5}{2} & \frac{3}{4} \\ \frac{3}{4} & \frac{5}{2} \end{pmatrix}$$

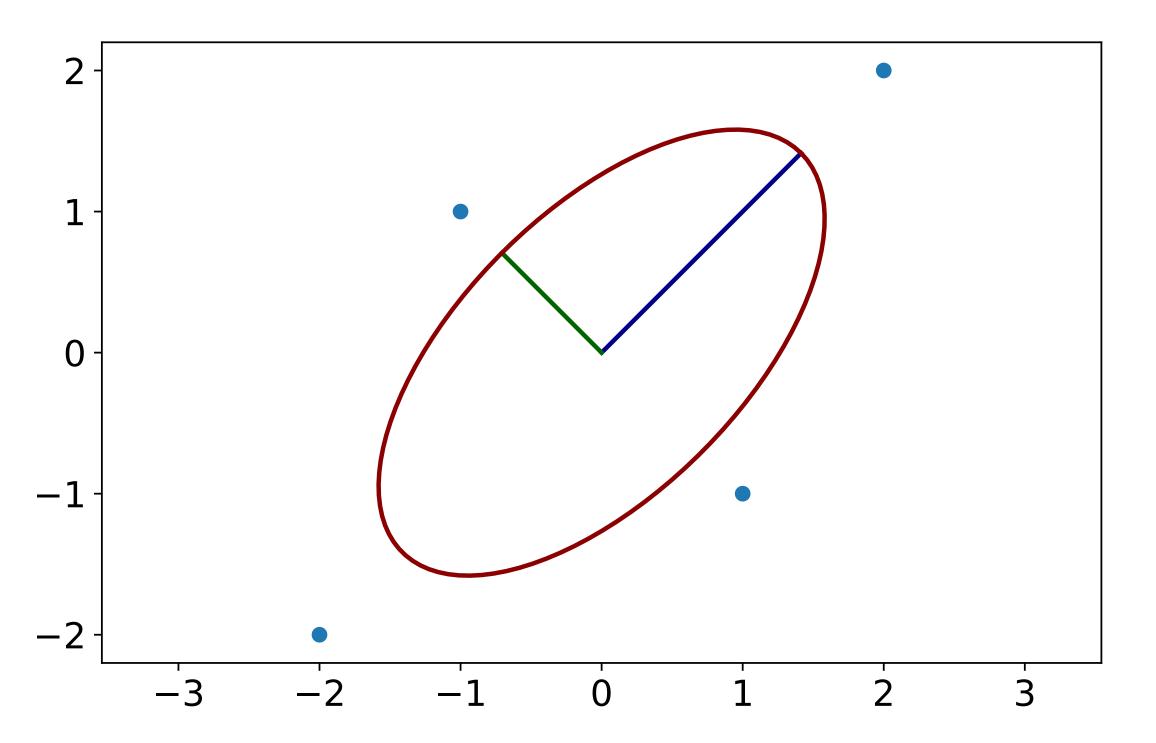
Eigenvalues and eigenvectors

$$\lambda = \max_{\|\mathbf{v}\|=1} \mathbf{v}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{v}$$

- \bullet This is exactly the definition of largest eigenvalue of Σ
 - \triangleright and the arg max \mathbf{v}_1 is the corresponding eigenvector
- Similarly, if we maximize over \mathbf{v} with $\mathbf{v}^\mathsf{T}\mathbf{v}_1 = 0$ we get second largest eigenvalue (and its eigenvector)
- So, we can solve PCA by finding eigenvalues and eigenvectors of the covariance matrix!
 - PyTorch has a built-in function for this: torch.pca lowrank

Graphically

$$X = \begin{pmatrix} 1 & -1 \\ -1 & 1 \\ 2 & 2 \\ -2 & -2 \end{pmatrix}$$



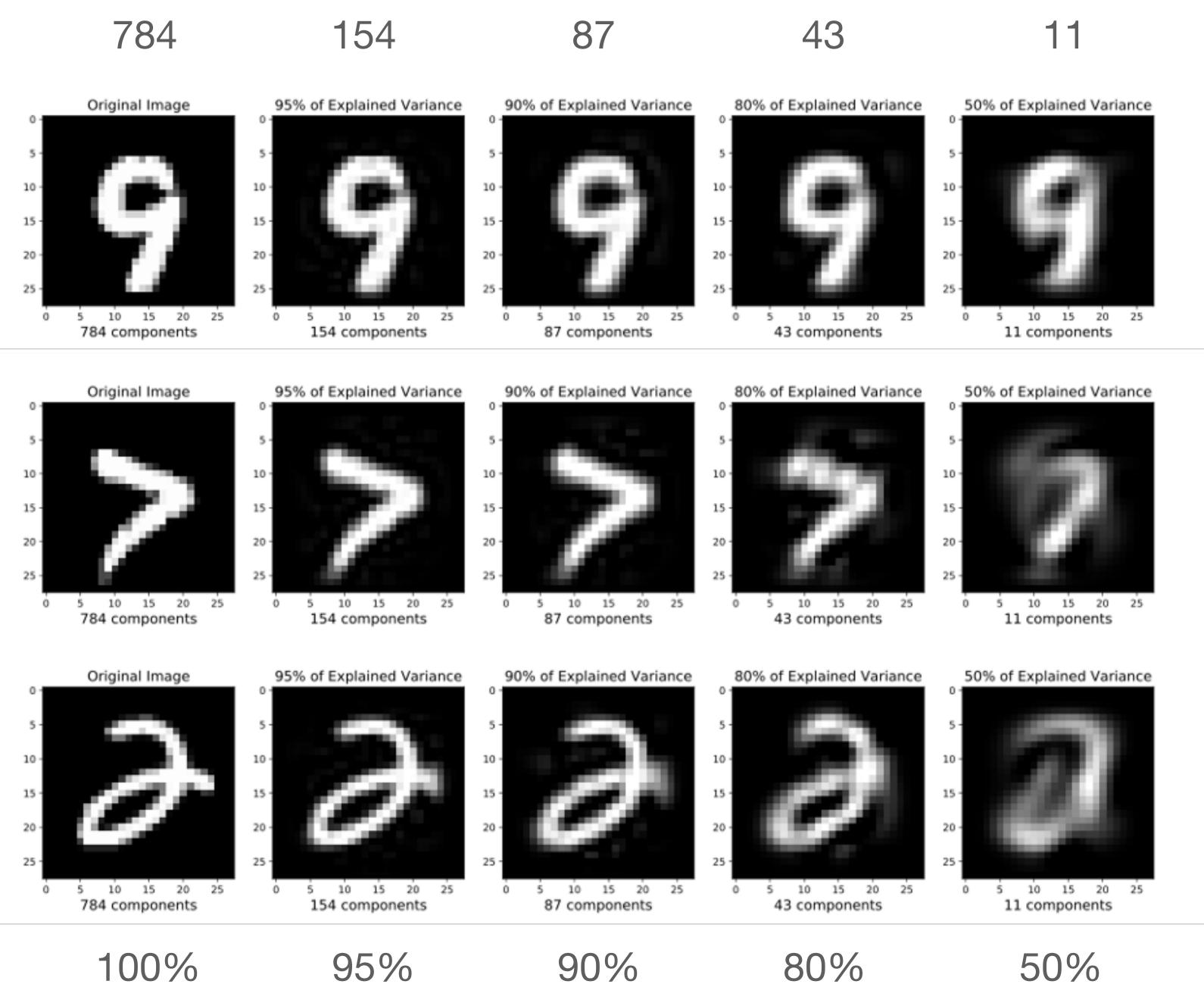
PCA finds the longest axes

- Visualize Σ by looking at PDF of a Gaussian distribution with covariance Σ (even if our data aren't Gaussian)
- Contours of PDF are ellipses (or ellipsoids in higher D)
- Each eigenvector (each principal component) corresponds to an axis of the ellipse
 - corresponding eigenvalue = (axis length)² = variance

PCA example: MNIST digits

- ullet Task: for each latent dimensionality k
 - > take each 28 \times 28 image of a digit (a vector $\mathbf{x}^{(i)}$ of length 784) and project it down to \mathbb{R}^k
 - report percent of variance explained
 - by then project back up to 28×28 image (a vector $\hat{\mathbf{x}}^{(i)}$ of length 784) to visualize what information was preserved

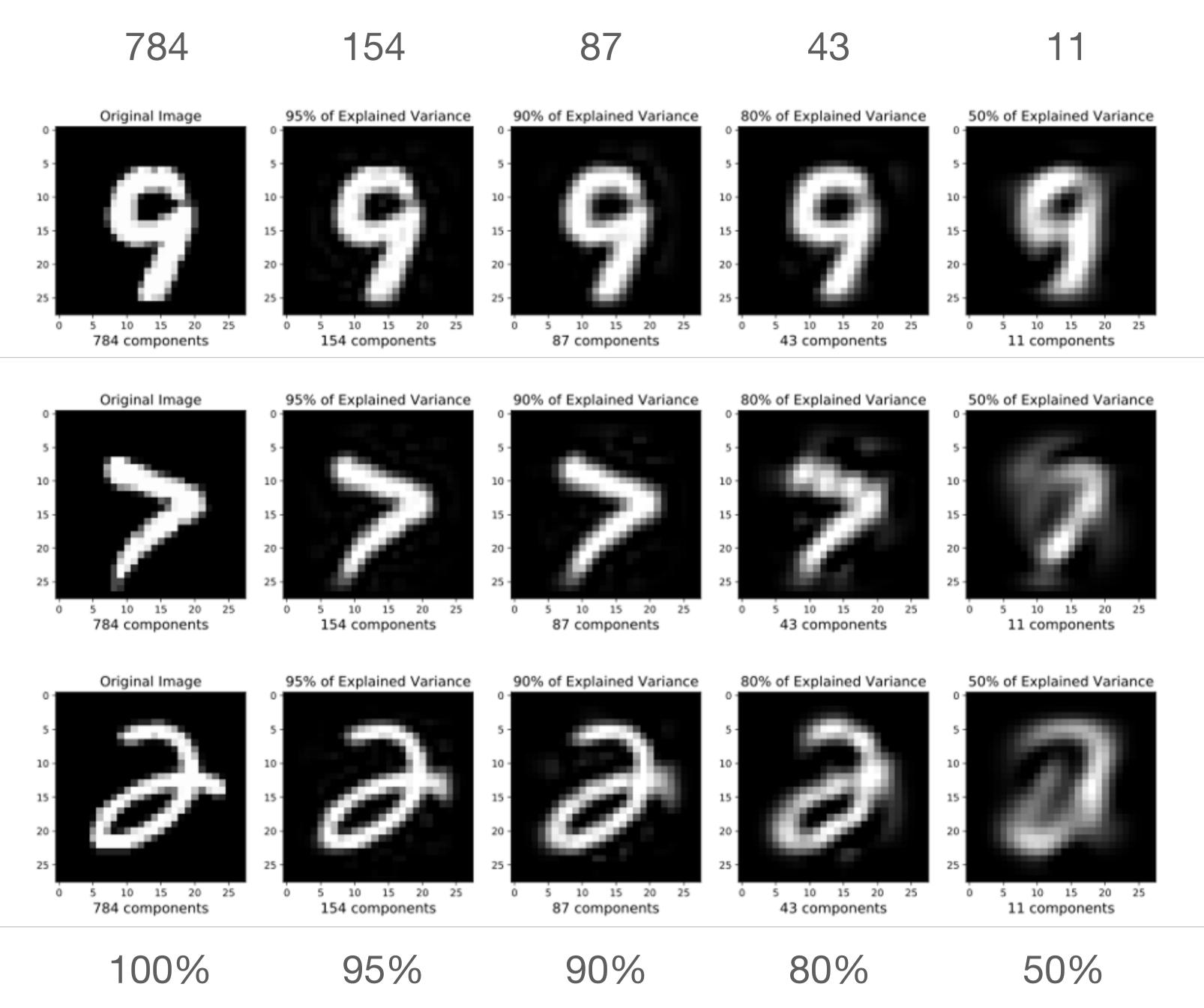
PCA example: MNIST digits



Takeaway:

Using fewer principal components k leads to higher reconstruction error.

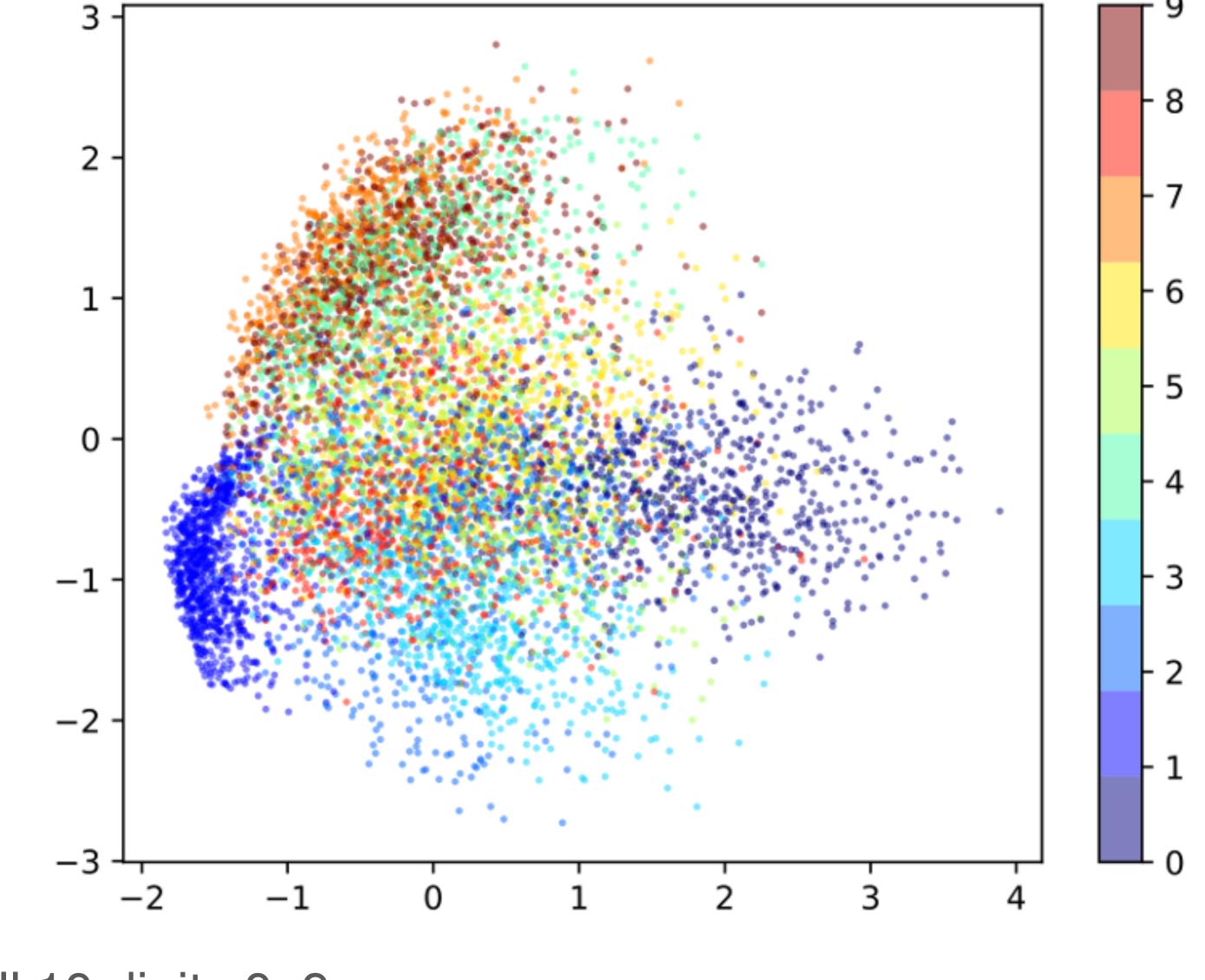
But even a small number (say 43) still preserves a lot of information about the original image.



PCA example: MNIST digits

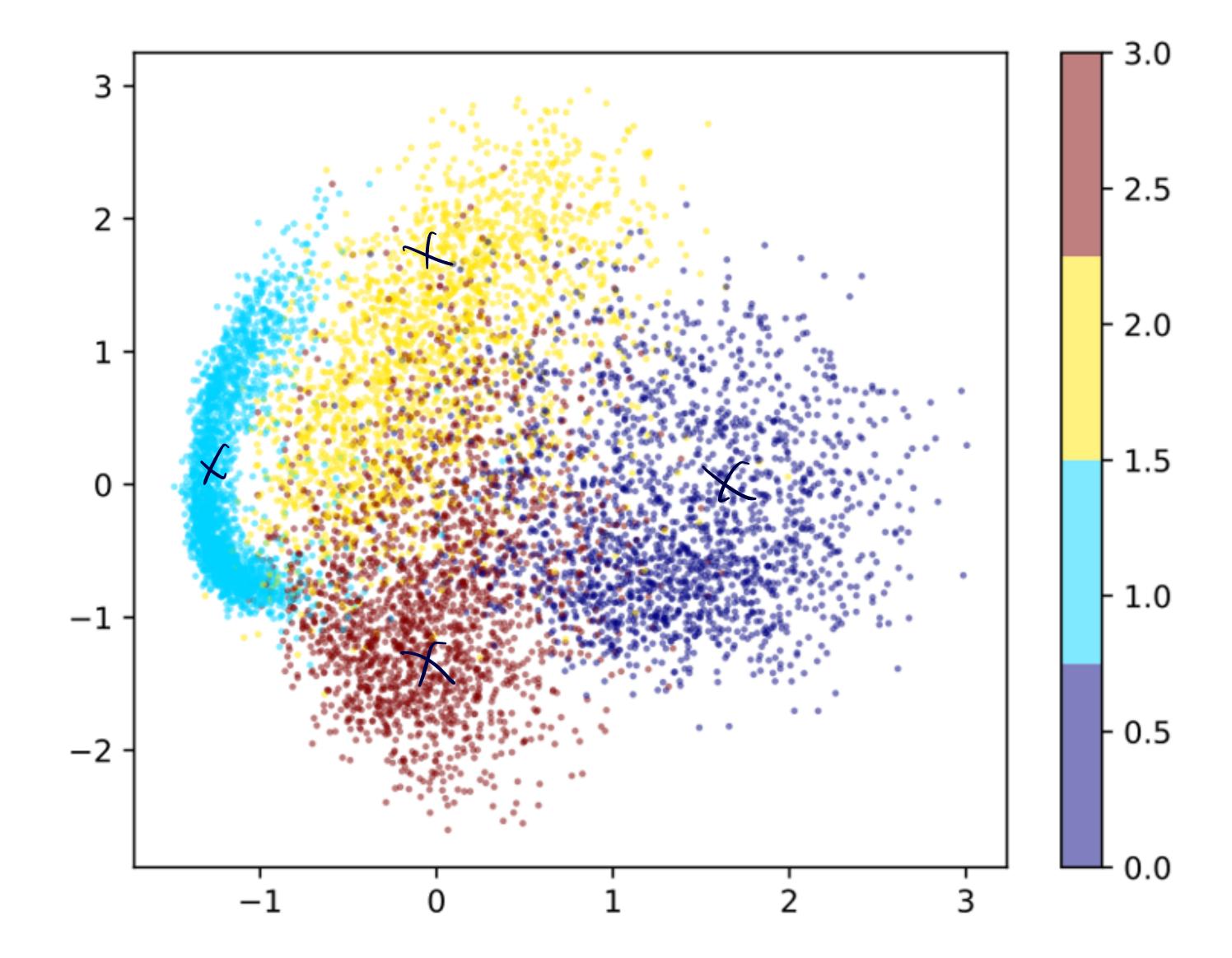
- Task: fix latent dimension k=2
 - > take each 28 \times 28 image of a digit (a vector $\mathbf{x}^{(i)}$ of length 784) and project it down to \mathbb{R}^k
 - Plot the 2D points and color them according to the digit label $y^{(i)}$ (which is unknown to PCA)

PCA example: MNIST digits



All 10 digits 0–9

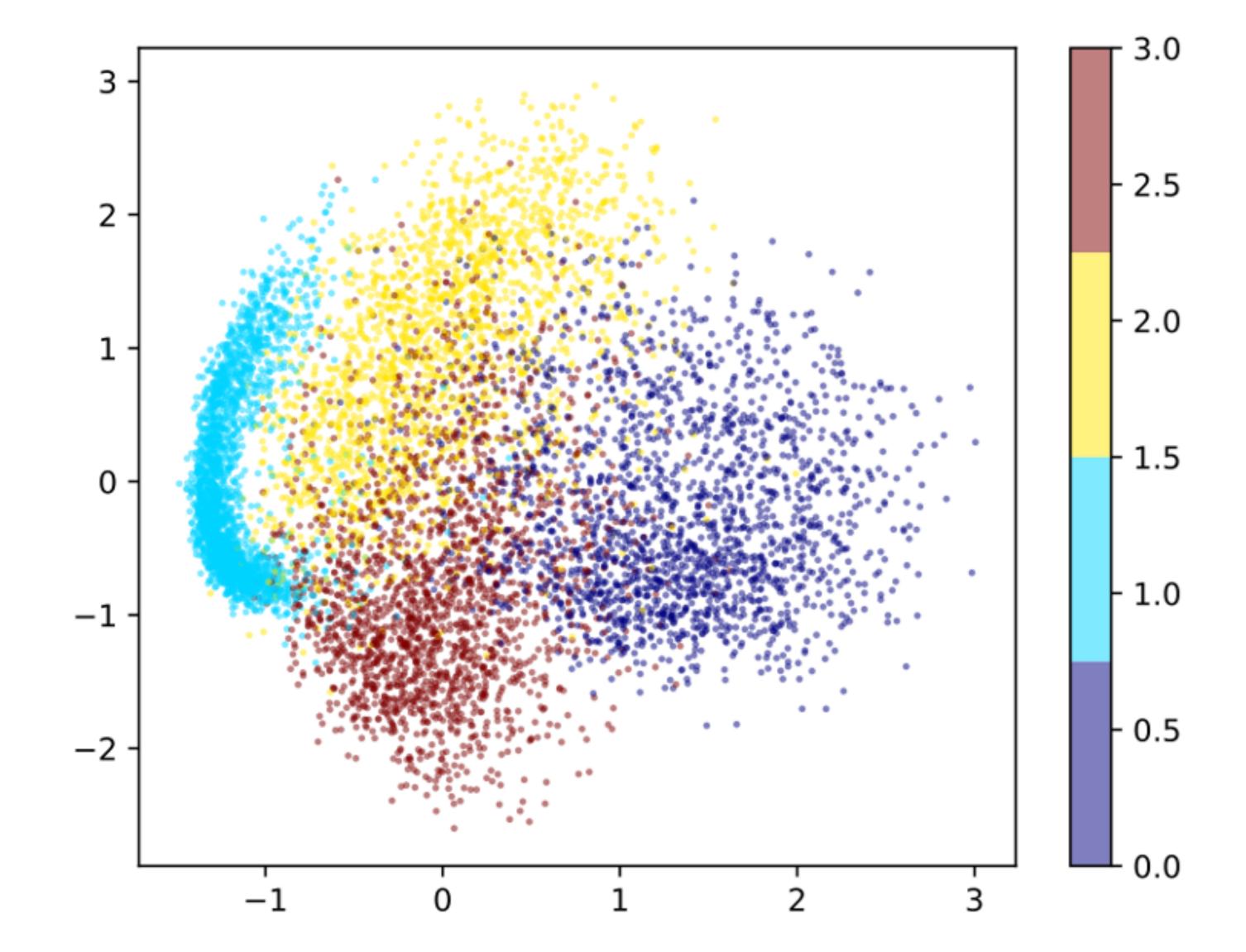
PCA example: MNIST digits



Just the four digits 0–3

Takeaway:

Even with a tiny number of principal components k=2, PCA learns a representation that captures **latent** information: the type of digit

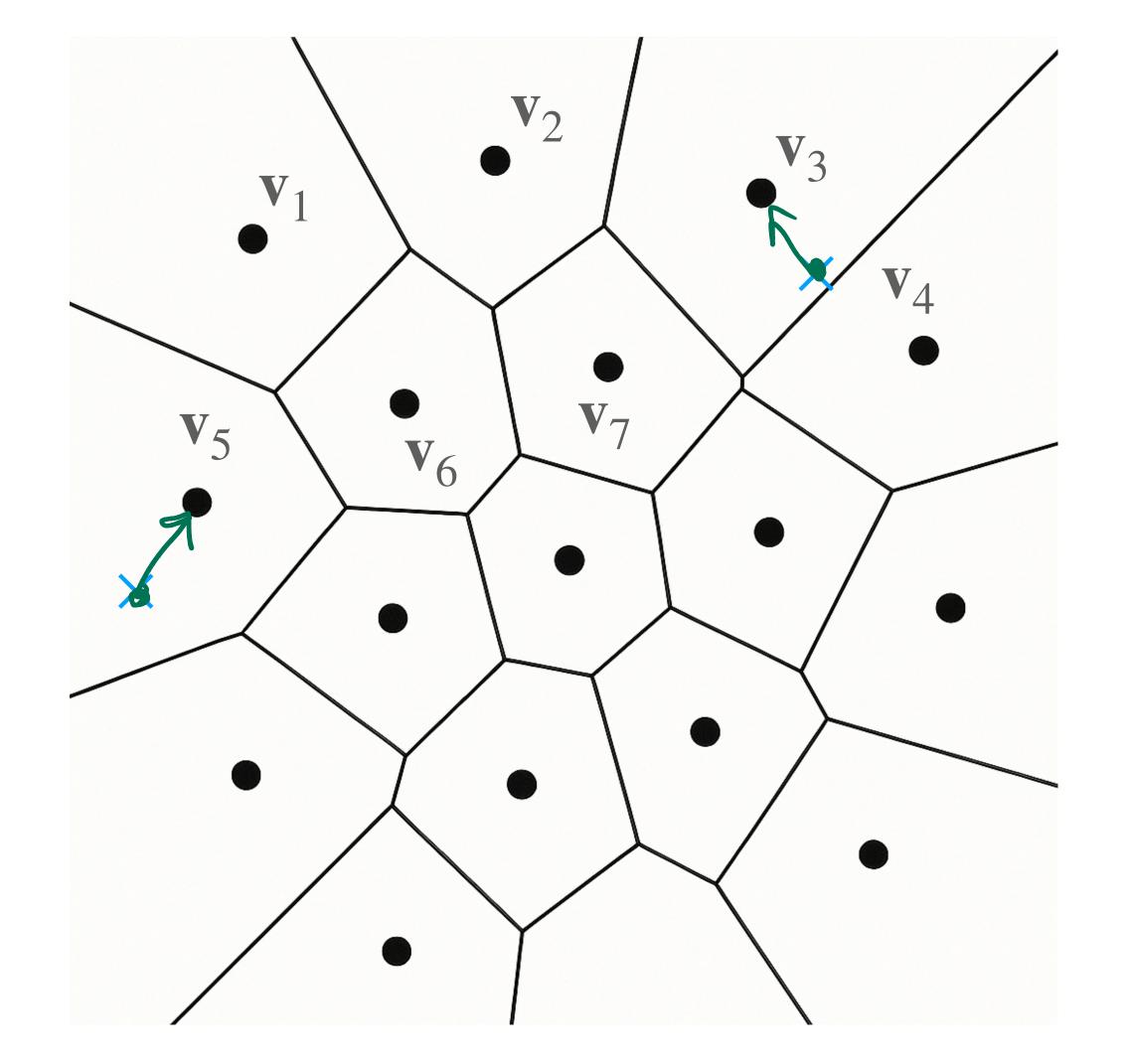


Just the four digits 0–3

Learning objectives: PCA/dimensionality reduction

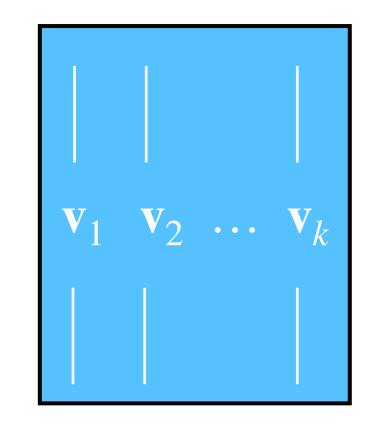
- Identify examples of high dimensional data and common use cases for dimensionality reduction
- Define the sample mean, sample variance, and sample covariance of a vector-valued dataset
- Draw the principal components of a given low-D dataset
- Establish the equivalence of minimization of reconstruction error with maximization of variance
- Given a set of principal components, project from high to low-D space; do the reverse to produce a reconstruction
- Explain the connection between PCA, eigenvectors, eigenvalues, and covariance matrix
- Use common methods in linear algebra to obtain the principal components

Vector quantization



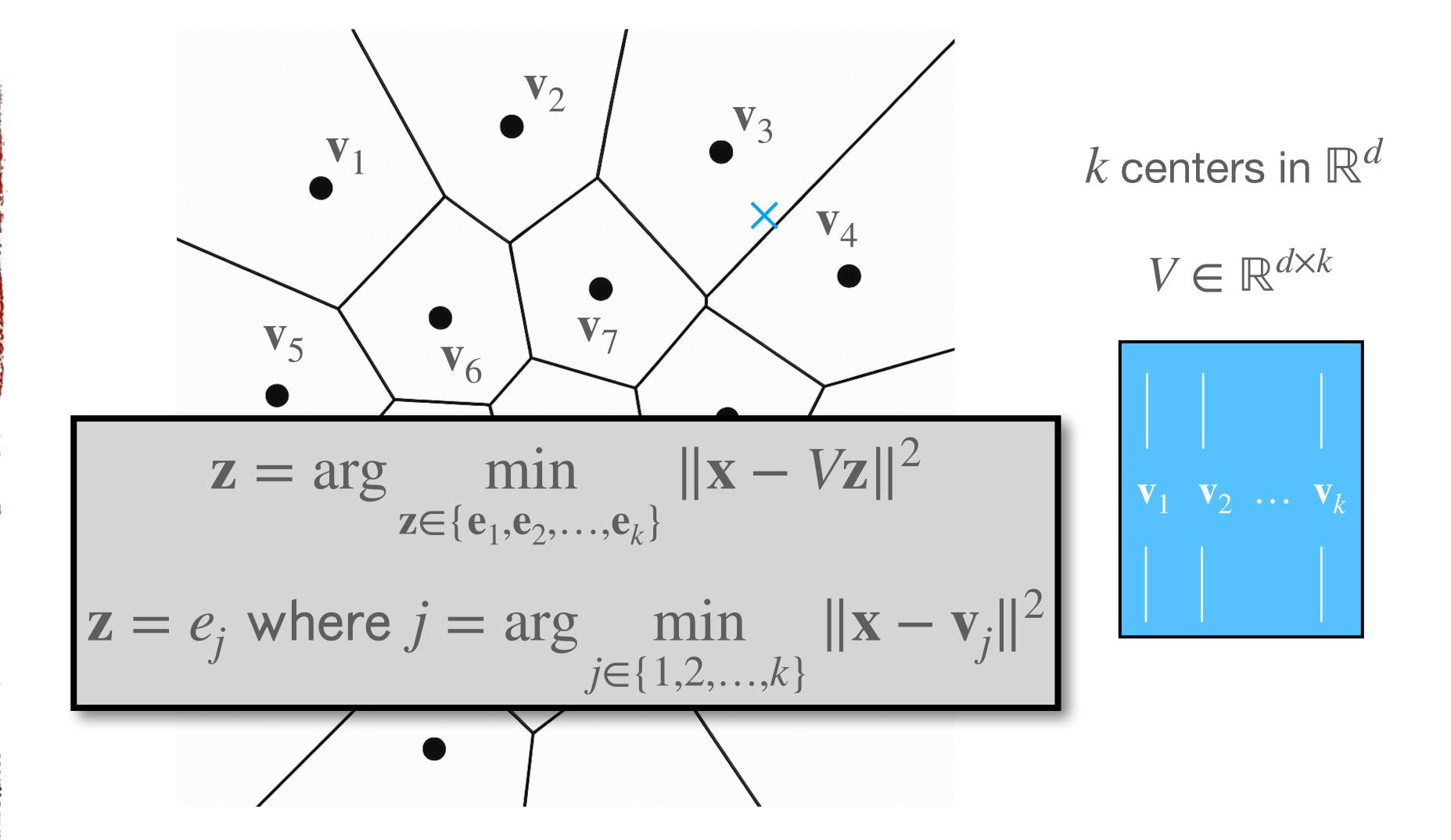
k centers in \mathbb{R}^d

$$V \in \mathbb{R}^{d \times k}$$



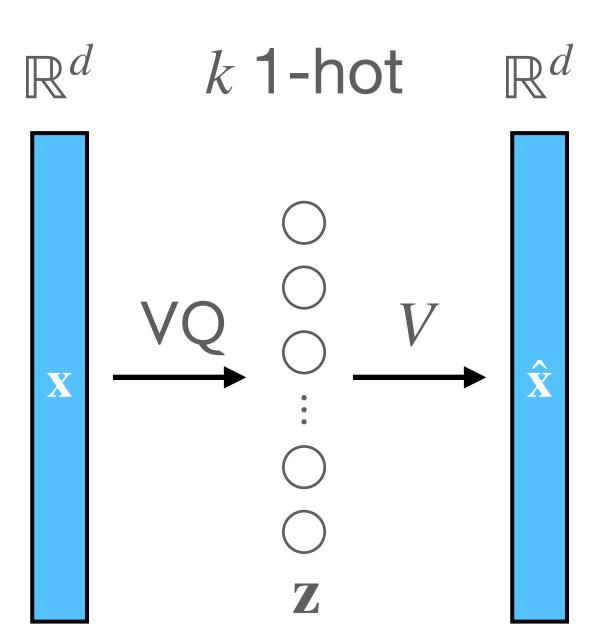
- Operation: map a point to closest center in Voronoi diagram
 - write $\mathbf{z} = \mathsf{VQ}(\mathbf{x}, V)$ where \mathbf{z} is 1-hot and $V \in \mathbb{R}^{d \times k}$ is matrix of centers

Vector quantization



- Operation: map a point to closest center in Voronoi diagram
 - write $\mathbf{z} = \mathsf{VQ}(\mathbf{x}, V)$ where \mathbf{z} is 1-hot and $V \in \mathbb{R}^{d \times k}$ is matrix of centers

Discrete autoencoder



$$\hat{\mathbf{x}} = V\mathbf{z} = V \times VQ(\mathbf{x}, V)$$

$$\hat{X} = ZV^{\top}$$

$$V \in \mathbb{R}^{d \times k}$$

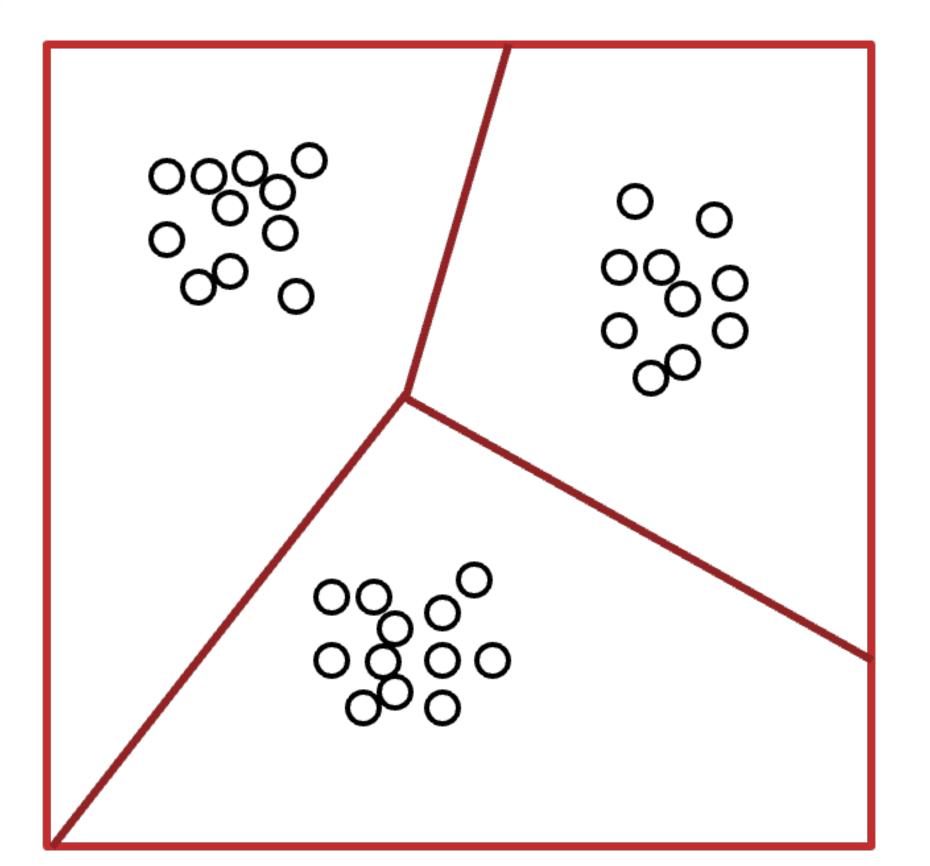
$$Z \in \{0,1\}^{N \times k} \text{ rows 1-hot}$$

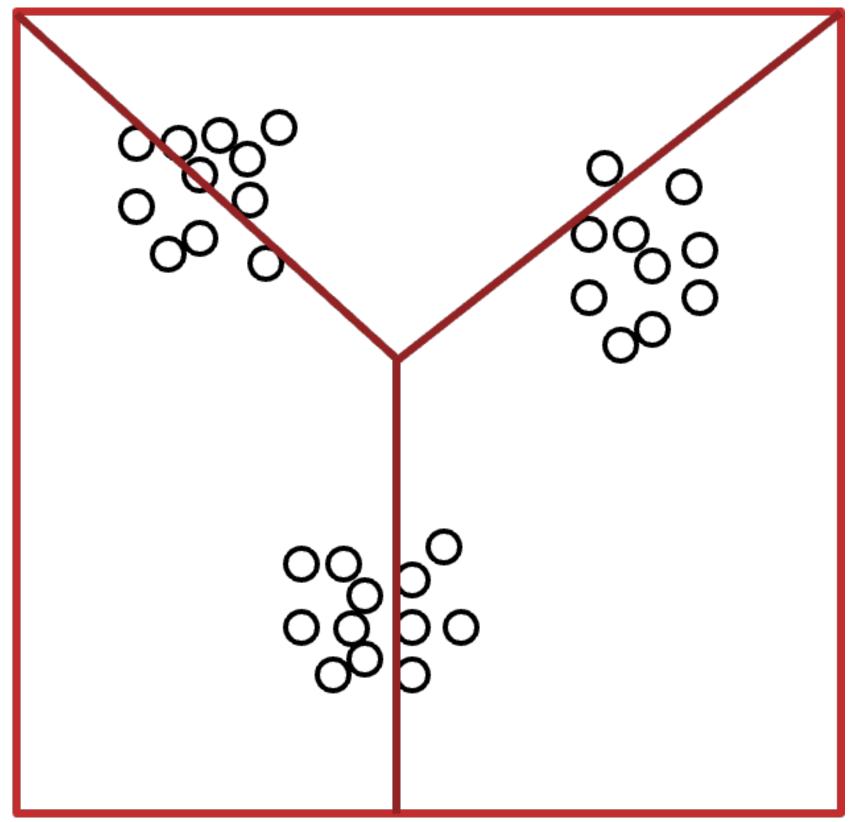
- Discrete autoencoder (nonlinear):
 - map x to discrete hidden variable z using VQ
 - prediction is just the center that corresponds to Z
 - train to minimize MSE $\frac{1}{N} \sum_{i=1}^{N} \|\mathbf{x}^{(i)} \hat{\mathbf{x}}^{(i)}\|^2$

Clustering

- Discrete autoencoder implements *clustering*: learns to partition unlabeled data into groups of nearby points
 - ▶ this version called *k*-means
- Applications:
 - topic modeling: group news articles or web pages by topic
 - sequence analysis: group protein sequences by function or genes by expression profile
 - community detection: group social network users by interest
 - fraud detection: spot groups of unusual transactions
 - astronomy: find groups of similar objects in sky survey
 - ..

Clustering: the picture





• Which of these partitions is better? Why?

k-means objective

- Reconstruction error: distance from $\mathbf{x}^{(i)}$ to closest center
 - closest center: $\arg\min_{j} \|\mathbf{x}^{(i)} \mathbf{v}_{j}\|^{2}$
 - by distance to closest center: $\min_{j} ||\mathbf{x}^{(i)} \mathbf{v}_{j}||^{2}$
 - ▶ or $\min_{\mathbf{z}} ||\mathbf{x}^{(i)} V\mathbf{z}||^2$ where $\mathbf{z} \in \{\mathbf{e}_1...\mathbf{e}_k\}$
- ullet Find best V:
- Get rid of nested minimizations:
 - write $\mathbf{z}^{(i)}$ = latent for $\mathbf{x}^{(i)}$

 - $\rightarrow \arg\min_{V,Z} \sum_{i=1}^{N} \|\mathbf{x}^{(i)} V\mathbf{z}^{(i)}\|^2$

k-means algorithm

$$\operatorname{arg\,min}_{V,Z} \sum_{i=1}^{N} \|\mathbf{x}^{(i)} - V\mathbf{z}^{(i)}\|^{2}$$

- To optimize, use block coordinate descent
- Given feature vectors $\mathcal{D} = \{\mathbf{x}^{(1)}, ..., \mathbf{x}^{(N)}\}$
- Initialize matrix of centers V (each column is a center \mathbf{v}_i)
- Repeat:
 - minimize wrt Z: for each i, set $\mathbf{z}^{(i)}$ to map $\mathbf{x}^{(i)}$ to its closest center
 - minimize wrt V: for each j, minimize MSE from \mathbf{v}_i to its assigned points

k-means algorithm

$$\operatorname{arg\,min}_{V,Z} \sum_{i=1}^{N} \|\mathbf{x}^{(i)} - V\mathbf{z}^{(i)}\|^{2}$$

- To optimize, use block coordinate descent
- Given feature vectors $\mathcal{D} = \{\mathbf{x}^{(1)}, ..., \mathbf{x}^{(N)}\}$
- Initialize matrix of centers V (each column is a center \mathbf{v}_{j})
- Repeat:
 - minimize wrt Z: for each i, set $\mathbf{z}^{(i)}$ to map $\mathbf{x}^{(i)}$ to its closest center
 - minimize wrt V: for each j, minimize MSE from \mathbf{v}_i to its assigned points

Can solve each i and j independently

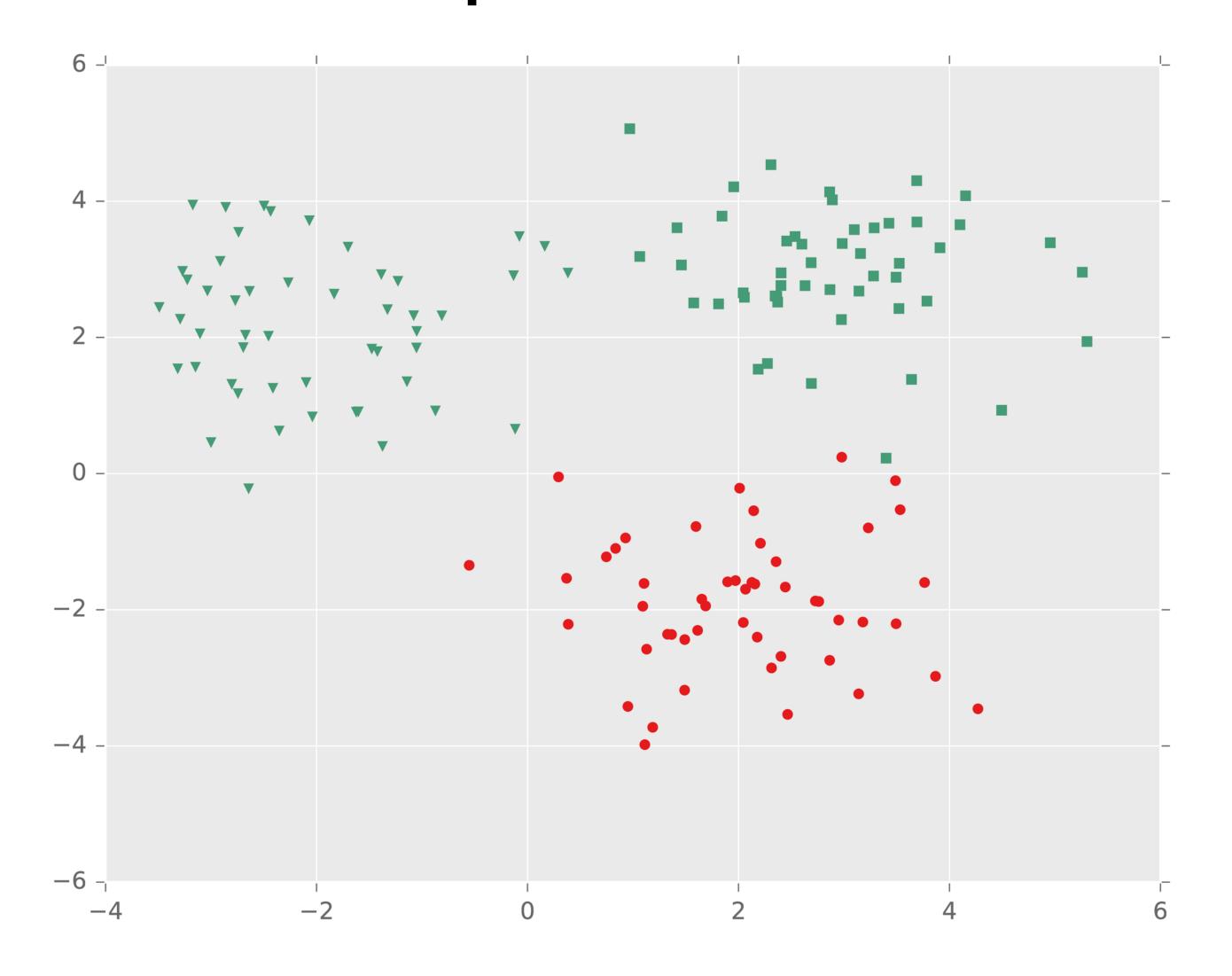
k-means algorithm

$$\operatorname{arg\,min}_{V,Z} \sum_{i=1}^{N} \|\mathbf{x}^{(i)} - V\mathbf{z}^{(i)}\|^{2}$$

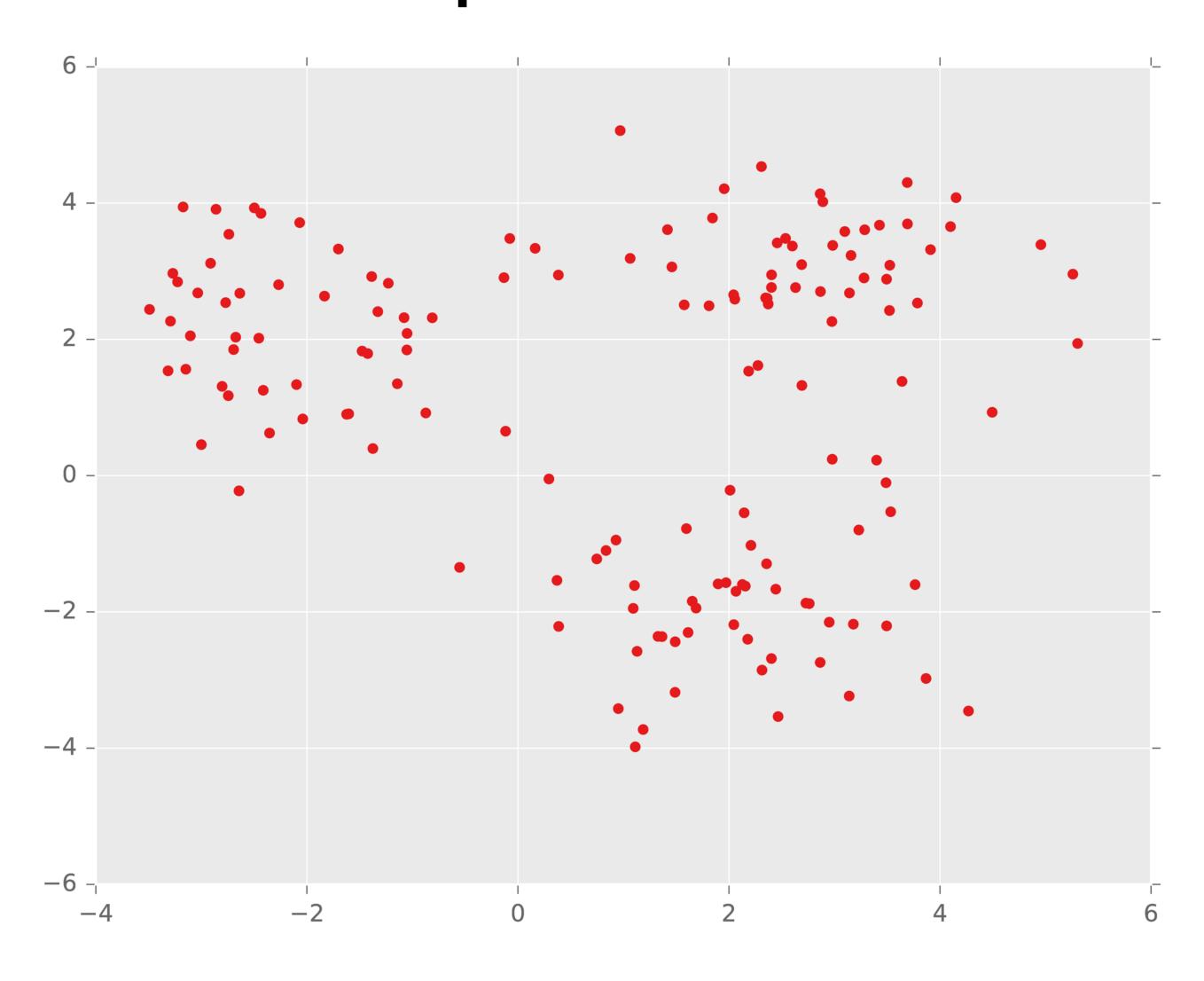
- To optimize, use block coordinate descent
- Given feature vectors $\mathcal{D} = \{\mathbf{x}^{(1)}, ..., \mathbf{x}^{(N)}\}$
- Initialize matrix of centers V (each column is a center \mathbf{v}_i)
- Repeat:
 - minimize wrt Z: for each i, set $\mathbf{z}^{(i)}$ to map $\mathbf{x}^{(i)}$ to its closest center
 - minimize wrt V: for each j, minimize MSE from \mathbf{v}_i to its assigned points

Can solve each i and j independently

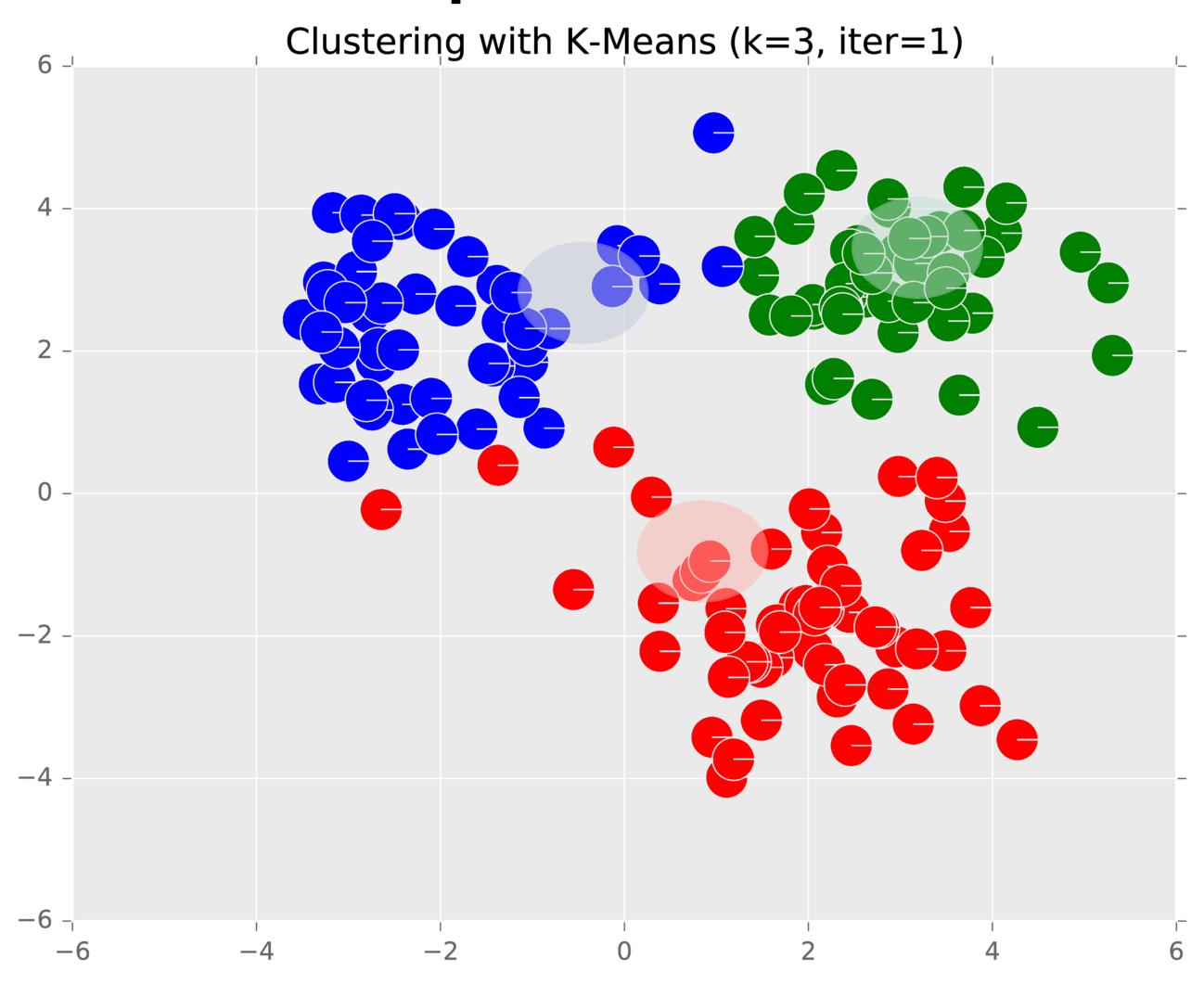
this is the same as setting \mathbf{v}_j = mean of $\{\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)} = \mathbf{e}_j\}$

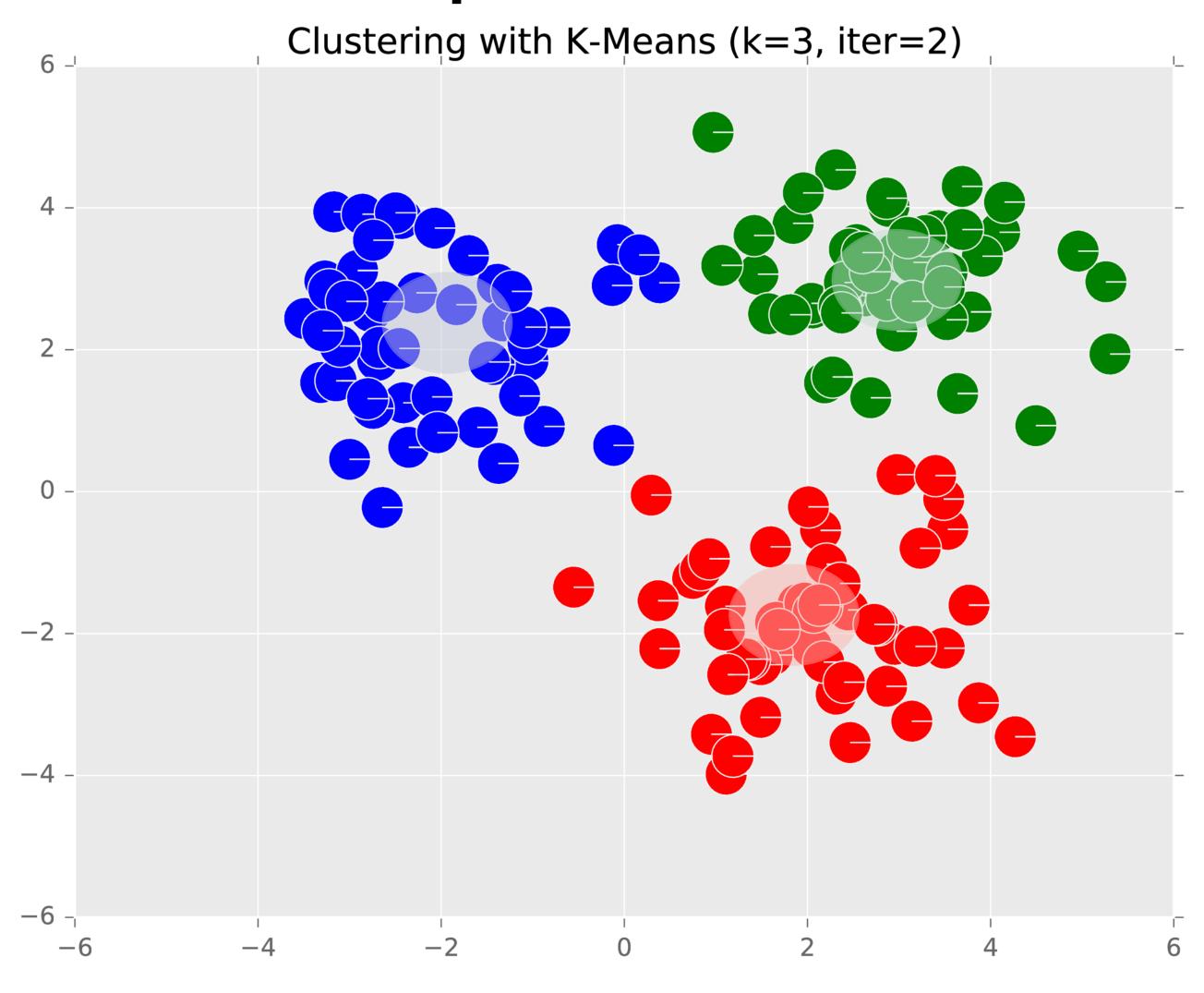


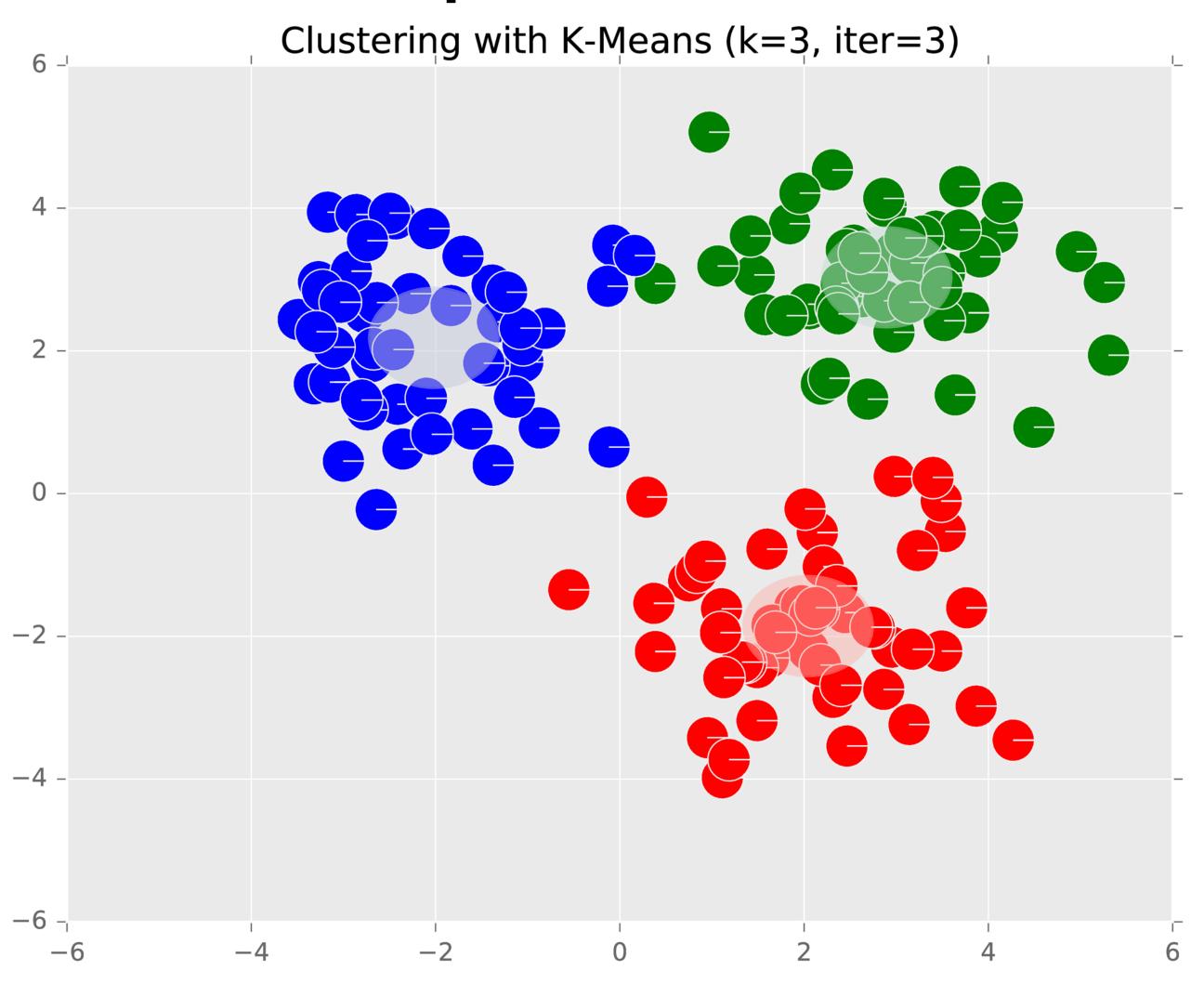
True k is 3

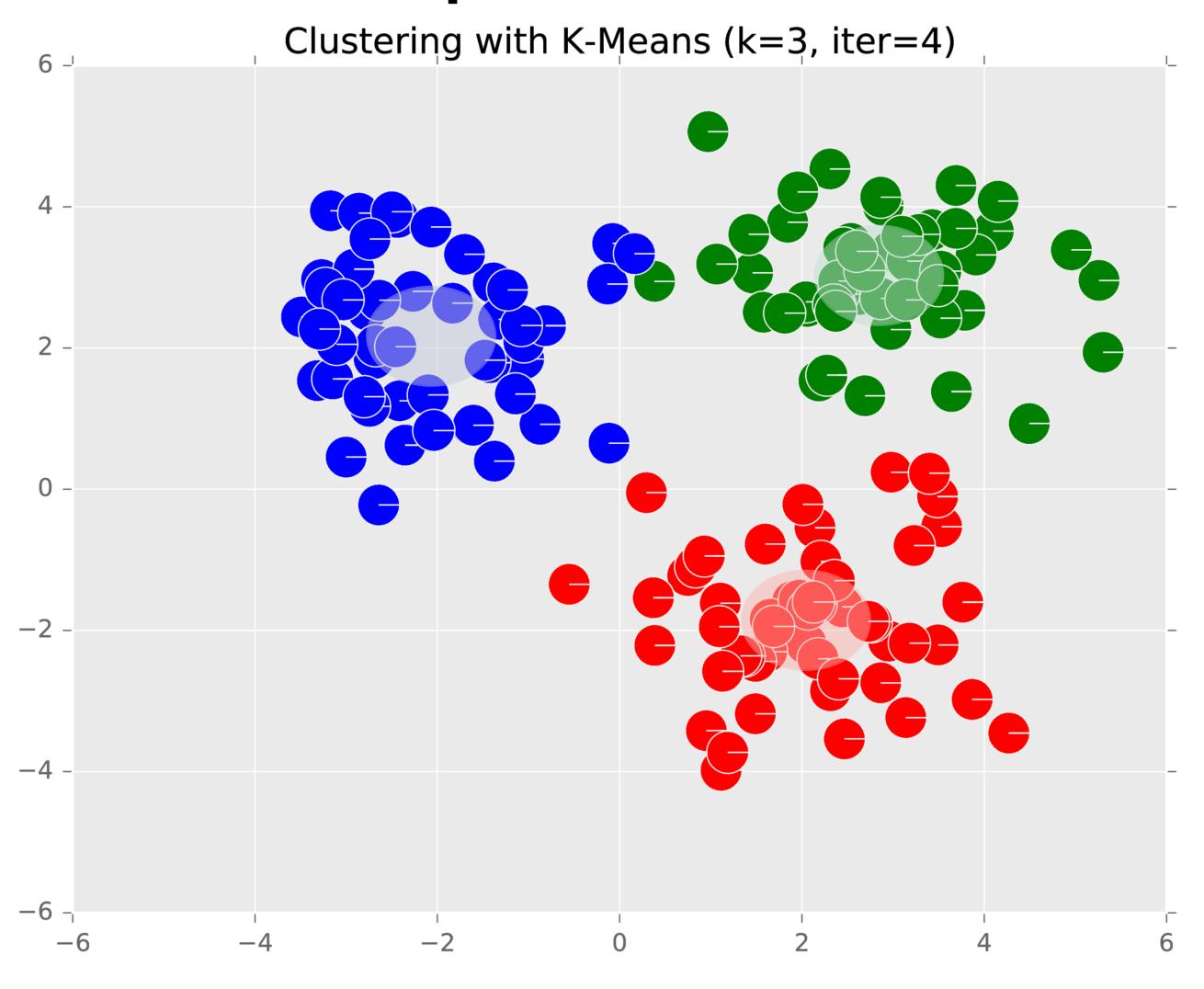


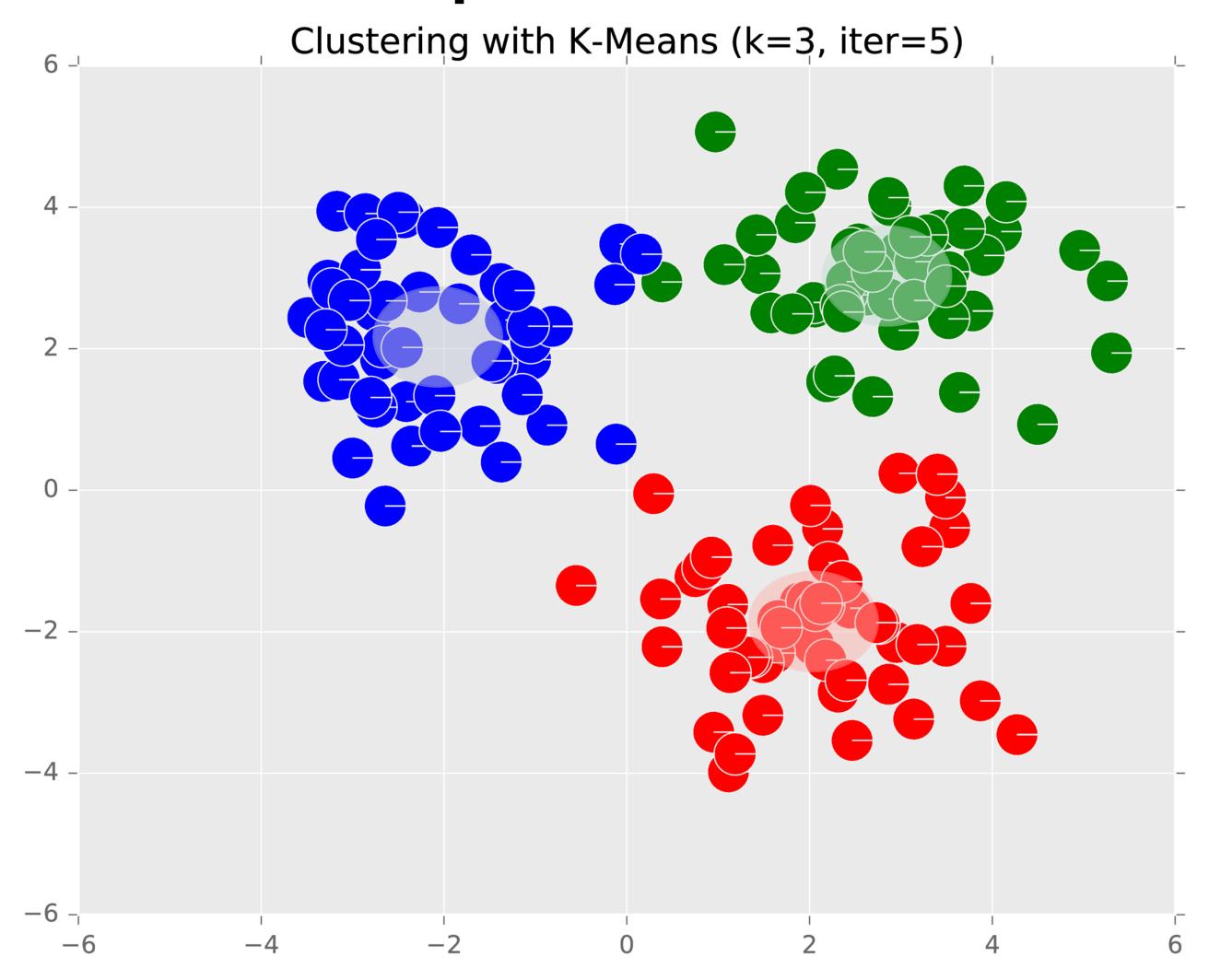
Use k = 3



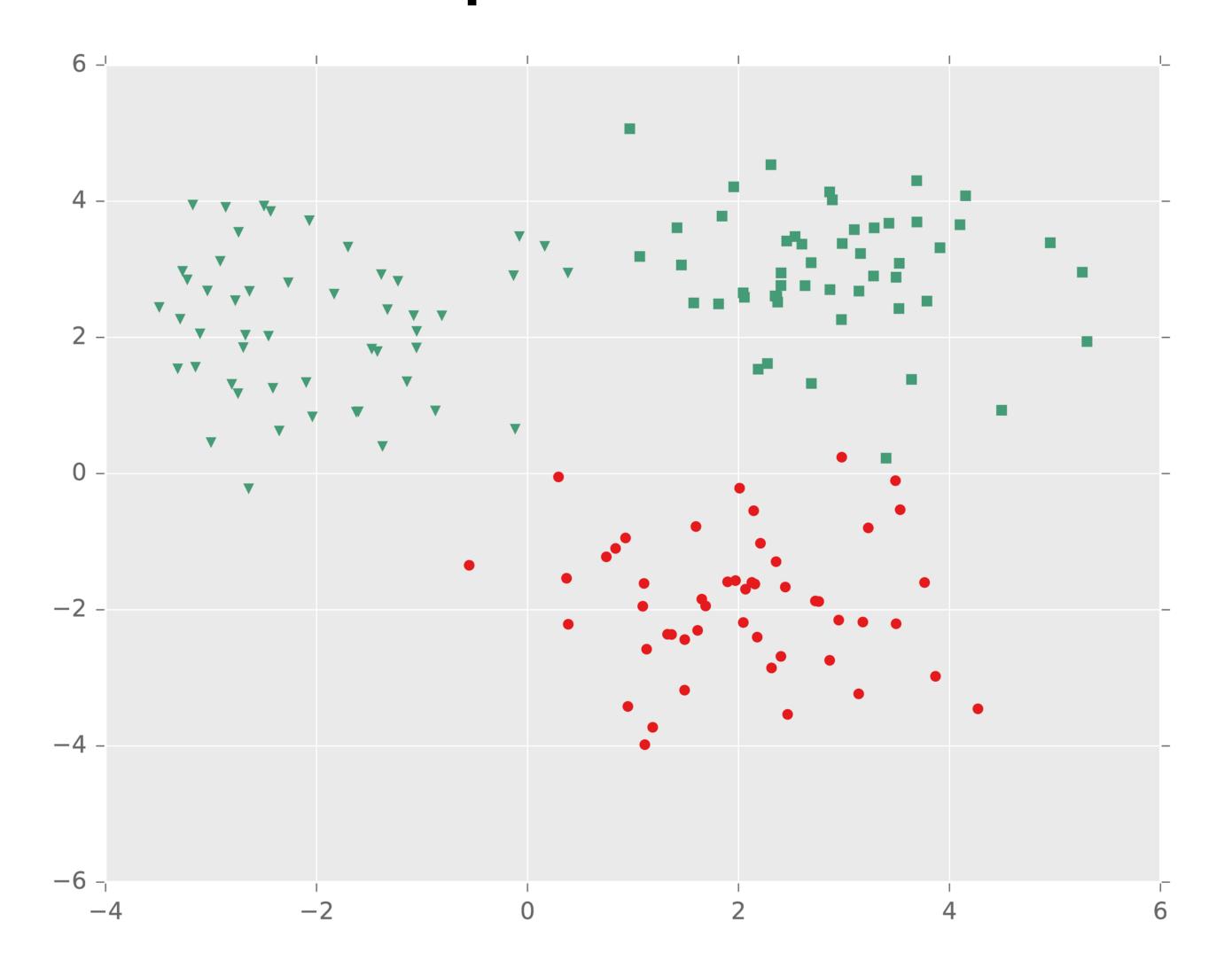




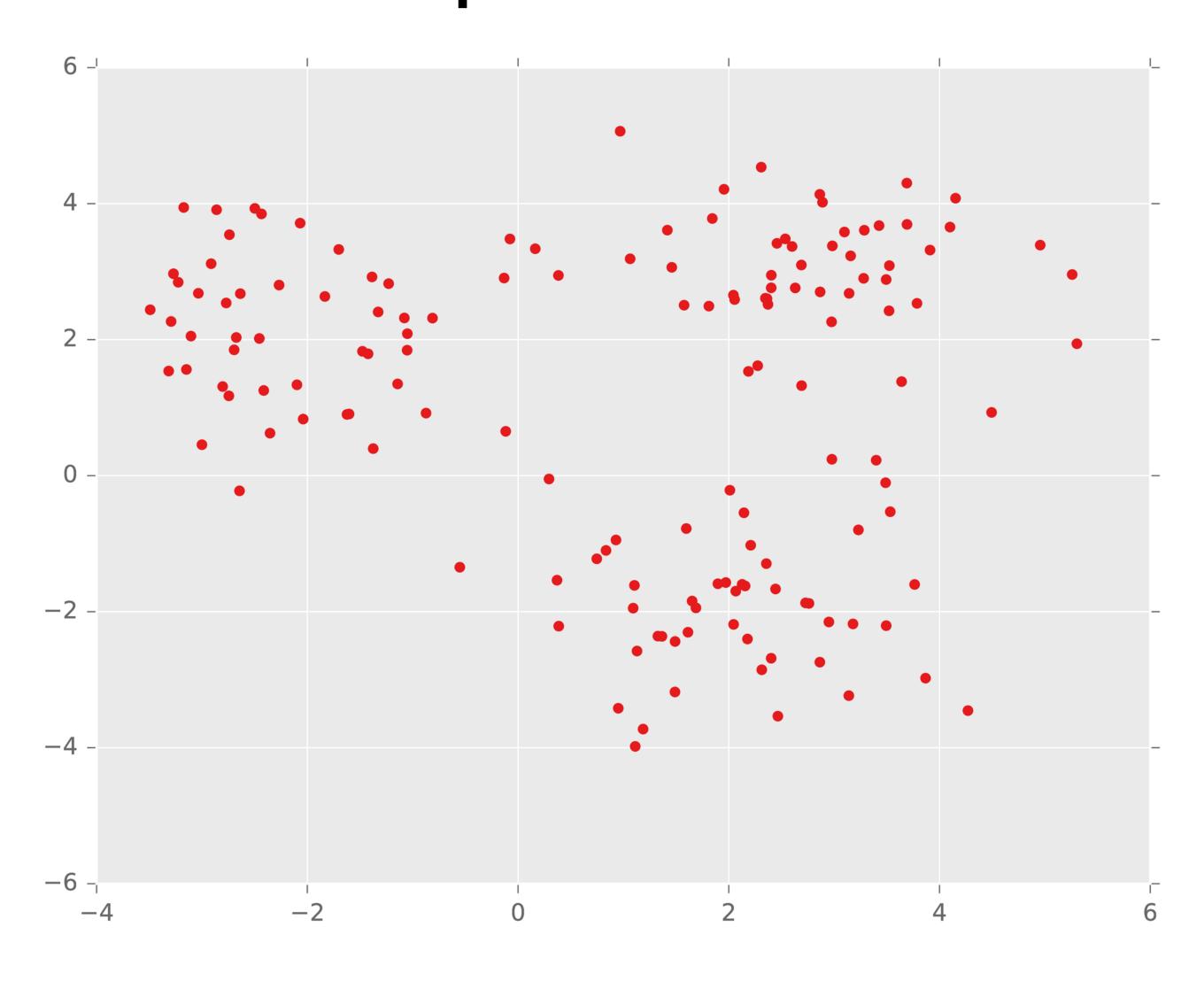


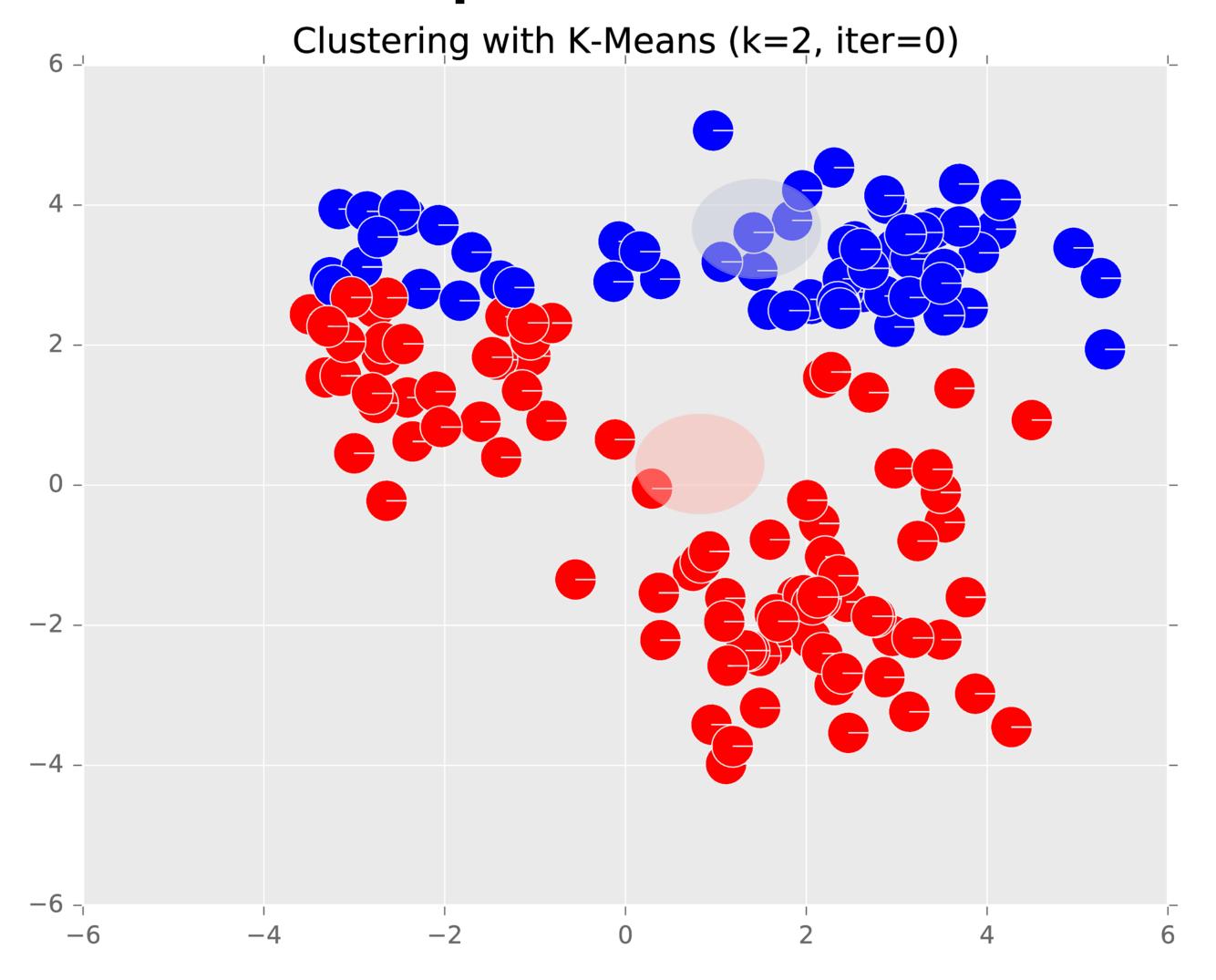


converged

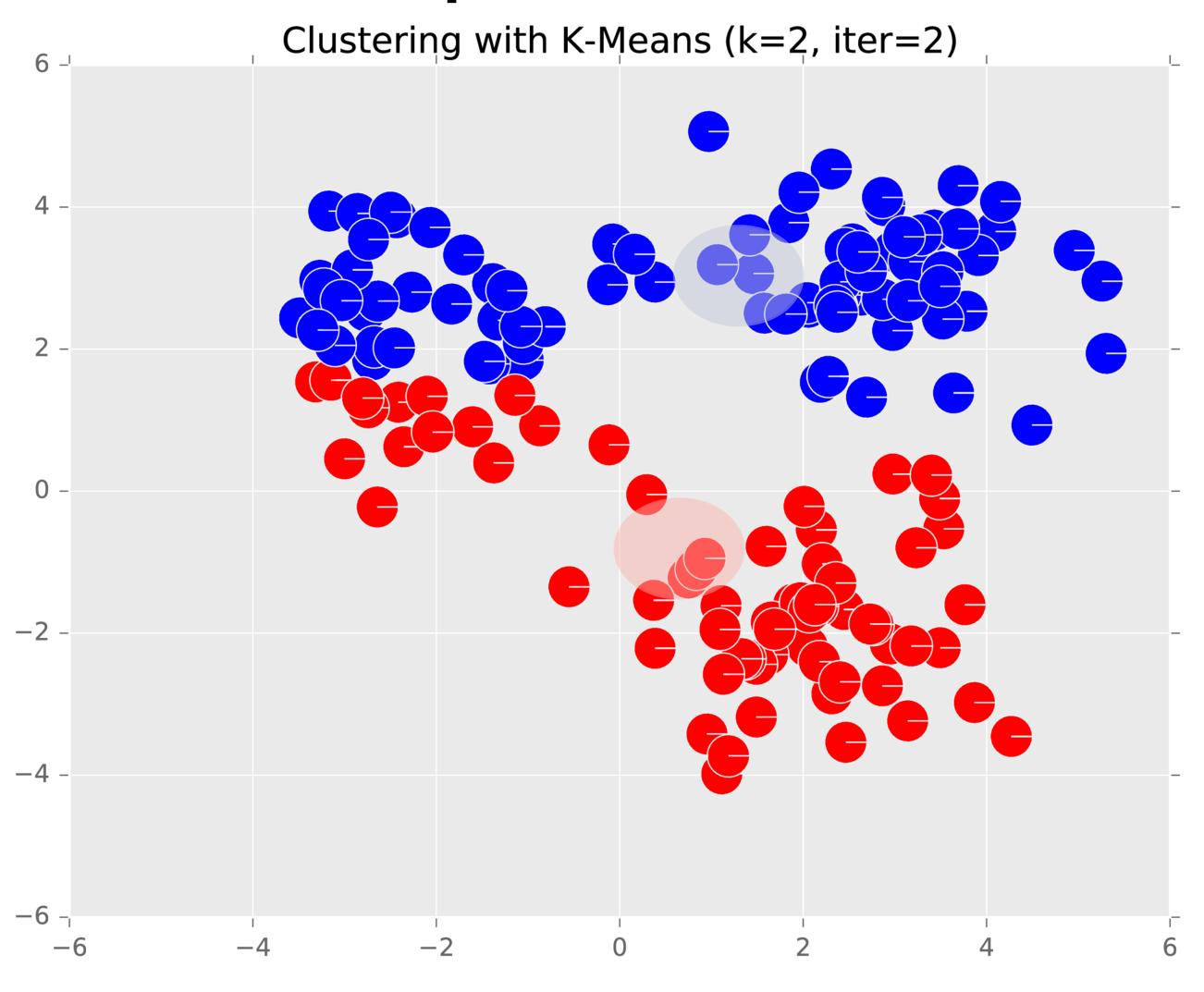


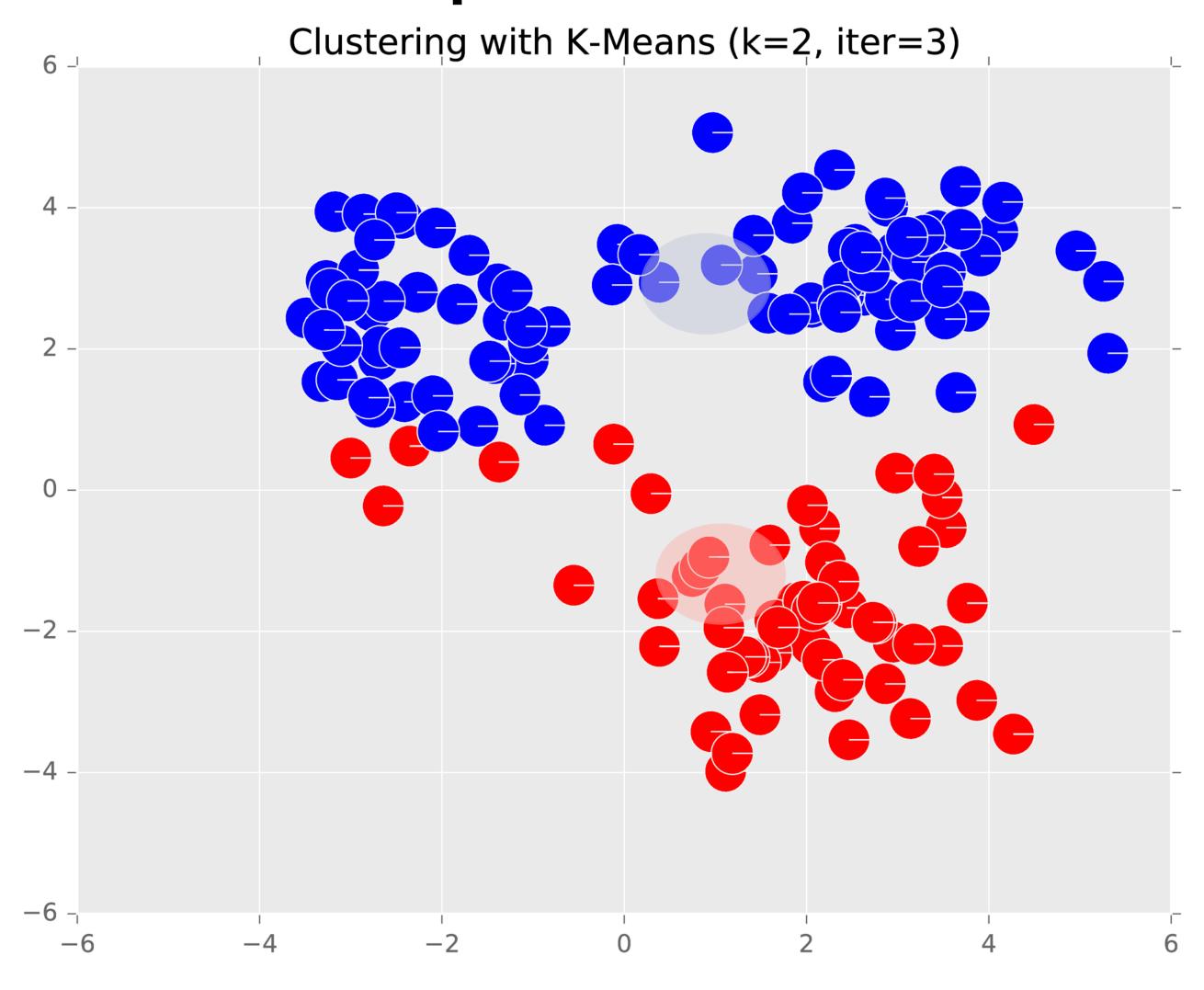
True k is 3

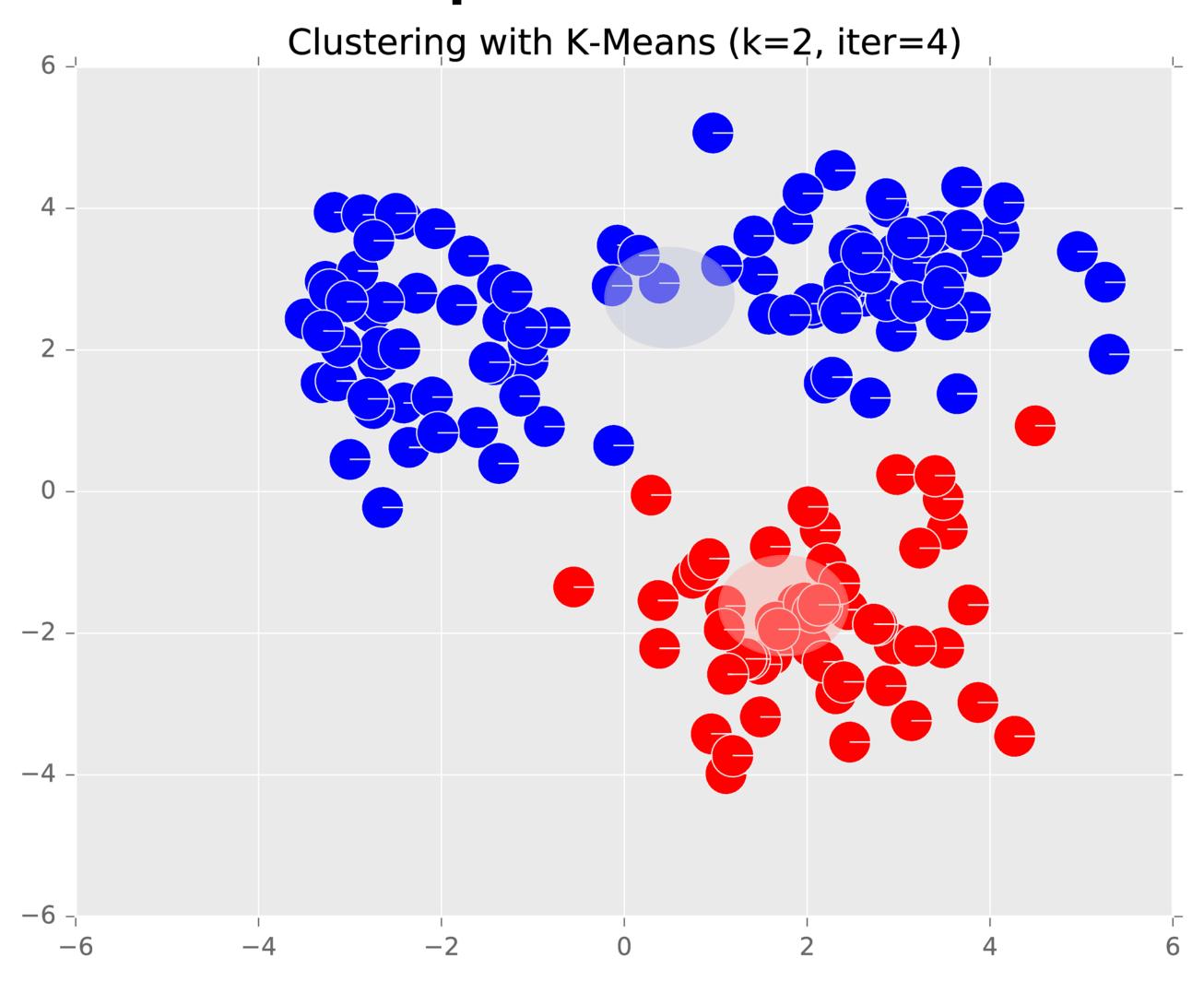


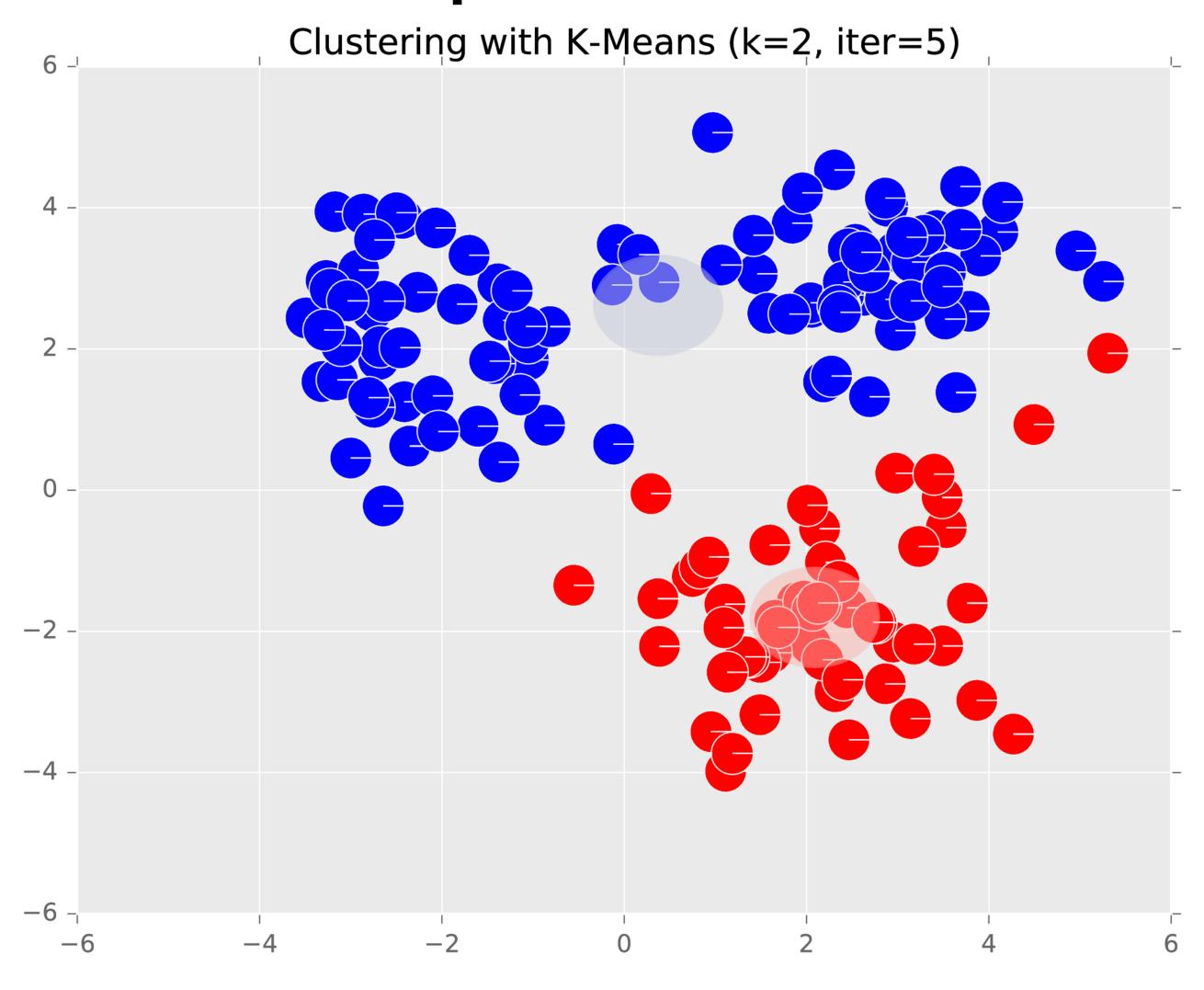


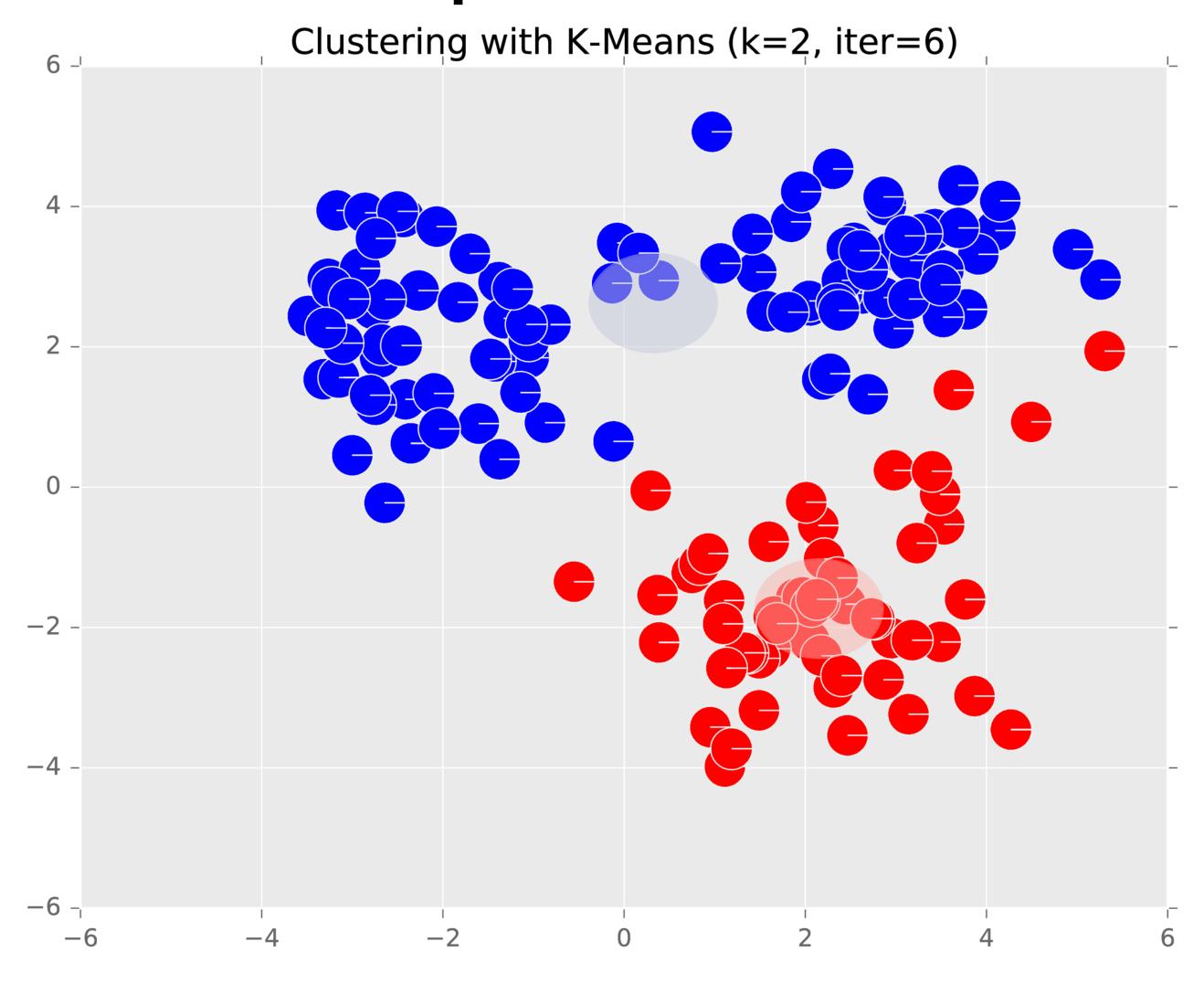
Use k=2

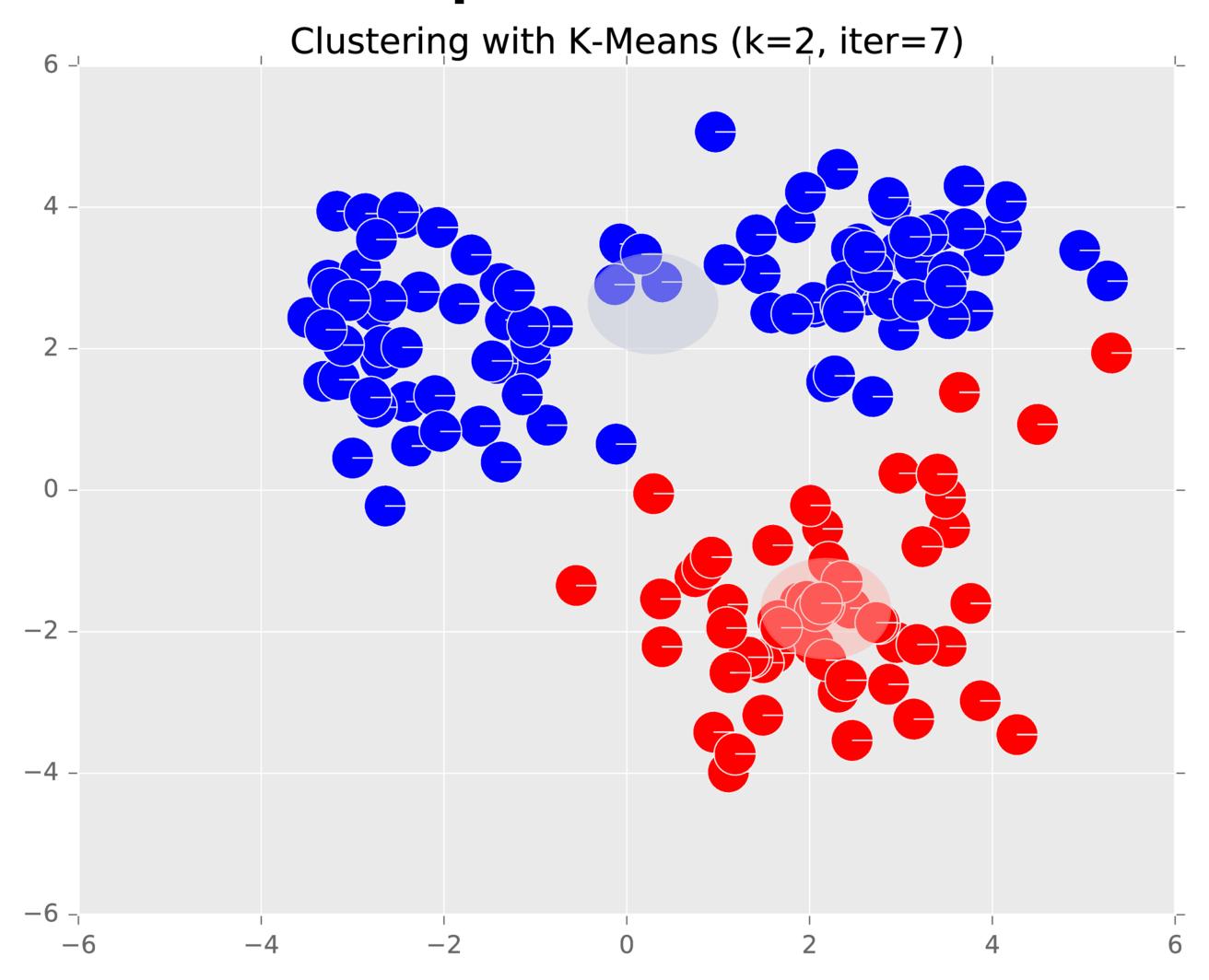












converged

Initializing kmeans

- Given feature vectors $\mathcal{D} = \{\mathbf{x}^{(1)}, ..., \mathbf{x}^{(N)}\}$
- ullet Initialize matrix of centers V (each column is a center \mathbf{v}_i)
- Repeat:
 - minimize wrt Z: for each i, set $\mathbf{z}^{(i)}$ to assign $\mathbf{x}^{(i)}$ to its closest center
 - \blacktriangleright minimize wrt $V\!\!:$ for each $j\!\!:$ minimize MSE from \mathbf{v}_j to its assigned points

Initializing kmeans

- Given feature vectors $\mathcal{D} = \{\mathbf{x}^{(1)}, ..., \mathbf{x}^{(N)}\}$
- ullet Initialize matrix of centers V (each column is a center \mathbf{v}_{j})
- Repeat:
 - minimize wrt Z: for eac closest center
 - minimize wrt V: for eac assigned points

Remaining question: how should we initialize cluster centers?

We'll try three solutions: (1) at random, (2) furthest point heuristic, (3) k-means++

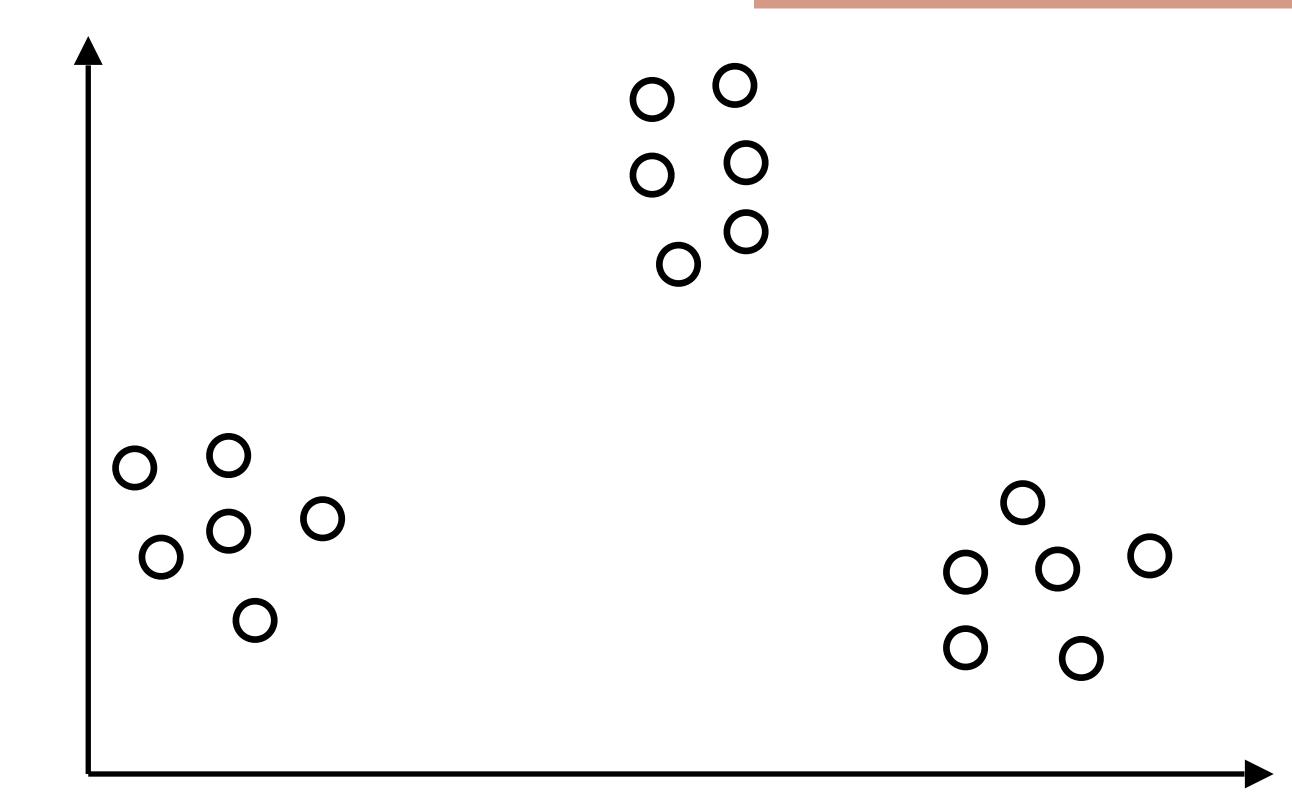
Initialization for K-Means

Algorithm #1: Random Initialization
Select each cluster center uniformly
at random from the data points in
the training data

Observations:

Even when data comes from well-separated Gaussians...

- ...sometimes works great!
- ...sometimes get stuck in poor local optima.



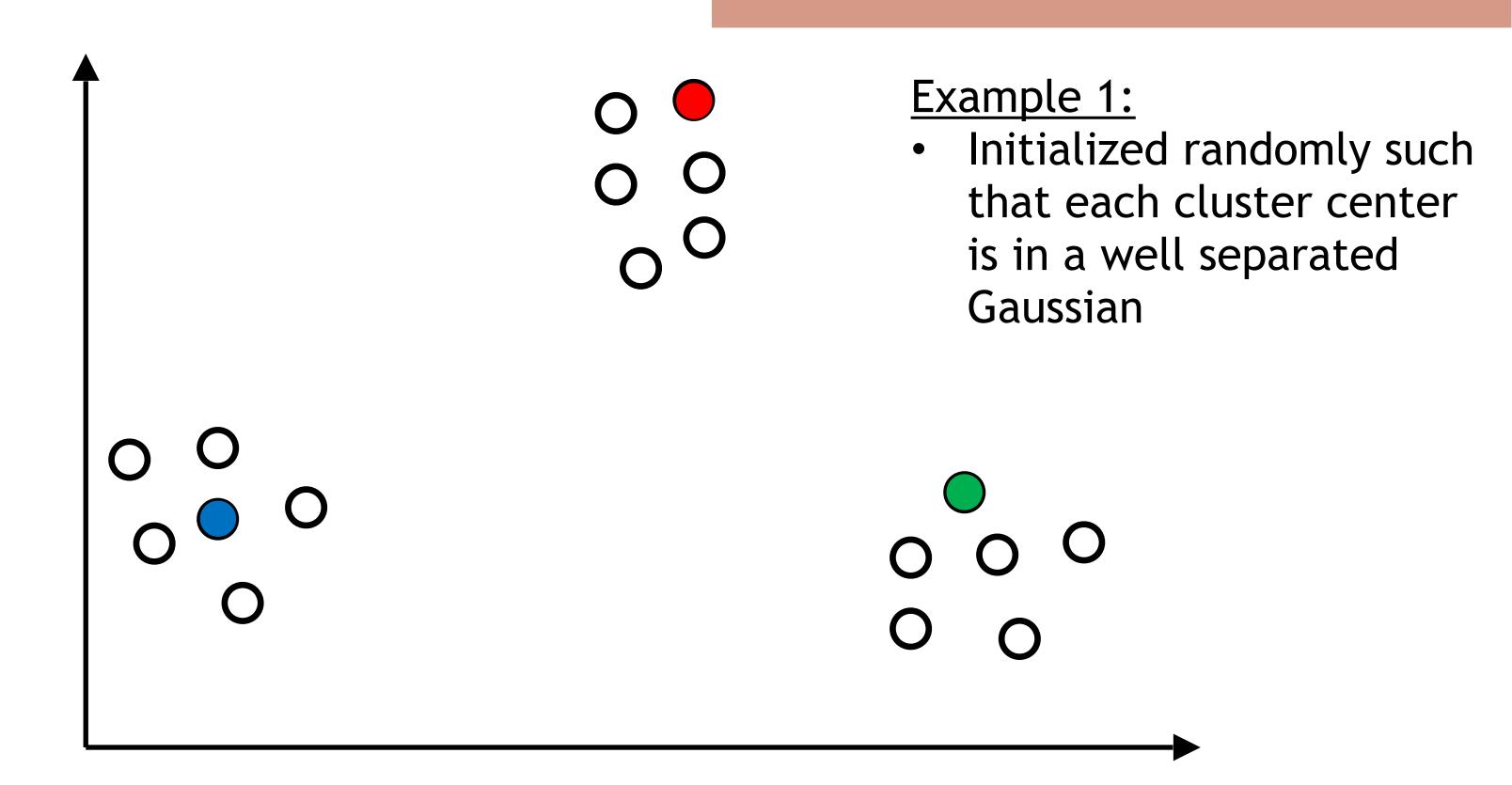
Initialization for K-Means

Algorithm #1: Random Initialization
Select each cluster center uniformly
at random from the data points in
the training data

Observations:

Even when data comes from well-separated Gaussians...

-sometimes works great!
- ...sometimes get stuck in poor local optima.

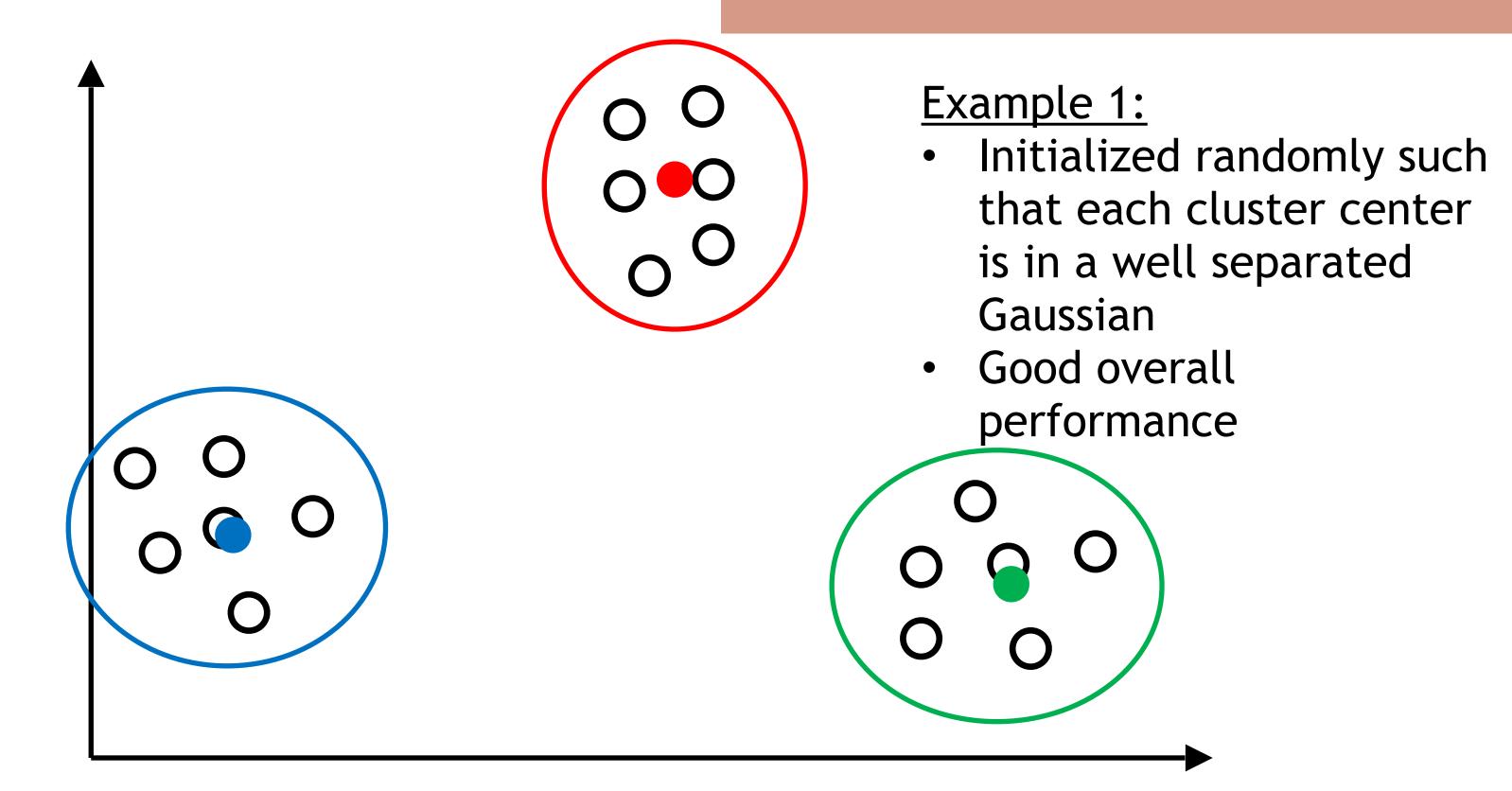


Algorithm #1: Random Initialization
Select each cluster center uniformly
at random from the data points in
the training data

Observations:

Even when data comes from well-separated Gaussians...

- ...sometimes works great!
- ...sometimes get stuck in poor local optima.

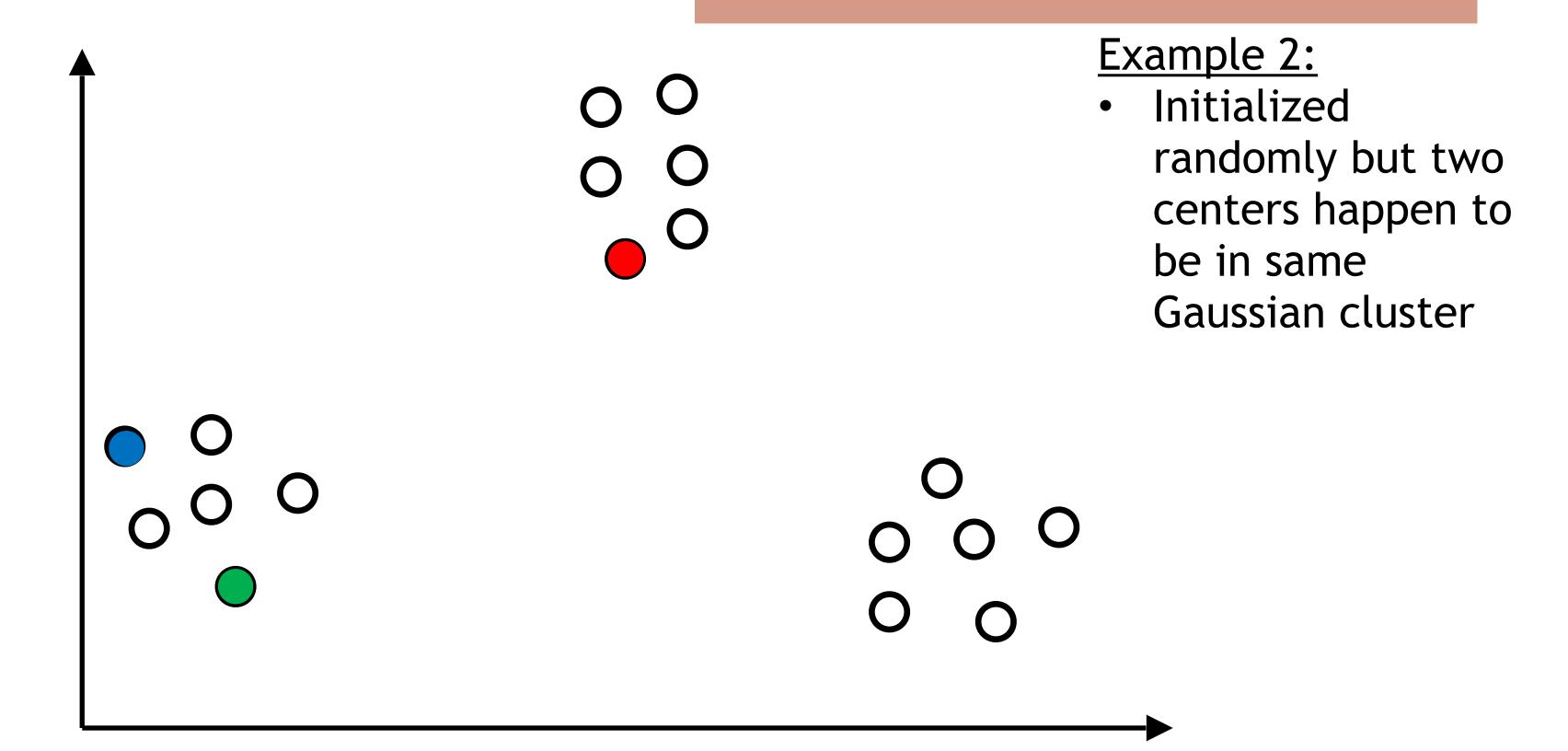


Algorithm #1: Random Initialization
Select each cluster center uniformly
at random from the data points in
the training data

Observations:

Even when data comes from well-separated Gaussians...

- ...sometimes works great!
- ...sometimes get stuck in poor local optima.

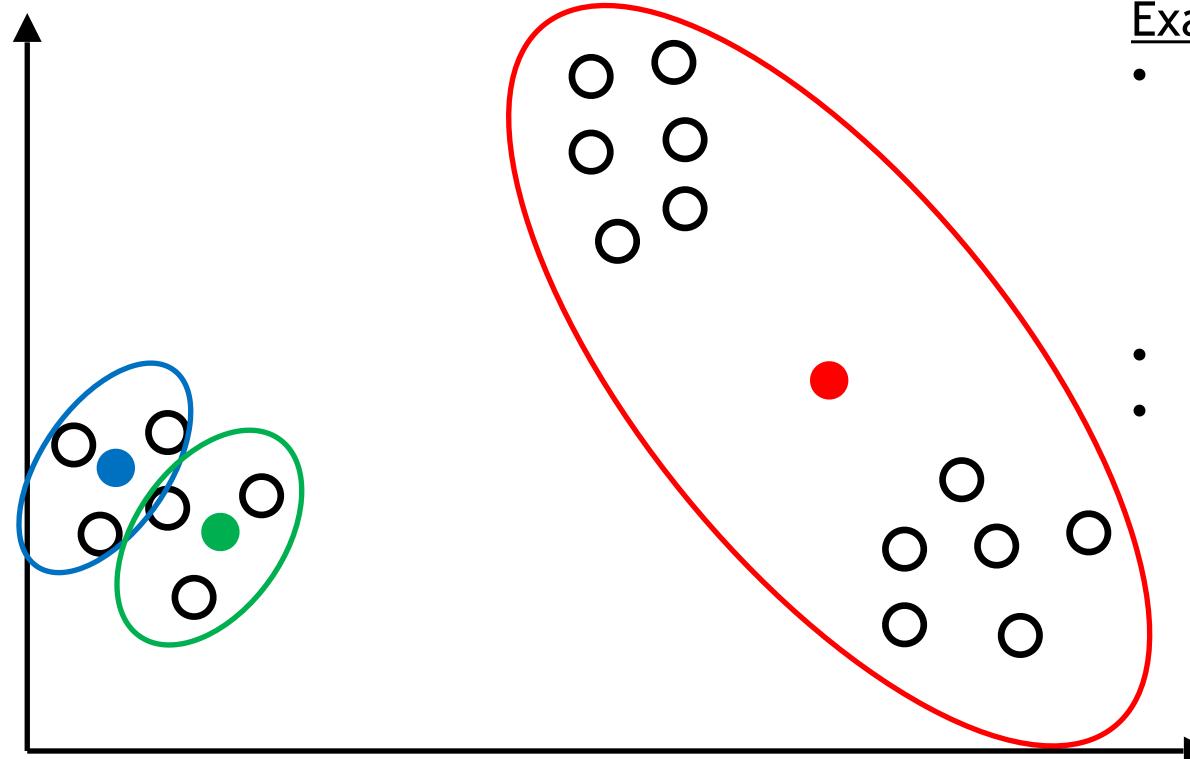


Algorithm #1: Random Initialization
Select each cluster center uniformly
at random from the data points in
the training data

Observations:

Even when data comes from well-separated Gaussians...

- ...sometimes works great!
- ...sometimes get stuck in poor local optima.



- Initialized randomly but two centers happen to be in same Gaussian cluster
- Poor performance
 - Can be arbitrarily bad (imagine the final red cluster points moving arbitrarily far away!)

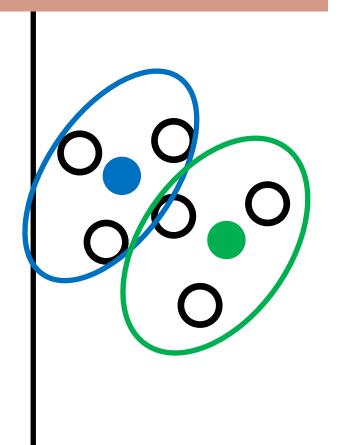
Algorithm #1: Random Initialization
Select each cluster center uniformly
at random from the data points in
the training data

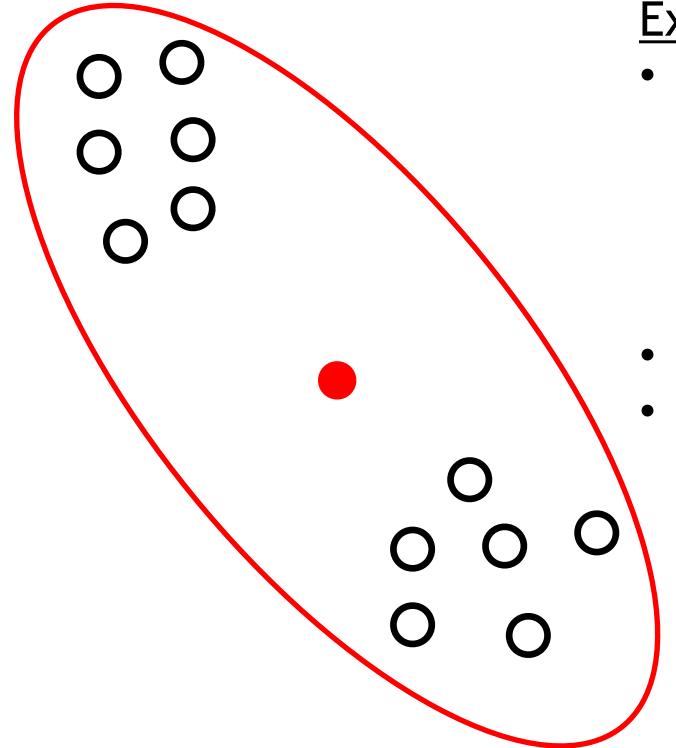
Observations:

Even when data comes from well-separated Gaussians...

- ...sometimes works great!
- ...sometimes get stuck in poor local optima.

What does this local optimum say about the convexity of the k-means objective function?





- Initialized
 randomly but two
 centers happen to
 be in same
 Gaussian cluster
- Poor performance
 - Can be arbitrarily bad (imagine the final red cluster points moving arbitrarily far away!)

k-means Performance (with Random Initialization)

If we do **random initialization**, as **k** increases, it becomes more likely we won't have perfectly picked one center per Gaussian in our initialization (so k-means will output a bad solution).

- For k equal-sized Gaussians, $\Pr[\text{each initial center is in a different Gaussian}] \approx \frac{k!}{k^k} \approx \frac{1}{e^k}$
- Becomes unlikely as k gets large.

Algorithm #2: Furthest Point Heuristic

- Pick the first cluster center c₁
 randomly
- 2. Pick each subsequent center c_j so that it is as far as possible from closest previously chosen center c_1 , c_2 ,..., c_{j-1}

Observations:

- OK if data is purely Gaussian
- But outliers pose a new problem!



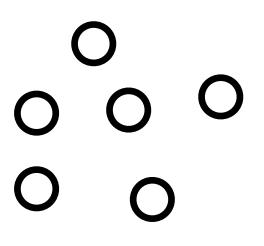
Algorithm #2: Furthest Point Heuristic

- Pick the first cluster center c₁
 randomly
- 2. Pick each subsequent center c_j so that it is **as far as possible** from closest previously chosen center c_1 , c_2 ,..., c_{j-1}

Observations:

- OK if data is purely Gaussian
- But outliers pose a new problem!

- No outliers
- Good performance



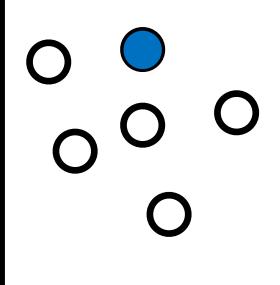
Algorithm #2: Furthest Point Heuristic

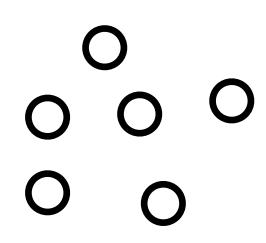
- Pick the first cluster center c₁
 randomly
- 2. Pick each subsequent center c_j so that it is **as far as possible** from closest previously chosen center c_1 , c_2 ,..., c_{j-1}

Observations:

- OK if data is purely Gaussian
- But outliers pose a new problem!

- No outliers
- Good performance





Algorithm #2: Furthest Point Heuristic

- Pick the first cluster center c₁
 randomly
- 2. Pick each subsequent center c_j so that it is **as far as possible** from closest previously chosen center c_1 , c_2 ,..., c_{j-1}

Observations:

- OK if data is purely Gaussian
- But outliers pose a new problem!

- No outliers
- Good performance



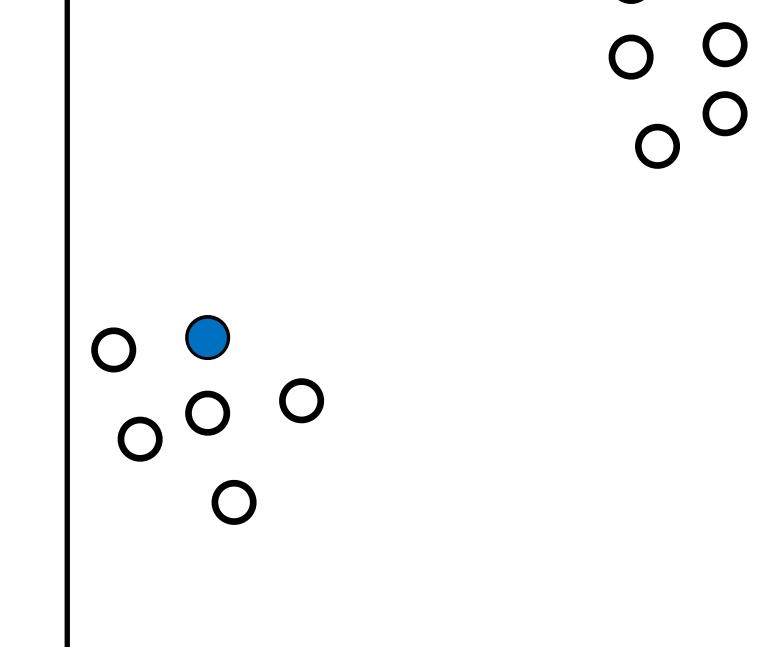
Algorithm #2: Furthest Point Heuristic

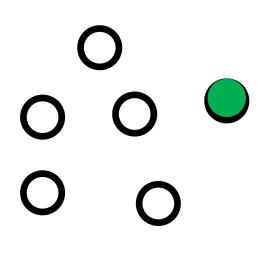
- Pick the first cluster center c₁
 randomly
- 2. Pick each subsequent center c_j so that it is **as far as possible** from closest previously chosen center c_1 , c_2 ,..., c_{j-1}

Observations:

- OK if data is purely Gaussian
- But outliers pose a new problem!

- No outliers
- Good performance





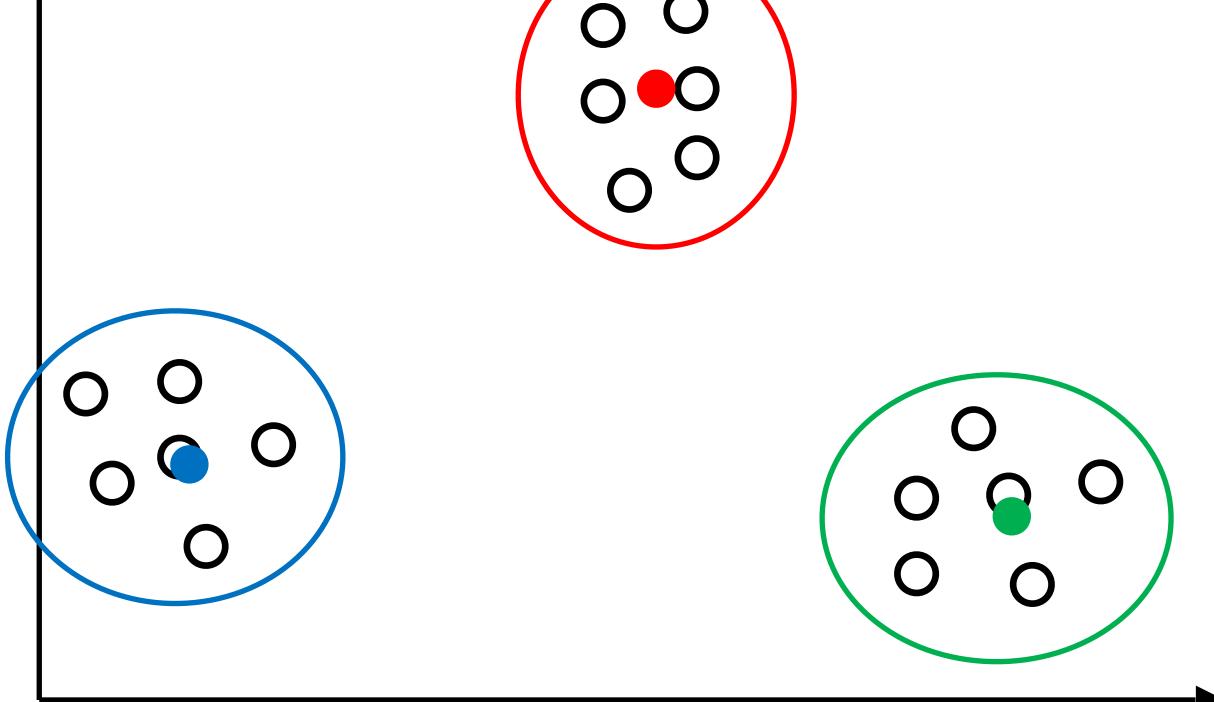
Algorithm #2: Furthest Point Heuristic

- Pick the first cluster center c₁
 randomly
- 2. Pick each subsequent center c_j so that it is **as far as possible** from closest previously chosen center c_1 , c_2 ,..., c_{j-1}

Observations:

- OK if data is purely Gaussian
- But outliers pose a new problem!

- No outliers
- Good performance



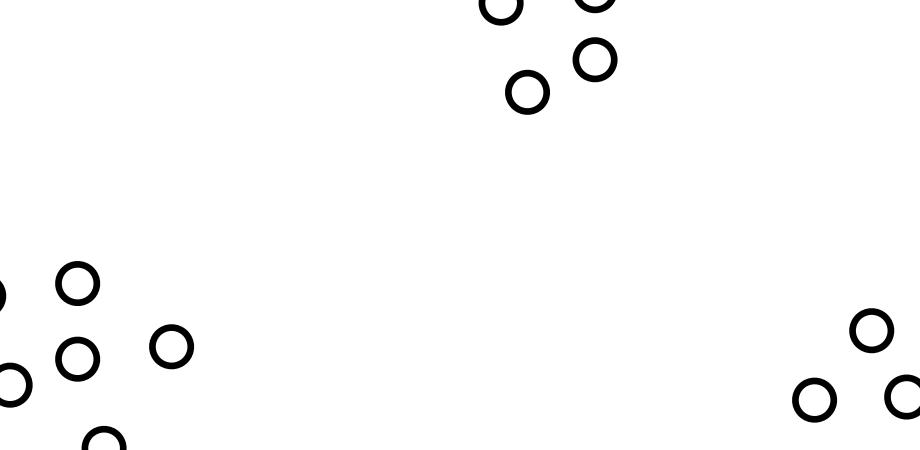
Algorithm #2: Furthest Point Heuristic

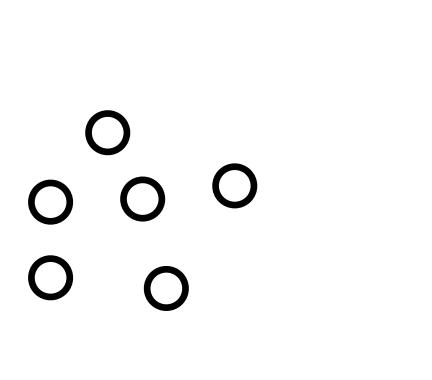
- 1. Pick the first cluster center c₁ randomly
- 2. Pick each subsequent center c_i so that it is as far as possible from closest previously chosen center **c**₁, **c**₂,..., **c**_{i-1}

Observations:

- OK if data is purely Gaussian
- But outliers pose a new problem!

- One outlier throws off the algorithm
- Poor performance





Algorithm #2: Furthest Point Heuristic

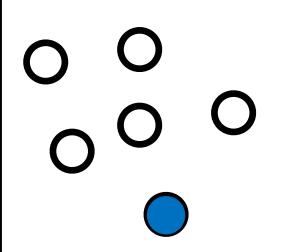
- Pick the first cluster center c₁
 randomly
- 2. Pick each subsequent center c_j so that it is as far as possible from closest previously chosen center c_1 , c_2 ,..., c_{i-1}

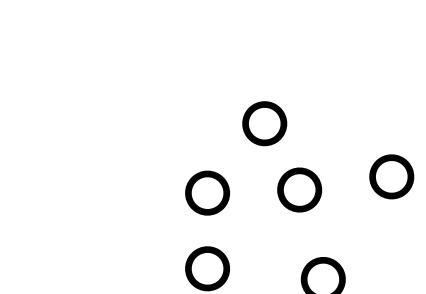
Observations:

- OK if data is purely Gaussian
- But outliers pose a new problem!

- One outlier throws off the algorithm
- Poor performance







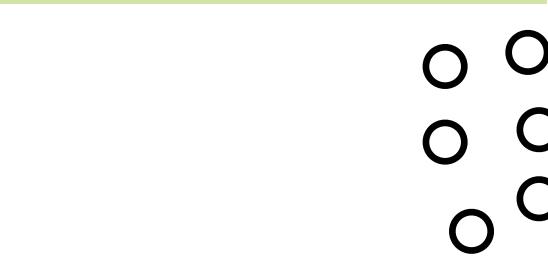
Algorithm #2: Furthest Point Heuristic

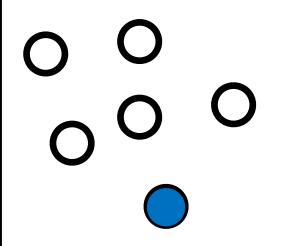
- 1. Pick the first cluster center c₁ randomly
- 2. Pick each subsequent center c_i so that it is as far as possible from closest previously chosen center **c**₁, **c**₂,..., **c**_{i-1}

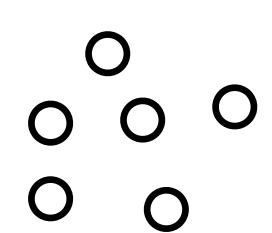
Observations:

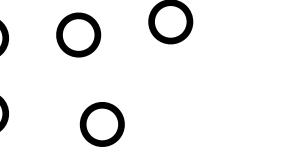
- OK if data is purely Gaussian
- But outliers pose a new problem!

- One outlier throws off the algorithm
- Poor performance









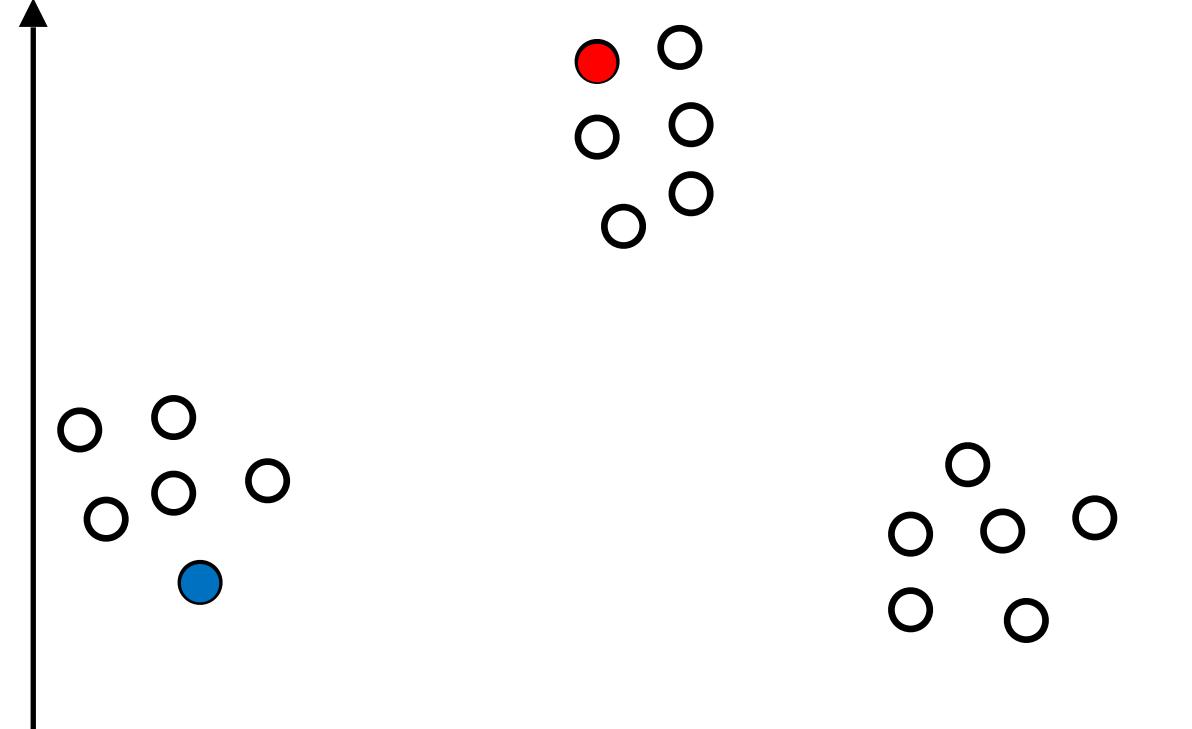
Algorithm #2: Furthest Point Heuristic

- Pick the first cluster center c₁
 randomly
- 2. Pick each subsequent center c_j so that it is as far as possible from closest previously chosen center c_1 , c_2 ,..., c_{j-1}

Observations:

- OK if data is purely Gaussian
- But outliers pose a new problem!

- One outlier throws off the algorithm
- Poor performance



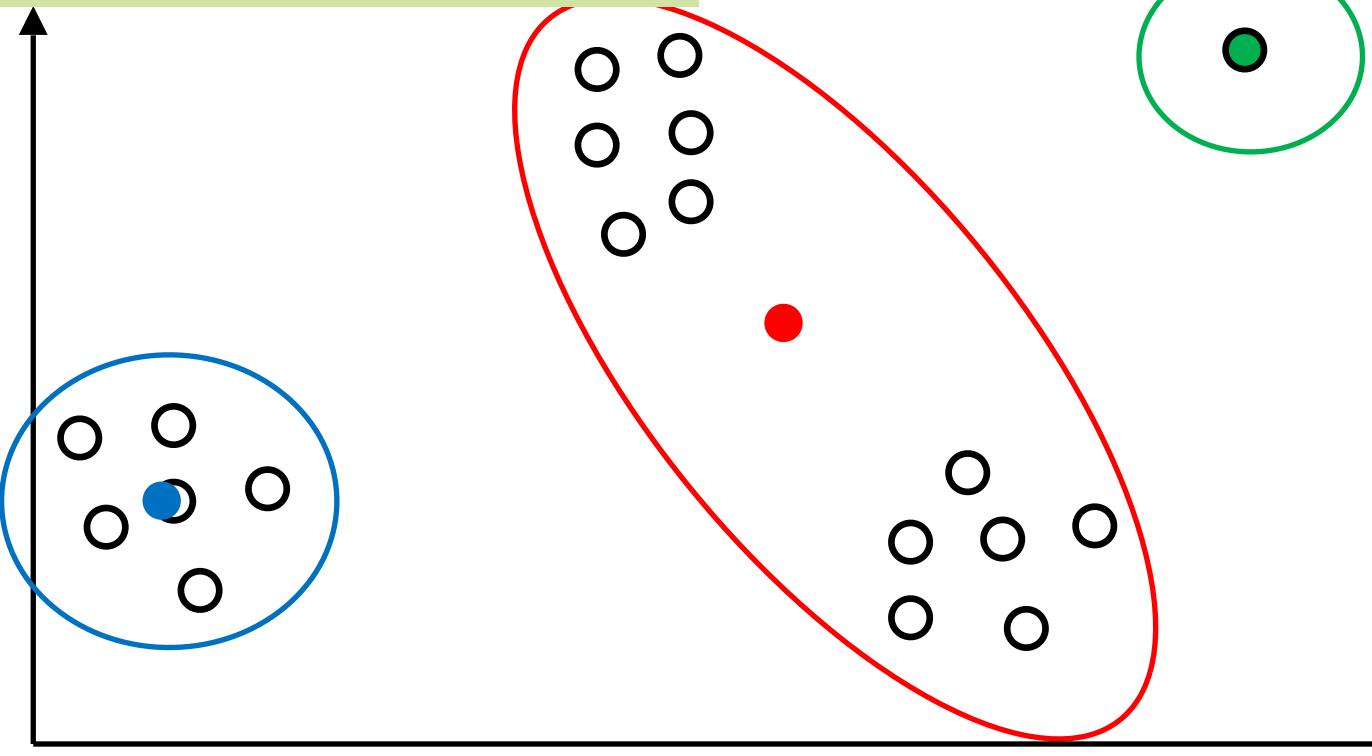
Algorithm #2: Furthest Point Heuristic

- Pick the first cluster center c₁
 randomly
- 2. Pick each subsequent center c_j so that it is as far as possible from closest previously chosen center c_1 , c_2 ,..., c_{j-1}

Observations:

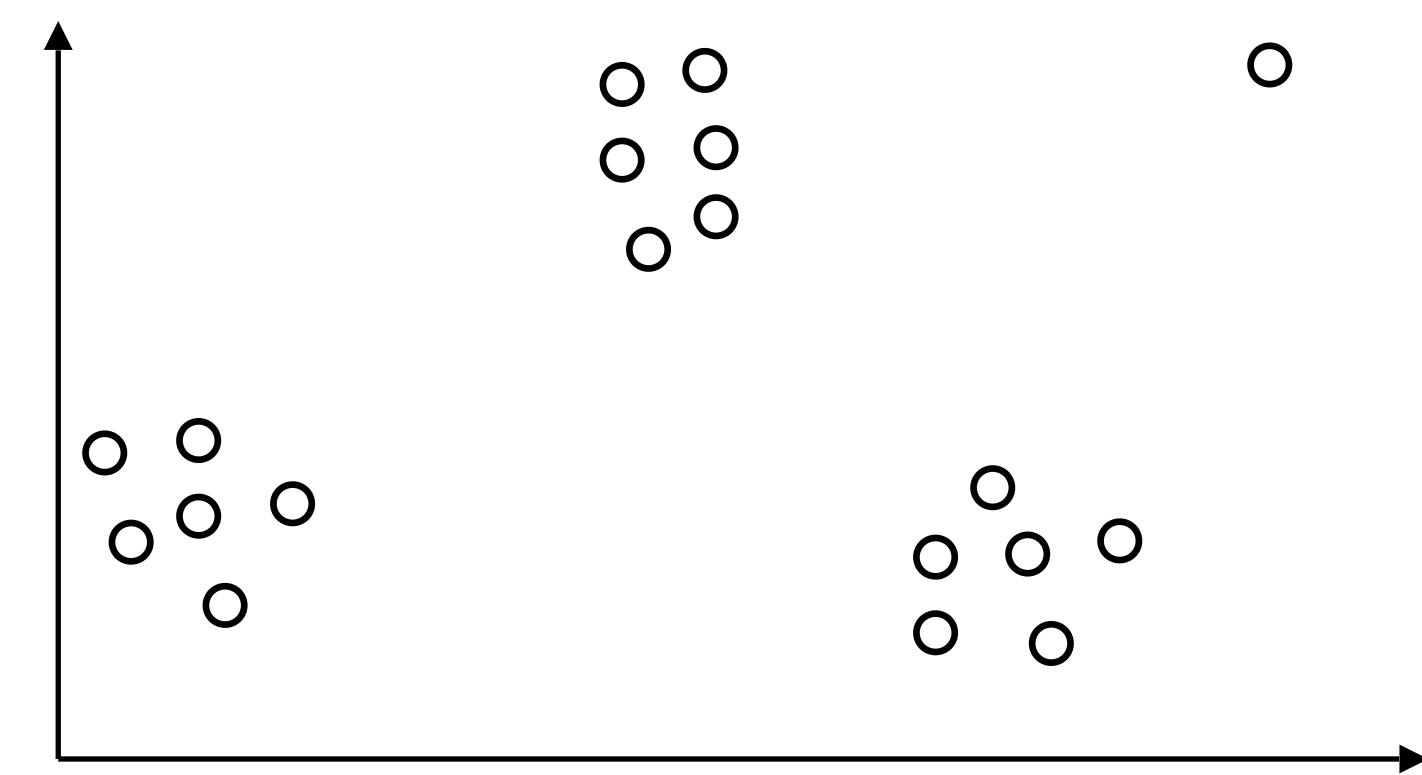
- OK if data is purely Gaussian
- But outliers pose a new problem!

- One outlier throws off the algorithm
- Poor performance



Algorithm #3: K-Means++

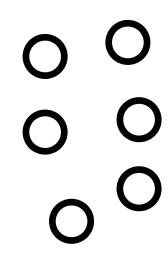
Let D(x) be the distance between a point x and its nearest center.
 Choose next center proportional to D(x)². (1st one uniformly random.)

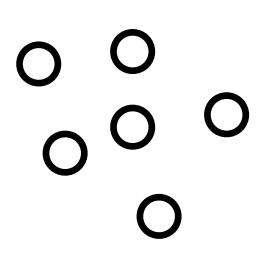


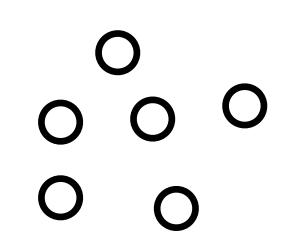
Algorithm #3: K-Means++

Let D(x) be the distance between a point x and its nearest center.
 Choose next center proportional to D(x)². (1st one uniformly random.)

Theorem: K-Means++ attains O(log k) approximation to optimal K-Means solution in expectation.



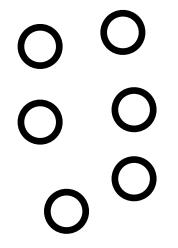


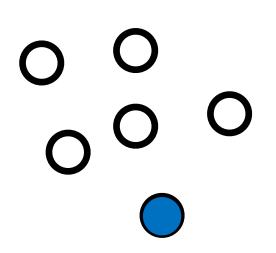


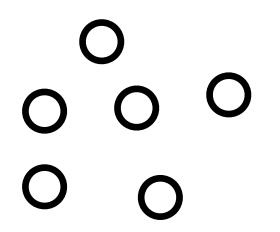
Algorithm #3: K-Means++

Let D(x) be the distance between a point x and its nearest center.
 Choose next center proportional to D(x)². (1st one uniformly random.)

Theorem: K-Means++ attains O(log k) approximation to optimal K-Means solution in expectation.

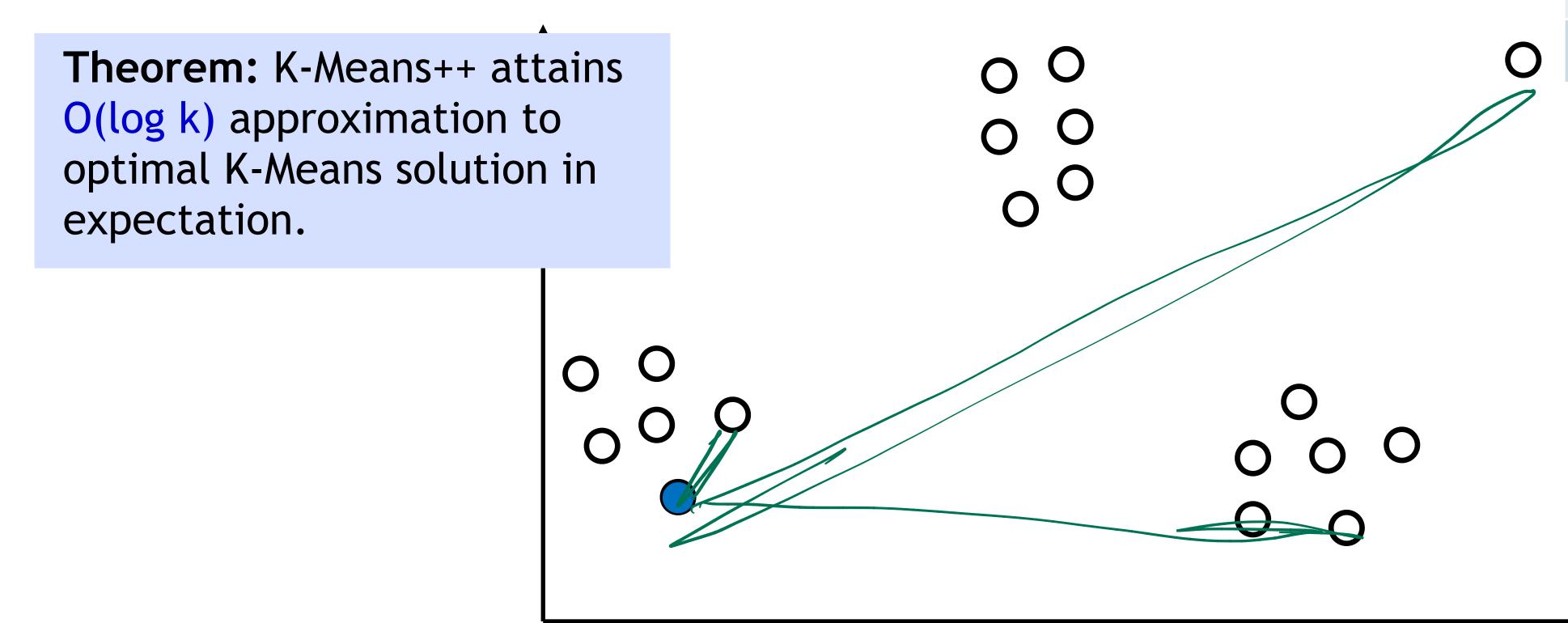






Algorithm #3: K-Means++

Let D(x) be the distance between a point x and its nearest center.
 Choose next center proportional to D(x)². (1st one uniformly random.)

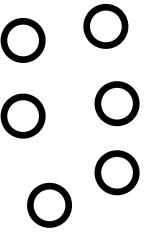


i	D(x)	D ² (x)	$P(v_2=x^{(i)})$
1	3	9	9/137
2	2	4	4/137
•••			
7	4	16	16/137
•••			
N	3	9	9/137
	Sum:	137	1.0

Algorithm #3: K-Means++

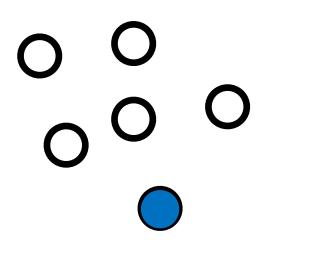
Let D(x) be the distance between a point x and its nearest center.
 Choose next center proportional to D(x)². (1st one uniformly random.)

Theorem: K-Means++ attains O(log k) approximation to optimal K-Means solution in expectation.





i	D(x)	D ² (x)	$P(v_2=x^{(i)})$
1	3	9	9/137
2	2	4	4/137
•••			
7	4	16	16/137
•••			
N	3	9	9/137
	Sum:	137	1.0

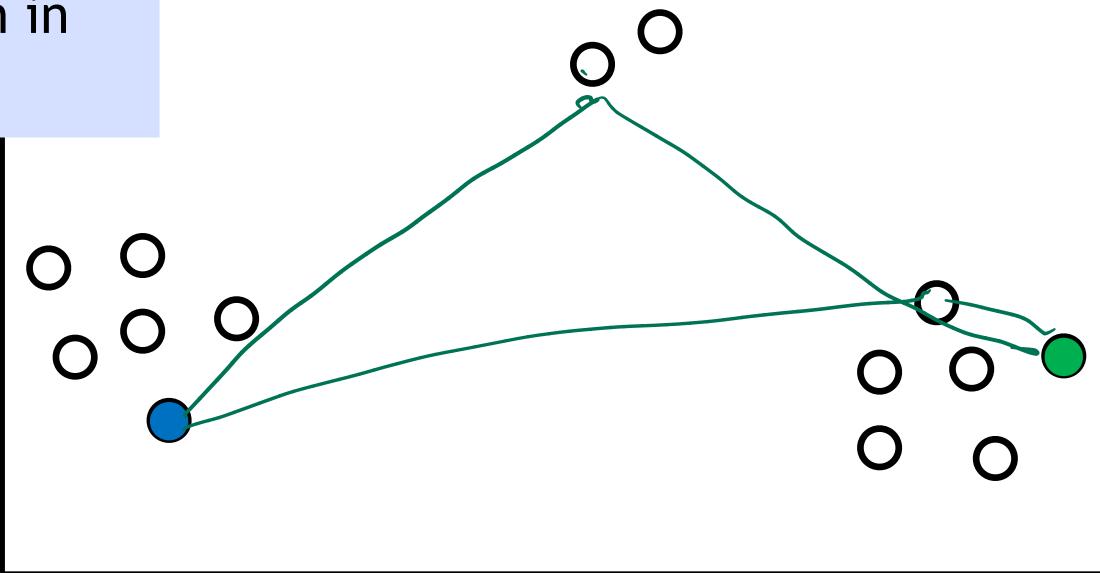




Algorithm #3: K-Means++

Let D(x) be the distance between a point x and its nearest center.
 Choose next center proportional to D(x)². (1st one uniformly random.)

Theorem: K-Means++ attains O(log k) approximation to optimal K-Means solution in expectation.

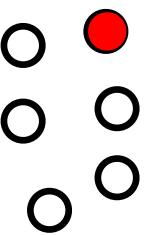


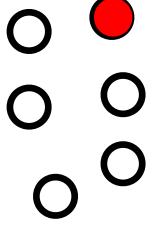
i	D(x)	D ² (x)	$P(v_2=x^{(i)})$
1	3	9	9/102
2	2	4	4/102
•••			
7	3	9	9/102
•••			
N	2	4	4/102
	Sum:	102	1.0

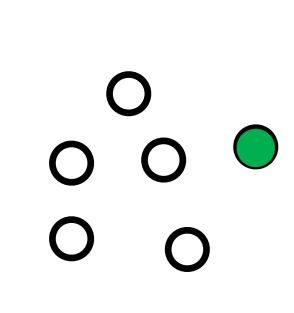
Algorithm #3: K-Means++

Let D(x) be the distance between a point x and its nearest center. Choose next center proportional to $D(x)^2$. (1st one uniformly random.)

Theorem: K-Means++ attains O(log k) approximation to optimal K-Means solution in expectation.







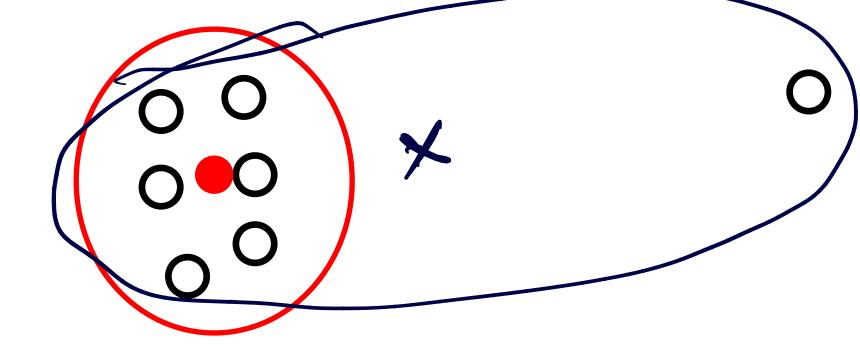
i	D(x)	D ² (x)	$P(v_2=x^{(i)})$
1	3	9	9/102
2	2	4	4/102
•••			
7	3	9	9/102
•••			
N	2	4	4/102
	Sum:	102	1.0

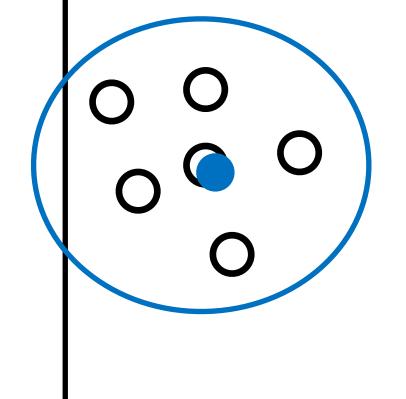
Algorithm #3: K-Means++

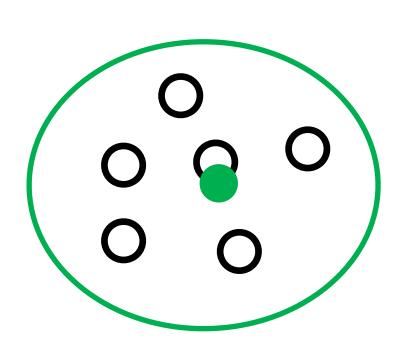
Let D(x) be the distance between a point x and its nearest center.
 Choose next center proportional to D(x)². (1st one uniformly random.)

Examp	le	1:	
-			

- One outlier
- Good performance







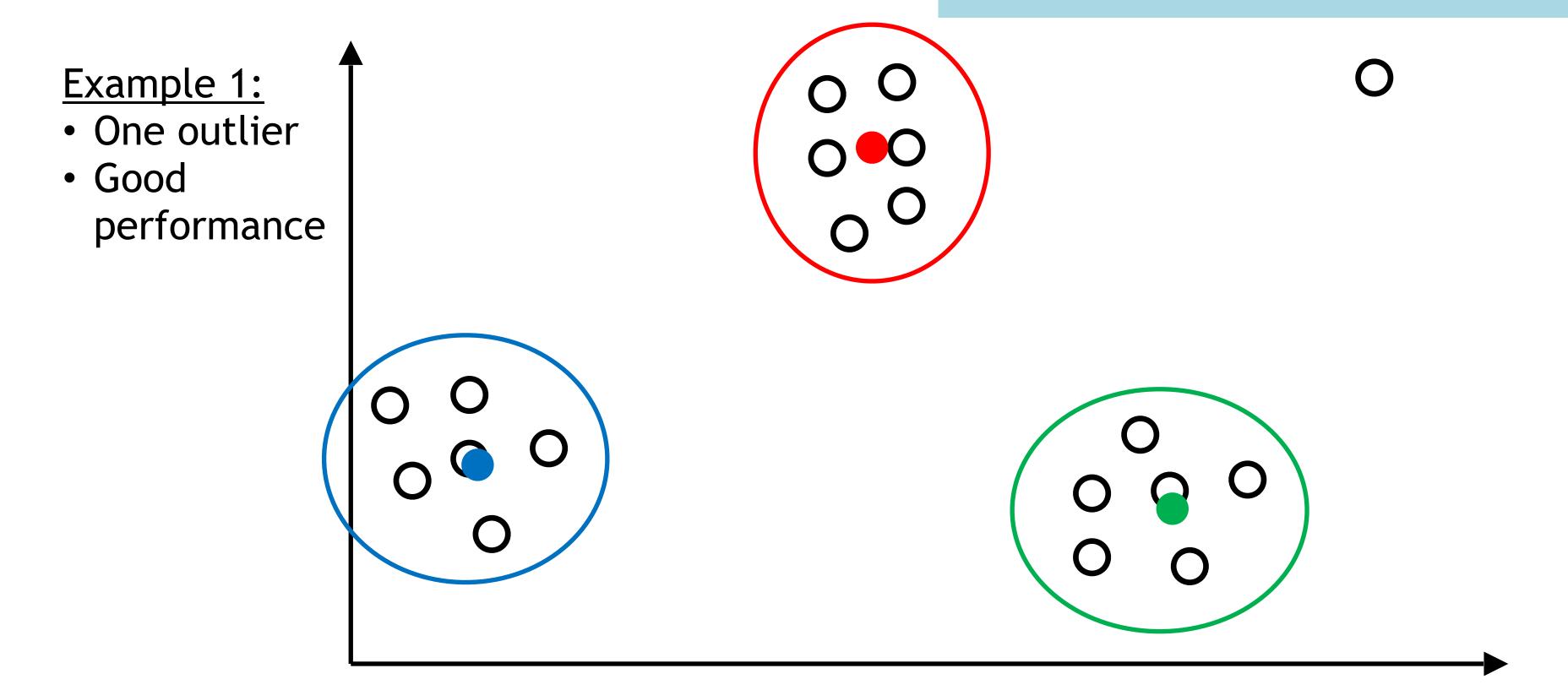
i	D(x)	D ² (x)	$P(v_2=x^{(i)})$
1	3	9	9/137
2	2	4	4/137
•••			
7	4	16	16/137
•••			
N	3	9	9/137
	Sum:	137	1.0

Algorithm #3: K-Means++

Let D(x) be the distance between a point x and its nearest center.
 Choose next center proportional to D(x)². (1st one uniformly random.)

Observations:

- Interpolates between random and farthest point initialization
- Solves the problem with Gaussian data
- And solves the outlier problem

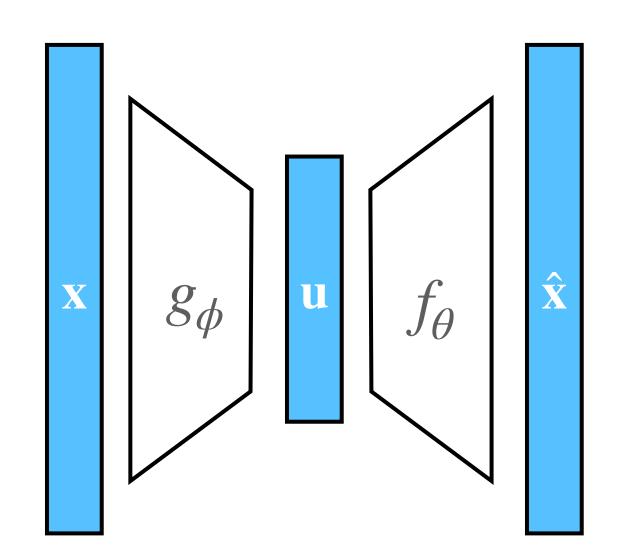


Learning Objectives

K-Means

You should be able to...

- 1. Distinguish between coordinate descent and block coordinate descent
- 2. Define an objective function that gives rise to a "good" clustering (preferring each point to be close to nearest center)
- 3. Apply block coordinate descent to this objective function to obtain the K-Means algorithm
- 4. Implement the K-Means algorithm
- 5. Connect the non-convexity of the K-Means objective function with the (possibly) poor performance of random initialization



Deep autoencoder

- Can design versions of all of the above autoencoders that use deep nets instead of simpler functions
- E.g., deep autoencoder (train by SGD on $\|\hat{\mathbf{x}}^{(i)} \mathbf{x}^{(i)}\|$):

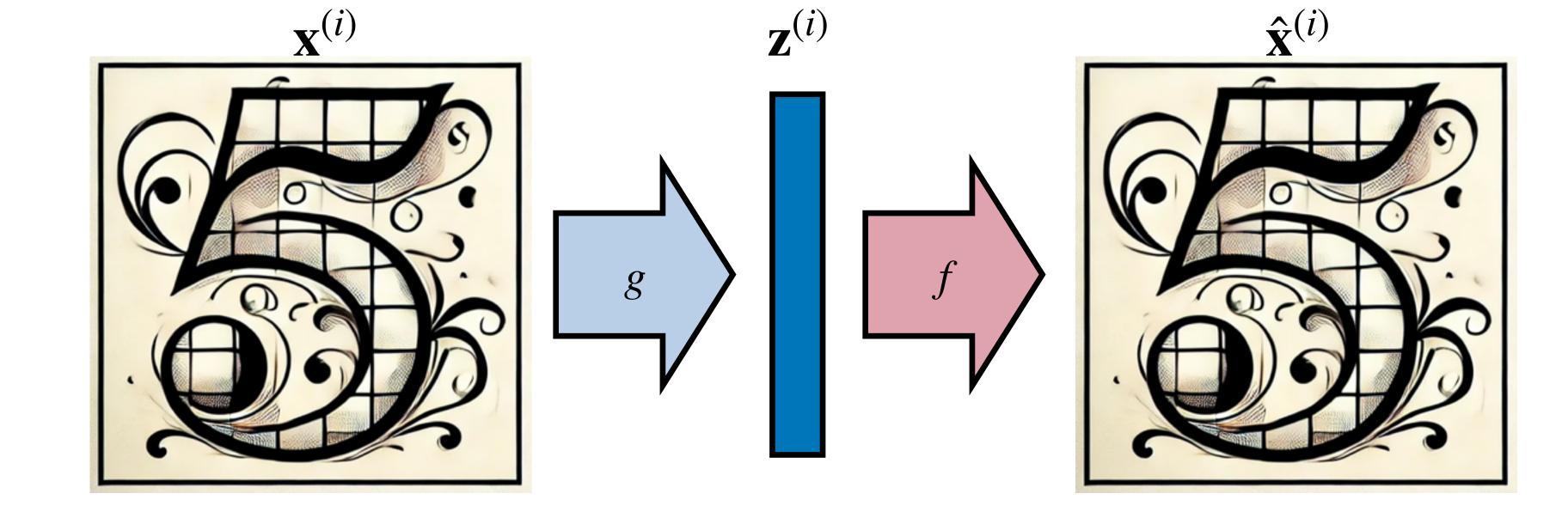
$$\mathbf{u} = g_{\phi}(\mathbf{x})$$

$$\hat{\mathbf{x}} = f_{\theta}(\mathbf{u})$$

Latent distribution

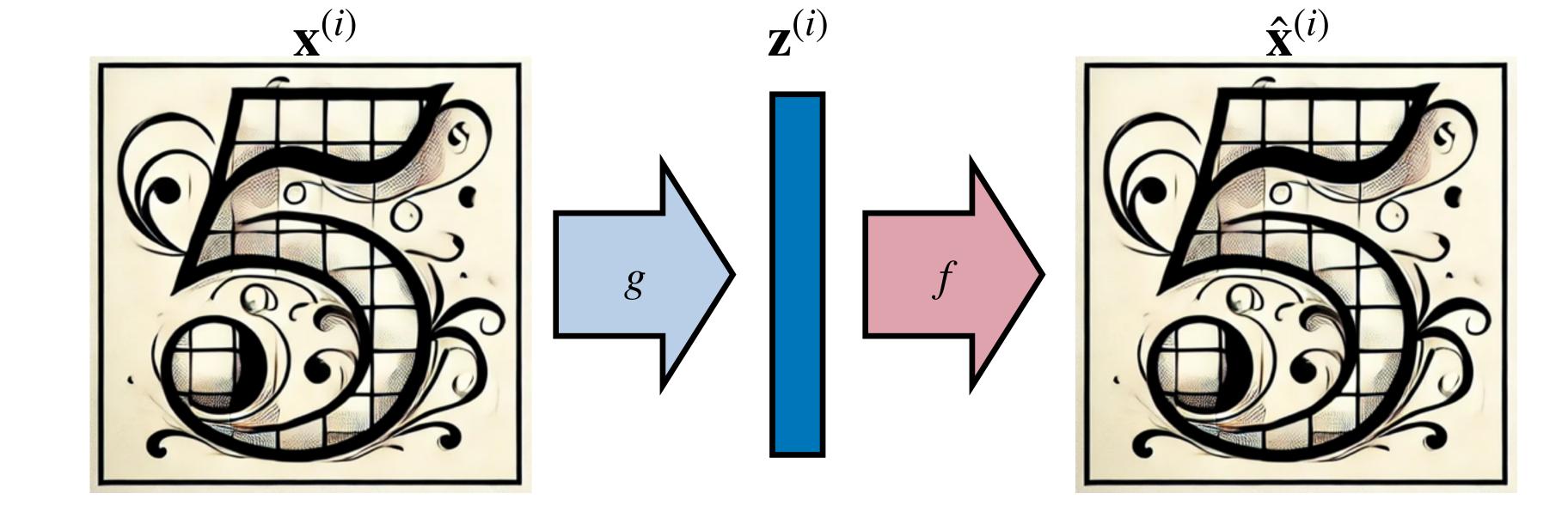
- Current SOTA autoencoder models (VAE, diffusion models) use one more modification on top of above
- So far: hidden layer was \mathbb{R}^k (continuous) or $\{\mathbf{e}_1, \dots \mathbf{e}_k\}$ (discrete)
- Mod: hidden layer is a probability distribution
 - over a set like \mathbb{R}^k or $\{\mathbf{e}_1, ... \mathbf{e}_k\}$ or $\{\mathbf{e}_1, ... \mathbf{e}_k\}^m$ (a grid)
 - continuous even if it's a distribution over a discrete set
- To fit, need a new tool: variational methods

Variational autoencoder (VAE)



- VAE is a complete probabilistic generative model (unlike previous autoencoders this lecture)
 - $\mathbf{z}^{(i)} \sim N(0, I), \ \hat{\mathbf{x}}^{(i)} = f_{\theta}(\mathbf{z}^{(i)}) + \text{noise}$
 - f_{θ} a deep net the *decoder*
- Auxiliary deep net $g_{\phi}(\mathbf{x}^{(i)})$ the *encoder*
 - $ightharpoonup g_{\phi}$ is not part of the generative model
 - \blacktriangleright instead, approximates posterior $P(\mathbf{z}^{(i)} \mid \mathbf{x}^{(i)}, \theta)$

Variational autoencoder (VAE)



Overall goal: maximize log-likelihood

$$\max_{\theta} \sum_{i=1}^{N} \ln P(\mathbf{x}^{(i)} \mid \theta)$$

• Log-likelihood is intractable to compute: need an integral over posterior of $\mathbf{z}^{(i)}$

$$\max_{\theta} \sum_{i=1}^{N} \ln \mathbb{E}_{\mathbf{z} \sim P(\mathbf{z}^{(i)} | \mathbf{x}^{(i)}, \theta)} P(\mathbf{x}^{(i)} | \mathbf{z}^{(i)}, \theta)$$

 \bullet Approximate posterior from encoder g_ϕ will help us work around this problem

VAE training

- At any point in training, we have an approximate posterior for each example's distribution over latents
 - $P(\mathbf{z}^{(i)} \mid \mathbf{x}^{(i)}, \theta) \approx g_{\phi}(\mathbf{x}^{(i)})$
- Use samples from approximate posterior to make a lower bound on log-likelihood $\ln P(\mathbf{x}^{(i)} \mid \theta)$ what we really want to maximize
 - need bound because true log-likelihood is intractable
 - bound is called the *ELBO* (evidence lower bound)
- Take SGD steps to maximize ELBO w/t
 - increasing the lower bound also pushes up on true log likelihood, allowing us to increase it while avoiding an intractable gradient calculation

VAE example

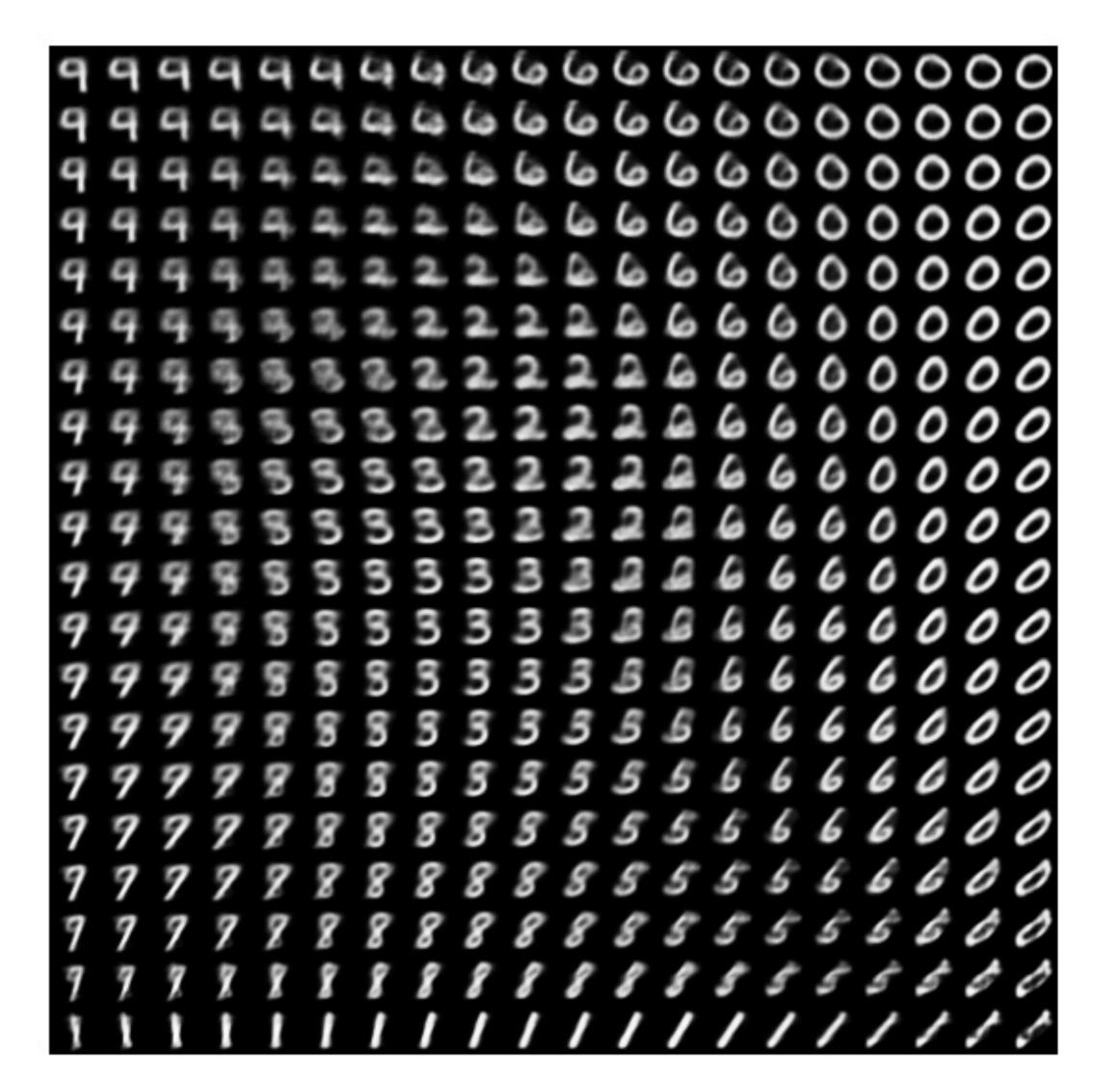


image credit: TensorFlow

• Task: compress MNIST digits from observed $\mathbb{R}^{28\times28}$ to latent \mathbb{R}^2 , then generate samples from the learned model, scanning \mathbf{z} across a grid in \mathbb{R}^2