Ensemble methods

- A lot of our ML models are s l o w to train and predict
 - e.g., big transformer language models
- But some are much faster
 - e.g., decision trees, logistic regression, small deep nets
- Means we could afford to train and use many models: ensemble methods
- What benefits can we unlock?

 - Moncentering beant bank classifies
- Drawbacks: \(\psi \) interpretability, \(\psi \) speed
- Methods in today's slides were SOTA 10–15 years ago, but
 - still have some advantages (speed, parallelizability)
 - good to know the ideas since tech is rapidly changing

Quantify uncertainty

from MNIST

- Suppose we managed to train a diverse set of 100 different models θ_k (e.g., decision trees) from the same training dataset \mathscr{D} for handwriting recognition
- Given test instance **x** at left:
 - > 37 models predict y = 9 (digit 9)
 - \triangleright 48 models predict y = a (lowercase a)
 - ▶ 15 models predict y = 0 (lowercase O)
- Interpretation: posterior probability of label $y \mid \mathbf{x}$ (the *predictive distribution*) is 37%, 48%, 15% on these outcomes
 - this is great because the true predictive distribution is intractable: $\int P(y \mid \theta) P(\theta \mid \mathcal{D}) d\theta$
 - ensemble can provide a good heuristic approximation

Quantify uncertainty

from MNIST

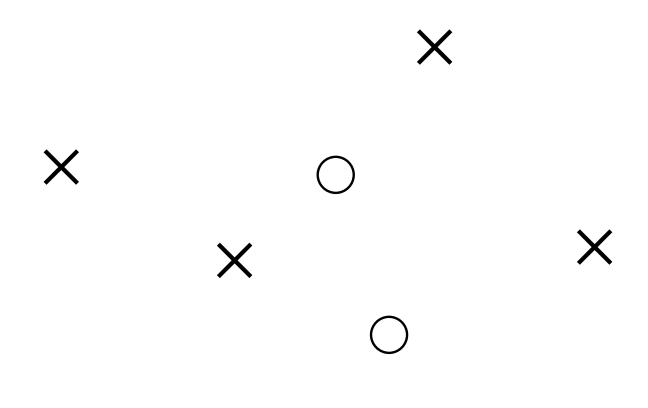
- Suppose we managed to train a diverse set of 100 different models $oldsymbol{ heta}_k$ (e.g., decision trees) from the same training dataset $\widehat{\mathcal{D}}$ for handwriting recognition
- Given test instance **x** at left:
 - \triangleright 37 models predict y = 9 (digit 9)
 - ► 48 models predict y
 - ▶ 15 models pre
- * Key question: how should models? We train our 100 models? bility of label y | x (the Interpretati predictive d is 37%, 48%, 15% on these outcomes
 - this is great because the true predictive distribution is intractable: $P(y \mid \theta) P(\theta \mid \mathcal{D}) d\theta$
 - ensemble can provide a good heuristic approximation

Idea: subsample

- \bullet Train different models on different subsets of ${\mathcal D}$
 - \triangleright e.g., k-fold cross-validation trains k models
 - e.g., bootstrap...

- Repeat T times:
 - $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$
 - same size as original sample, but some datapoints are excluded and some are repeated
 - in expectation $\frac{1}{e}$ excluded (about 37%)
 - \blacktriangleright train h_t on bag D_t , test h_t on excluded (out-of-bag) points $\text{@}\backslash D_t$

(points are actually exact duplicates)



original sample

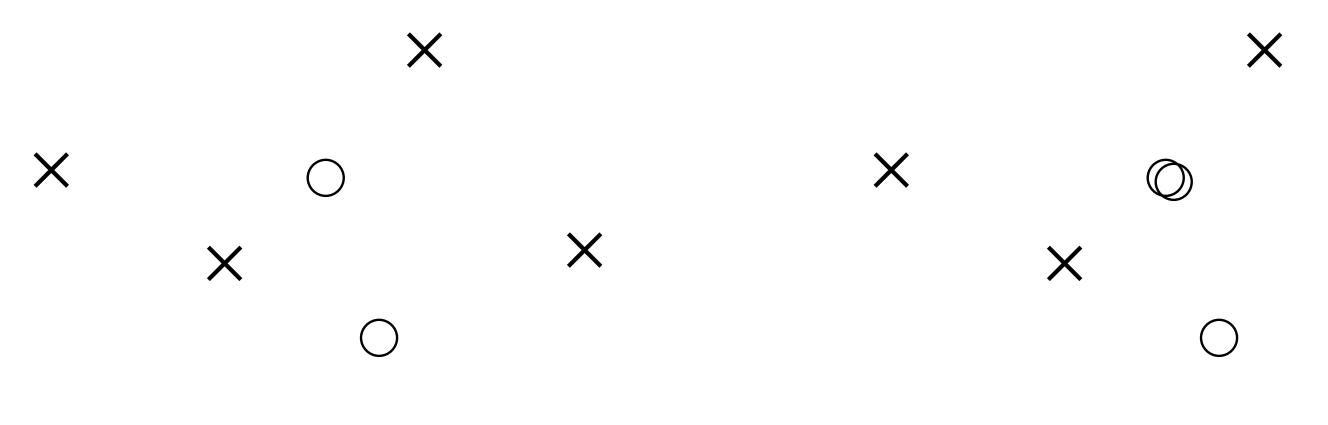
bootstrap resample

- Repeat *T* times:
 - $\begin{tabular}{l} \begin{tabular}{l} \begin{tabular$
 - same size as original sample, but some datapoints are excluded and some are repeated
 - in expectation $\frac{1}{e}$ excluded (about 37%)

original sample

 \blacktriangleright train h_t on bag D_t , test h_t on excluded (out-of-bag) points $\text{$\mathcal{D}$}\backslash D_t$

(points are actually exact duplicates)



bootstrap resample

- Repeat *T* times:
 - $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$
 - same size as original sample, but some datapoints are excluded and some are repeated
 - in expectation $\frac{1}{e}$ excluded (about 37%)

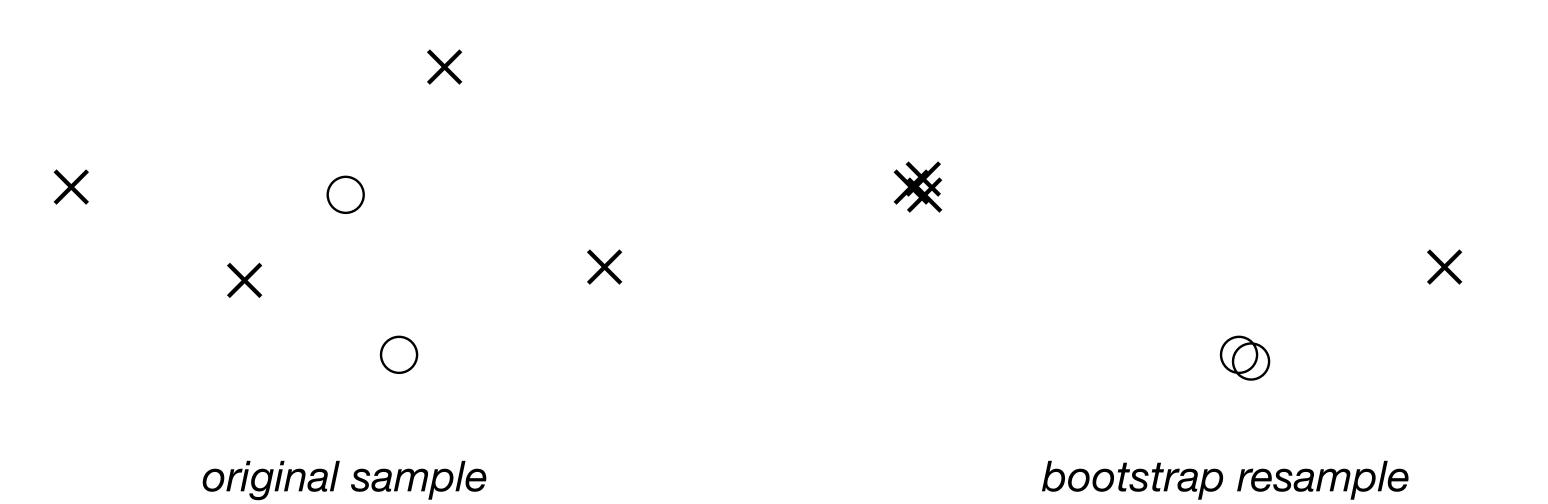
original sample

 \blacktriangleright train h_t on bag D_t , test h_t on excluded (out-of-bag) points $\text{$\mathcal{D}$}\backslash D_t$

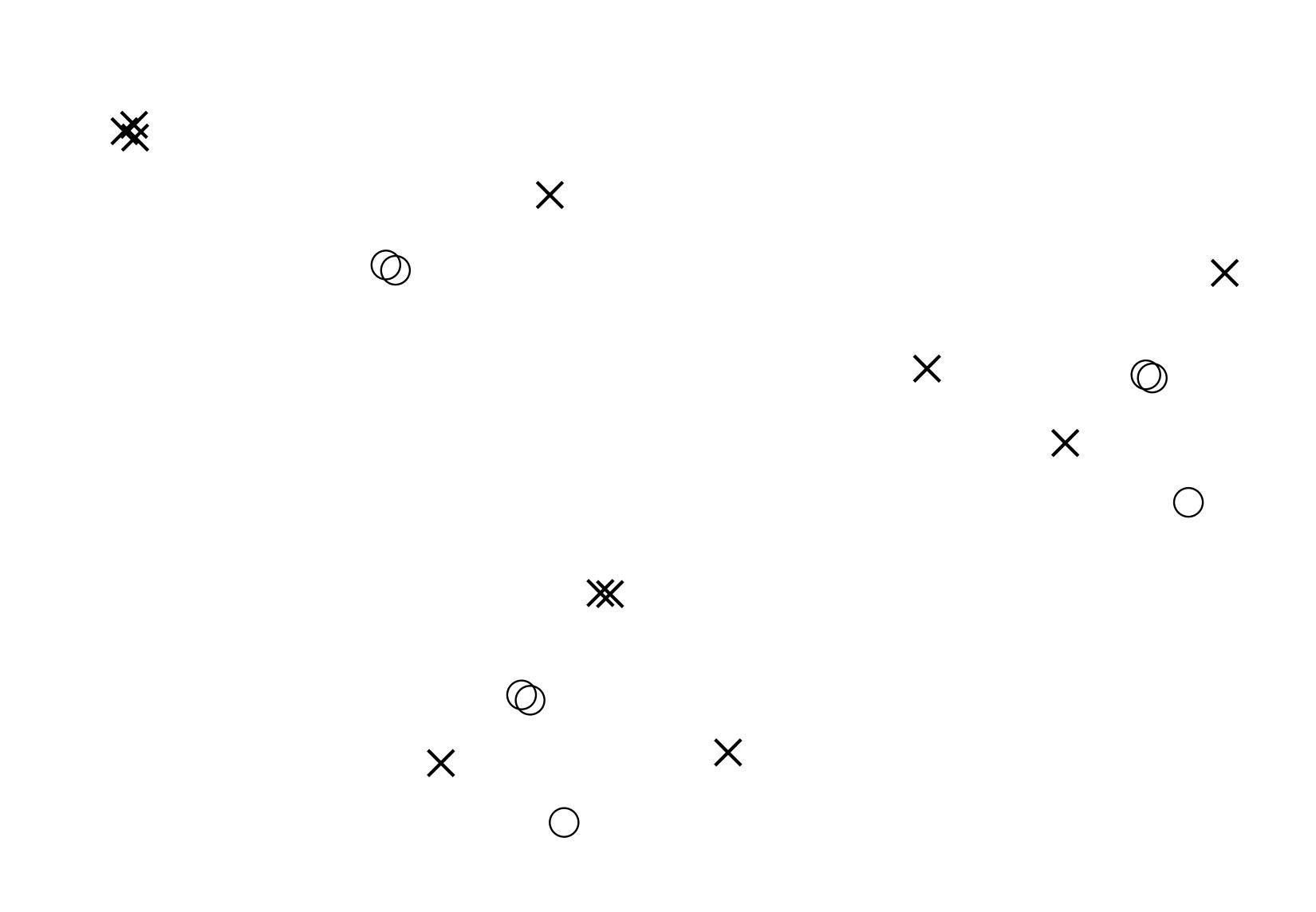
(points are actually exact duplicates)

- Repeat *T* times:
 - $\hbox{ take a bootstrap resample D_t from $\mathscr D$: select $(\mathbf x^{(i)},y^{(i)})$ iid from $\mathscr D$ with replacement $|\mathscr D|$ times called a bag }$
 - same size as original sample, but some datapoints are excluded and some are repeated
 - in expectation $\frac{1}{e}$ excluded (about 37%)
 - \blacktriangleright train h_t on bag D_t , test h_t on excluded (out-of-bag) points $\text{$\mathcal{D}$}\backslash D_t$

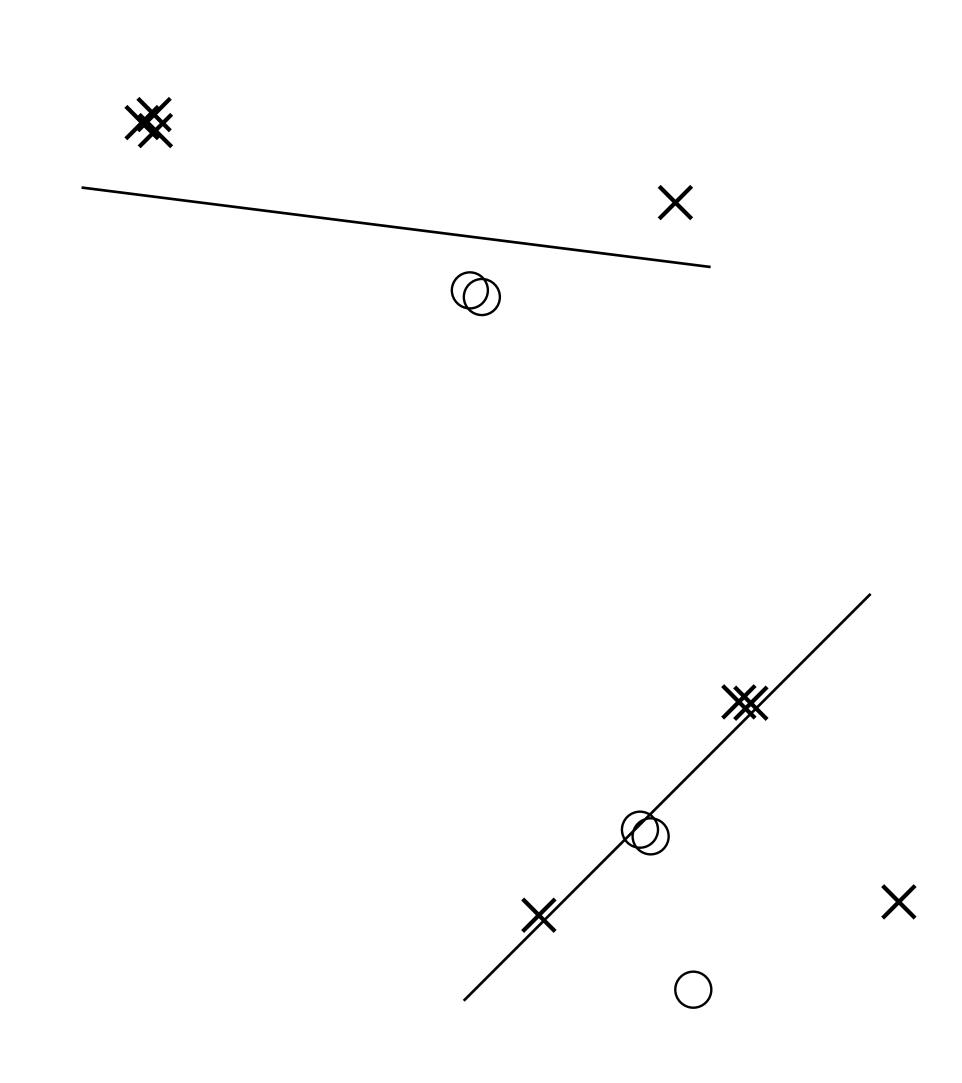
(points are actually exact duplicates)

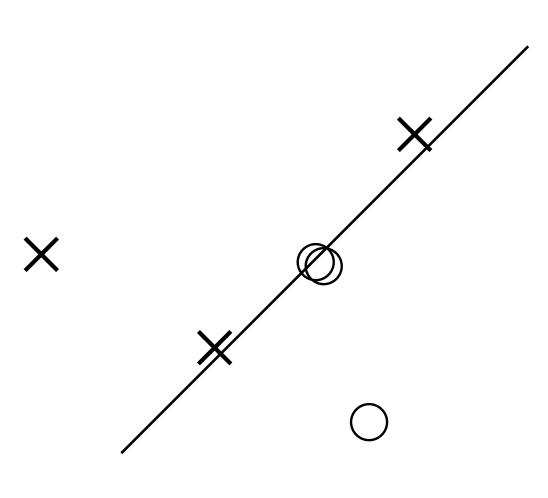


Train on each bootstrap sample

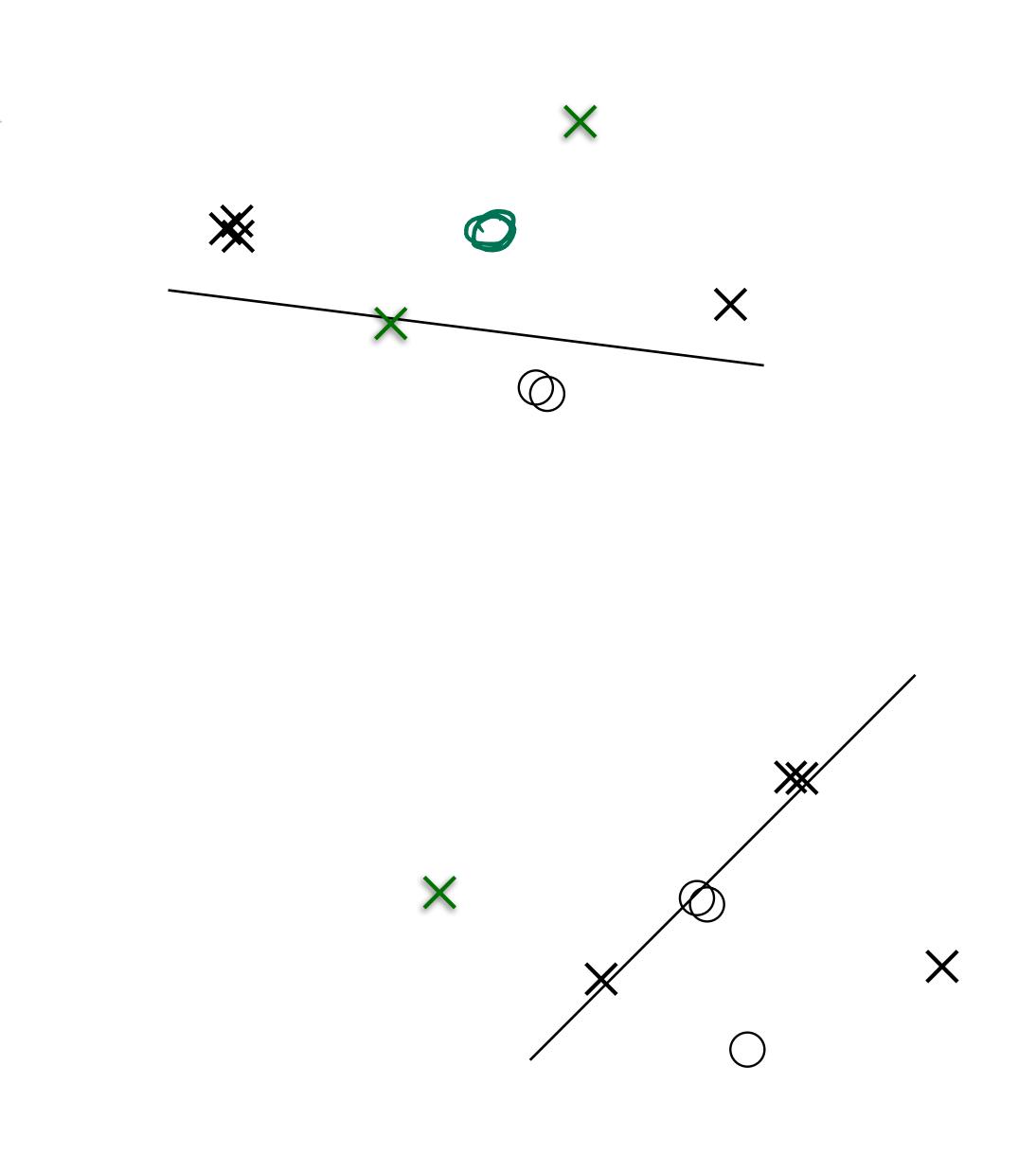


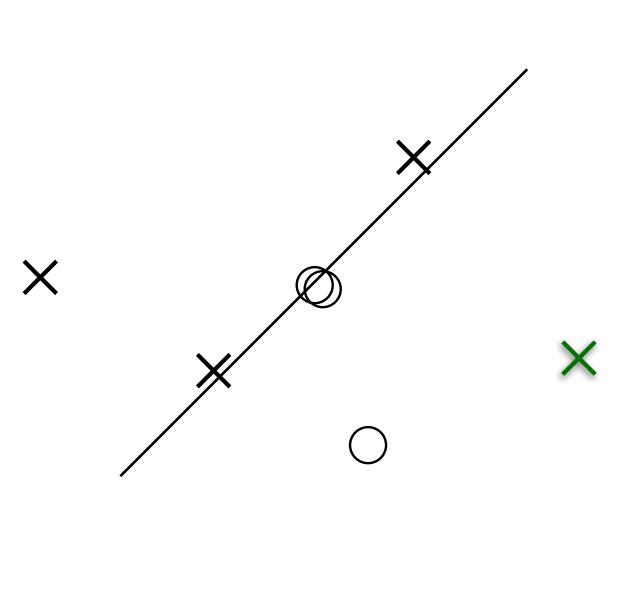
Train on each bootstrap sample



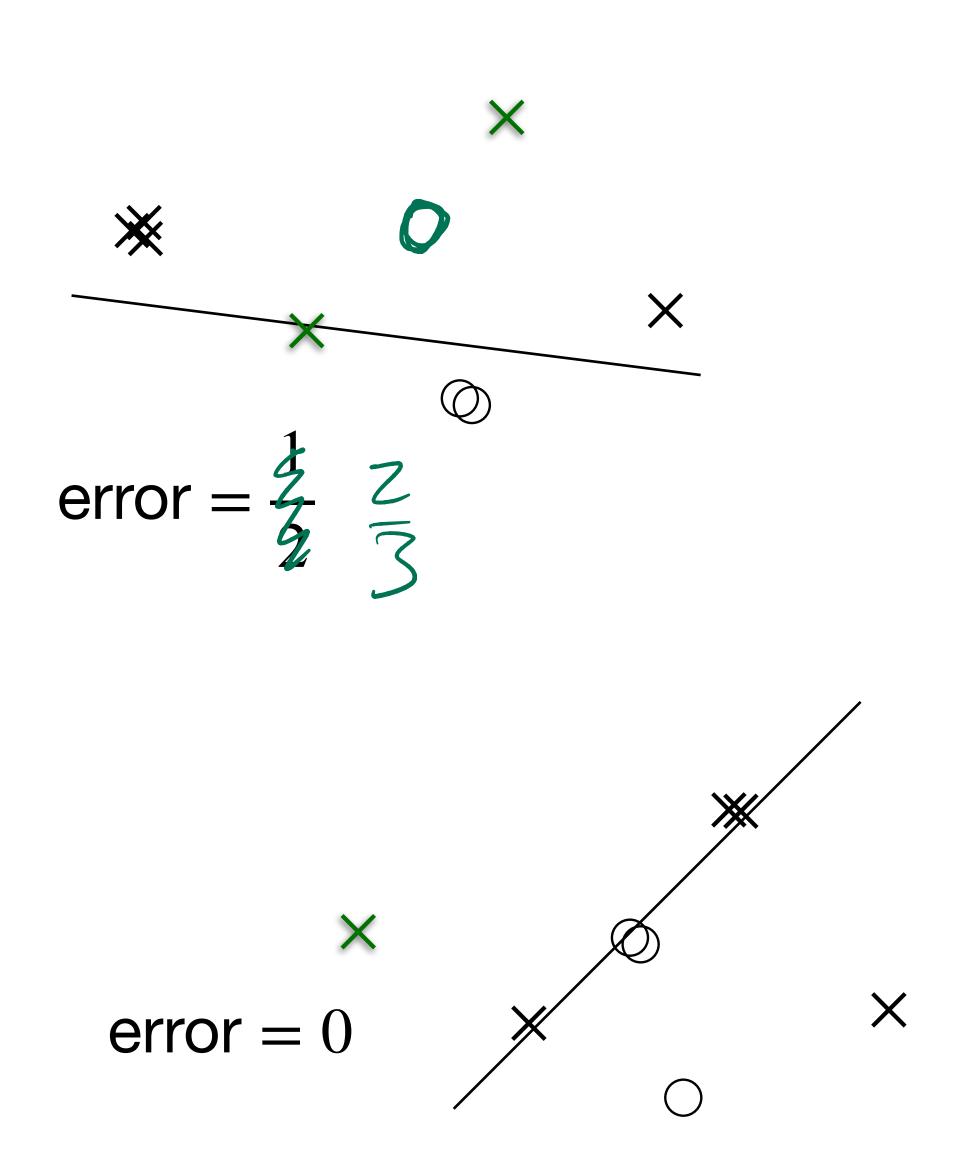


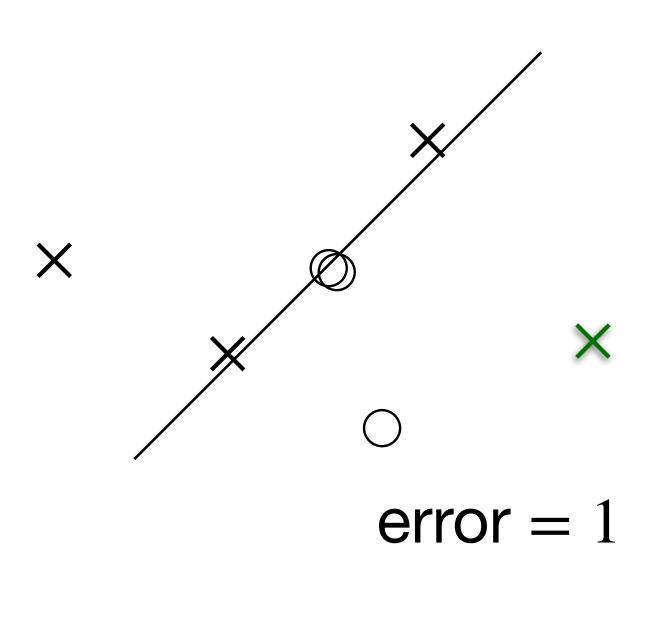
Test on O.O.b.



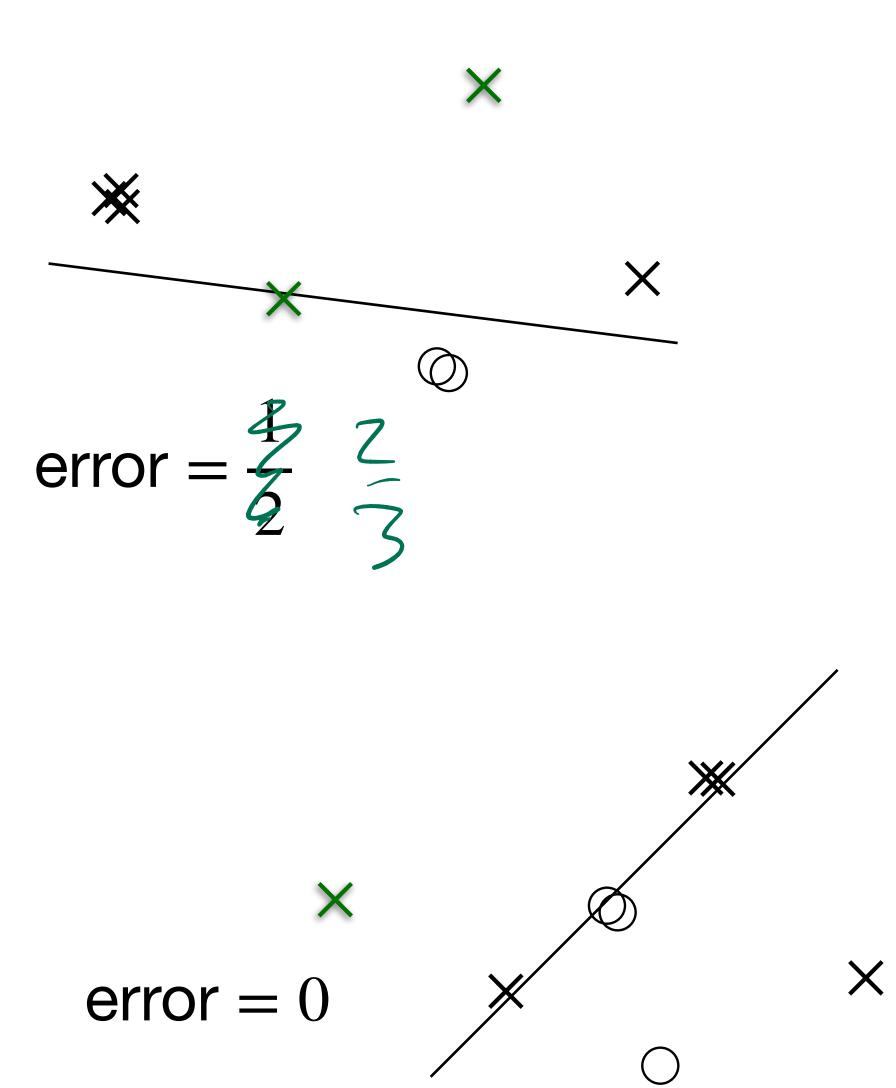


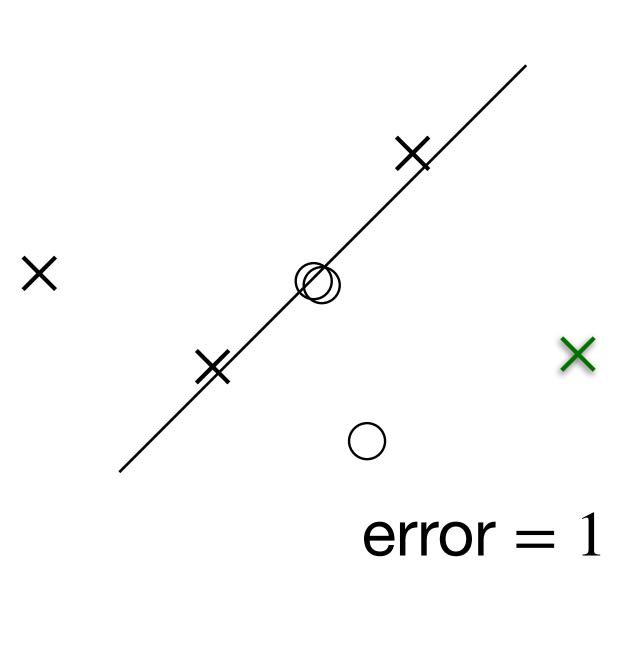
Test on O.O.b.





Test on O.O.b.





• Repeat T times:

- ▶ take a bootstrap resample D_t of \mathscr{D} : select $(\mathbf{x}^{(i)}, y^{(i)})$ iid from \mathscr{D} with replacement $|\mathscr{D}|$ times
- ightharpoonup train h_t on bag, test h_t on out-of-bag points

• Return:

- the accuracy estimate (average of o.o.b. accuracies)
- the model ensemble $\{h_t\}_{t=1}^T$
 - to predict for a new \mathbf{x} , return average $\frac{1}{T}\sum_{t=1}^T h_t(\mathbf{x})$ called *bagging* for *b*ootstrap *agg*regat*ing*
 - threshold it if we want a single prediction

Hyperparameter: how many rounds

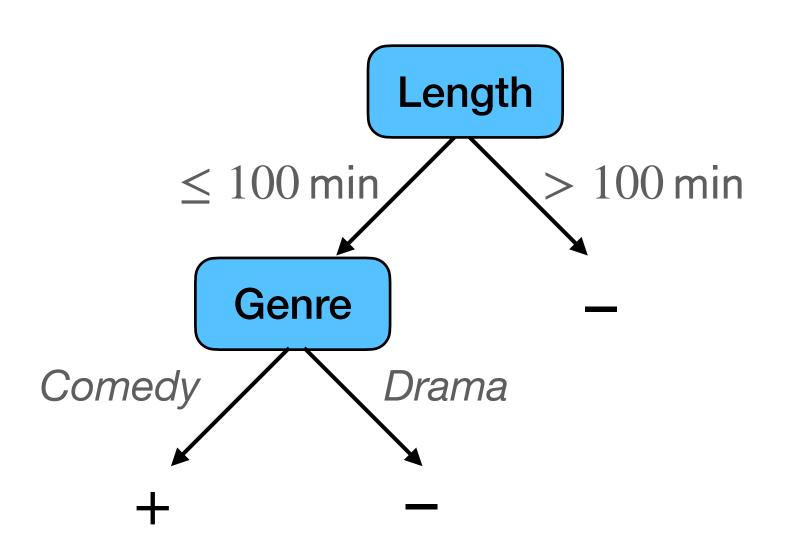
- More bootstrap rounds T:
 - more expensive (both train and test)
 - finer quantification of uncertainty
 - ▶ approaches convergence (different training runs → similar final hypothesis) due to law of large numbers
- In fact, under some assumptions, bootstrap prediction
 - \rightarrow true posterior over y given x and model class
 - but these assumptions don't ever really hold for modern ML methods, so it's really more of a nice heuristic

- Bootstrap resamples serve to increase diversity of set of learned classifiers — diversity helps cover posterior
- Empirical observation: bagging alone doesn't yield enough diversity for best performance
- Idea: change hypothesis class slightly for each bag
 - we probably aren't 100% certain we had the exact right hypothesis class anyway
- Column subsampling: use only a subset of features for each classifier

Length	Genre	Budget	Year	Rating
•		•		

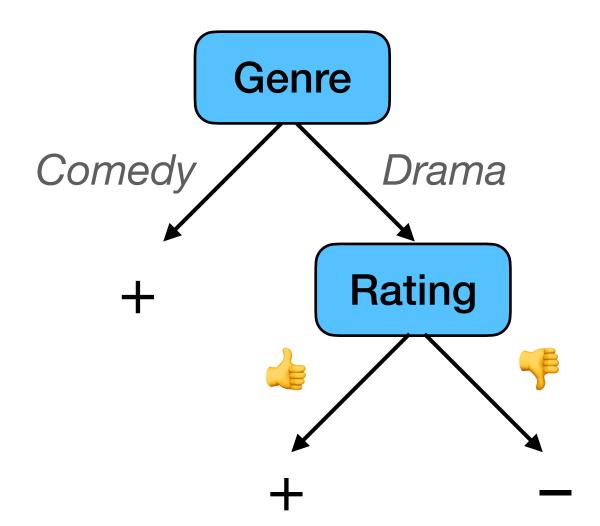
Length Genre Budget Year Rating

Length Genre Budget Year Rating



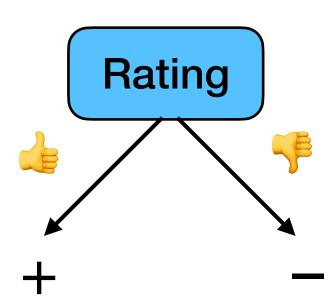
Length	Genre	Budget	Year	Rating
_		_		

Length Genre Budget Year Rating



Length	Genre	Budget	Year	Rating
9		J		-

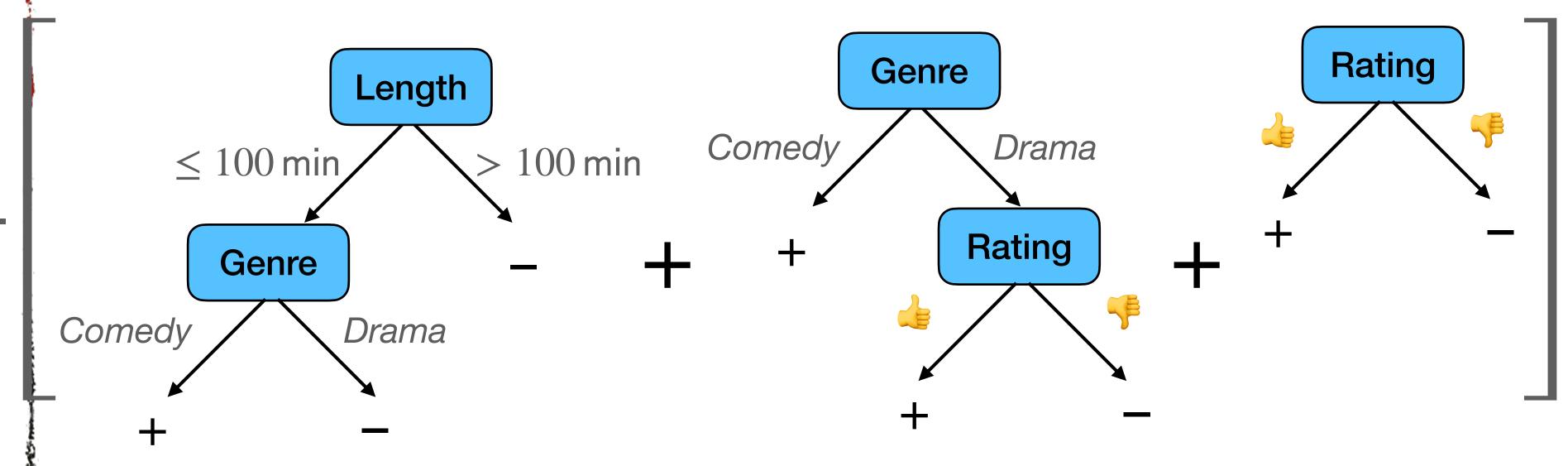
Length	Genre	Budget	Year	Rating
	0.0			1 13111119



Length	Genre	Budget	Year	Rating

Column subsampling

13



Final classifier

Variants

- If base classifier = decision trees, we can resample columns...
 - once at the beginning of training for each bag (= ordinary column subsampling)
 - once for every level of the tree (by-level subsampling)
 - once for each split (by-node subsampling)
 - last one is also called *split-feature randomization*
- More randomization → more diversity (but maybe more noise)

Random forests

Table 2. Normalized scores for each learning algorithm by metric (average over eleven problems)

MODEL	CAL	ACC	FSC	LFT	ROC	APR	BEP	RMS	MXE	MEAN	OPT-SEL
BST-DT	PLT	.843*	.779	.939	.963	.938	.929*	.880	.896	.896	.917
RF	PLT	.872 *	.805	.934 *	.957	.931	.930	.851	.858	.892	.898
BAG-DT	-	.846	.781	.938*	.962 *	.937 *	.918	.845	.872	.887*	.899
BST-DT	ISO	.826 *	.860 *	.929*	.952	.921	.925*	.854	.815	.885	.917*
RF	_	.872	.790	.934*	.957	.931	.930	.829	.830	.884	.890
BAG-DT	PLT	.841	.774	.938*	.962*	.937 *	.918	.836	.852	.882	.895
RF	ISO	.861*	.861	.923	.946	.910	.925	.836	.776	.880	.895
BAG-DT	ISO	.826	.843*	.933*	.954	.921	.915	.832	.791	.877	.894
SVM	PLT	.824	.760	.895	.938	.898	.913	.831	.836	.862	.880
ANN	_	.803	.762	.910	.936	.892	.899	.811	.821	.854	.885
SVM	ISO	.813	.836*	.892	.925	.882	.911	.814	.744	.852	.882
ANN	PLT	.815	.748	.910	.936	.892	.899	.783	.785	.846	.875
ANN	ISO	.803	.836	.908	.924	.876	.891	.777	.718	.842	.884

• A popular combination (because it won a bunch of ML competitions ca. 2000s):

source: (Caruana & Niculescu-Mizil, 2006)

- bagging
- + column subsampling or variants
- w/ small decision trees as the base classifier no pruning!
- Lots of random trees = a random forest
- Software: XGBoost [Chen & Guestrin, 2016]

Random forests

Table 2. Normalized scores for each learning algorithm by metric (average over eleven problems)

MODEL	CAL	ACC	FSC	LFT	ROC	APR	BEP	RMS	MXE	MEAN	OPT-SEL
BST-DT	PLT	.843*	.779	.939	.963	.938	.929*	.880	.896	.896	.917
RF	PLT	.872*	.805	.934*	.957	.931	.930	.851	.858	.892	.898
BAG-DT	_	.846	.781	.938*	.962*	.937*	.918	.845	.872	.887*	.899
BST-DT	ISO	.826*	.860 *	.929*	.952	.921	.925*	.854	.815	.885	.917*
RF	_	.872	.790	.934*	.957	.931	.930	.829	.830	.884	.890
BAG-DT	PLT	.841	.774	.938*	.962*	.937*	.918	.836	.852	.882	.895
RF	ISO	.861*	.861	.923	.946	.910	.925	.836	.776	.880	.895
BAG-DT	ISO	.826	.843*	.933*	.954	.921	.915	.832	.791	.877	.894
SVM	PLT	.824	.760	.895	.938	.898	.913	.831	.836	.862	.880
ANN	_	.803	.762	.910	.936	.892	.899	.811	.821	.854	.885
SVM	ISO	.813	.836*	.892	.925	.882	.911	.814	.744	.852	.882
ANN	PLT	.815	.748	.910	.936	.892	.899	.783	.785	.846	.875
ANN	ISO	.803	.836	.908	.924	.876	.891	.777	.718	.842	.884

• A popular combination (because it won a bunch of ML competitions ca. 2000s):

source: (Caruana & Niculescu-Mizil, 2006)

- bagging
- + column subsampling or variants
- ▶ w/ small decision trees as the base classifier no pruning!
- Lots of random trees = a random forest
- Software: XGBoost [Chen & Guestrin, 2016]

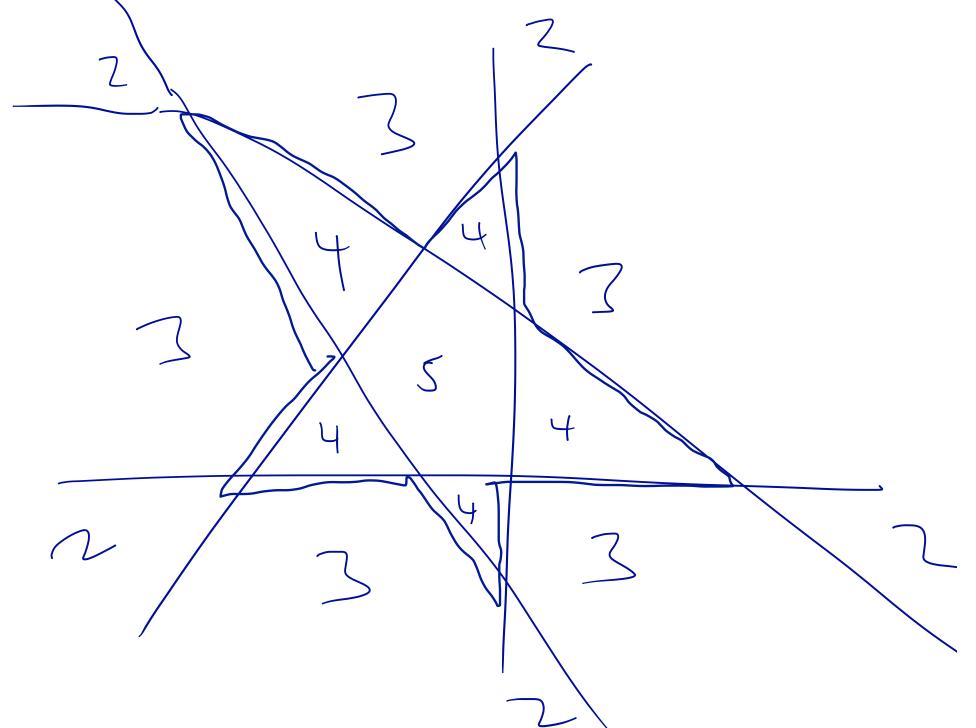
KDD Cup 2015



Bagging for multi-class and regression

- Bagging works well for multi-class or regression too
- For regression:
 - prediction is the average of individual hypotheses
 - if desired we can express uncertainty by reporting quantiles of the list of predictions
 - e.g., "we predict y = 4.01 given **x**; 90% of predictions for $y \mid \mathbf{x}$ are in the range [3.71,4.12]"

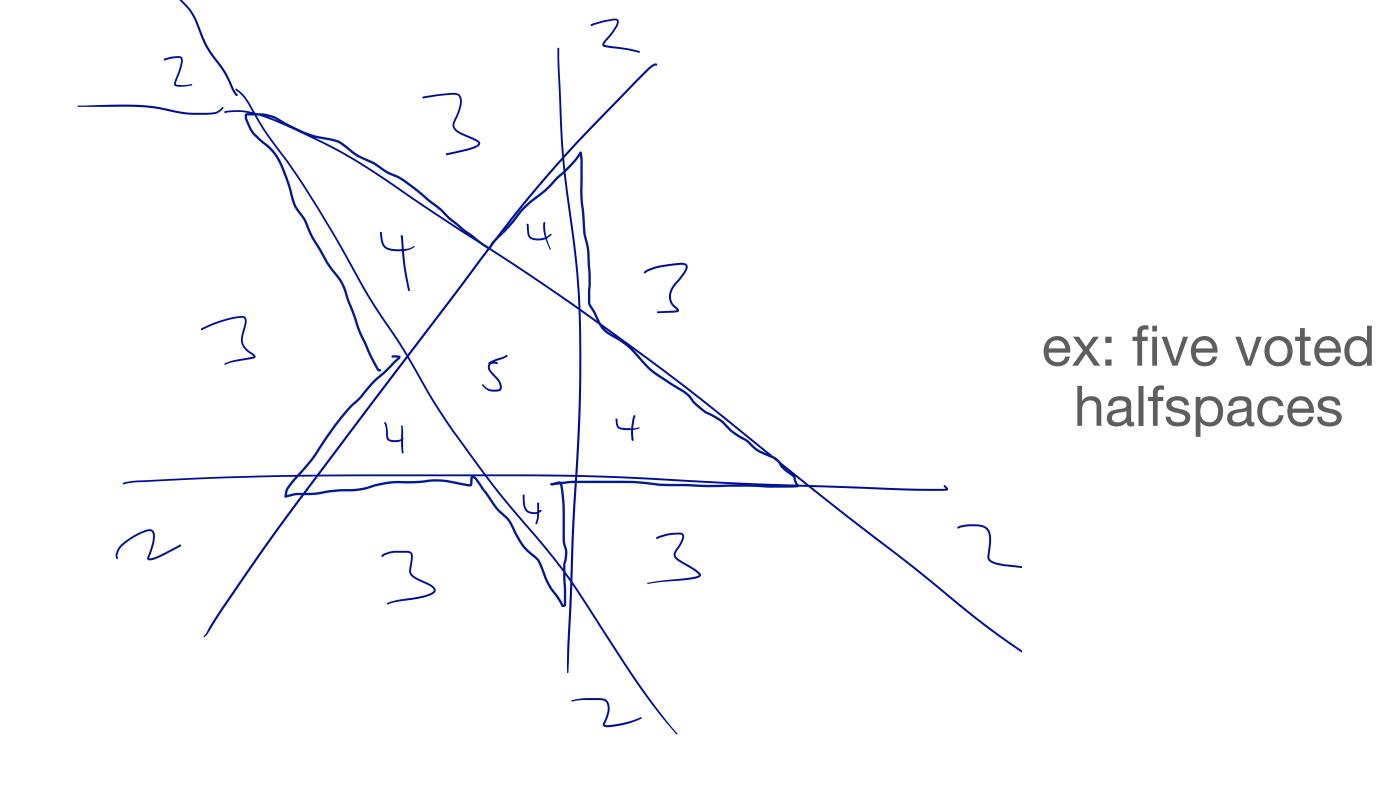
Voted classifiers



ex: five voted halfspaces

- Bagging for binary classification is a voted classifier:
 - each sub-classifier $h_t: \mathbb{R}^d \to [-1,1]$ or $\mathbb{R}^d \to \{-1,1\}$
 - vote: is $\sum_{t} h_t(\mathbf{x}) \ge 0$?
 - or weighted vote: is $\sum_{t} \alpha_{t} h_{t}(\mathbf{x}) \geq 0$? (weights α_{t})
 - wlog $\alpha_t > 0$ for all t (hypothesis set closed under negation)
 - normalize if desired: $\sum_t \alpha_t = 1$ (constant factor is irrelevant)

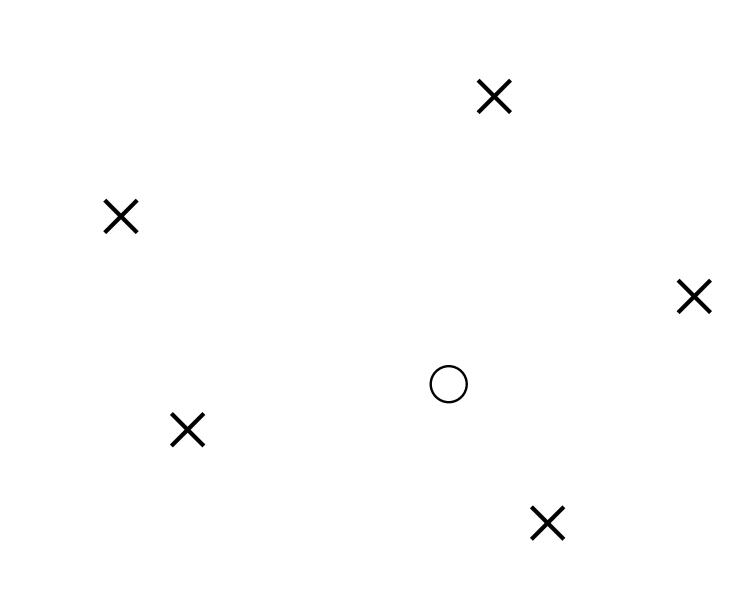
Second benefit: better accuracy



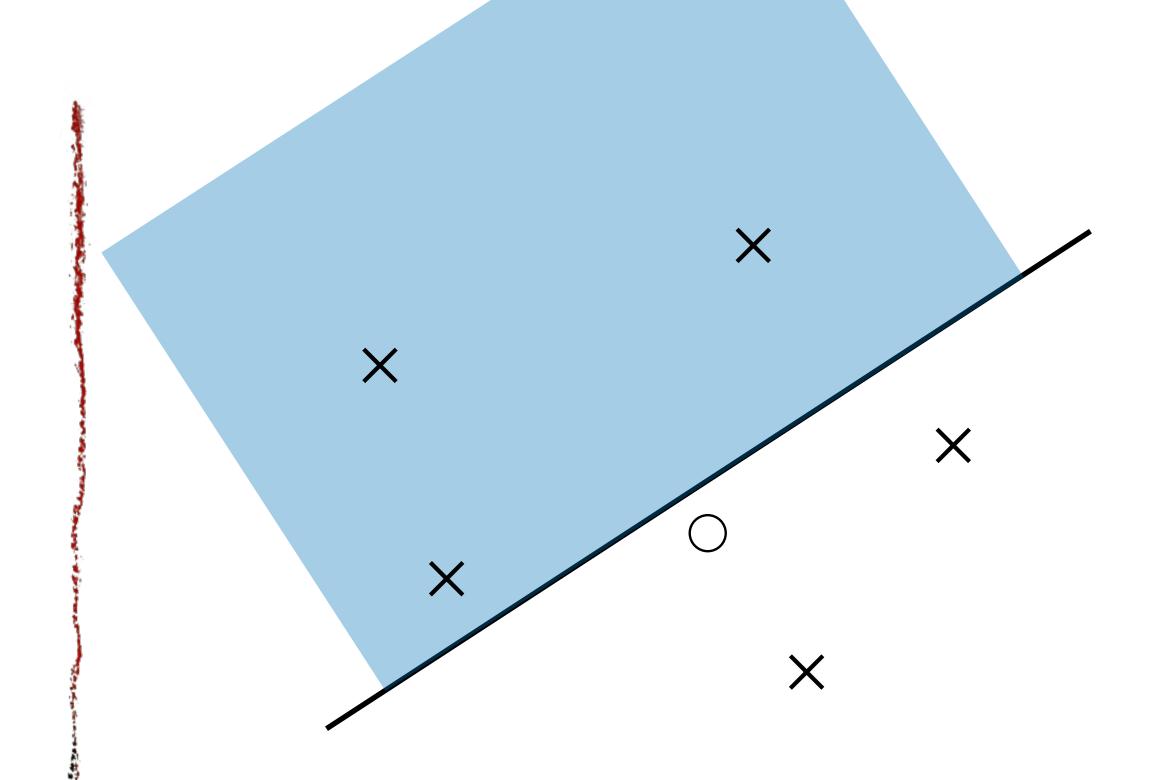
- Note: voted classifier is strictly more expressive than original classifier (★ region is not a halfspace)
- Can we use higher expressiveness to get higher accuracy?

Boosting

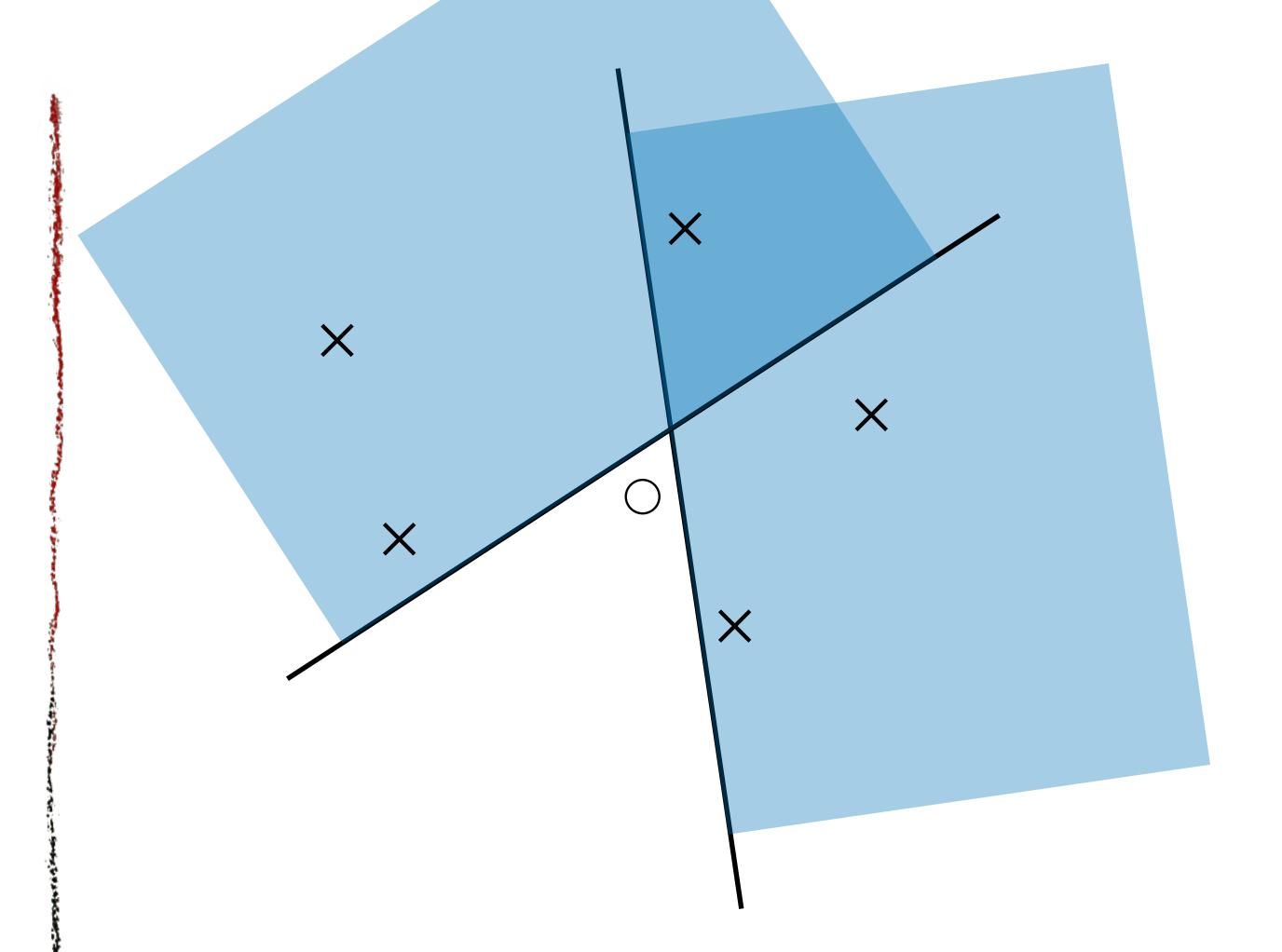
- Boosting is a wrapper we can put around any binary classifier (perceptron, decision tree, ...)
 - base classifier solves many (related) learning problems
 - ightharpoonup each one gives us a classifier h_t
 - final classifier is a weighted vote: $\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x}) \stackrel{!}{\geq} 0$
- Idea: if base algorithm (the *weak learner*) can keep doing just better than chance (error $\frac{1}{2} \epsilon$)
 - then final boosted classifier (the strong learner) can get zero error on the training set
 - and (w/ assumptions) do well on the test set too



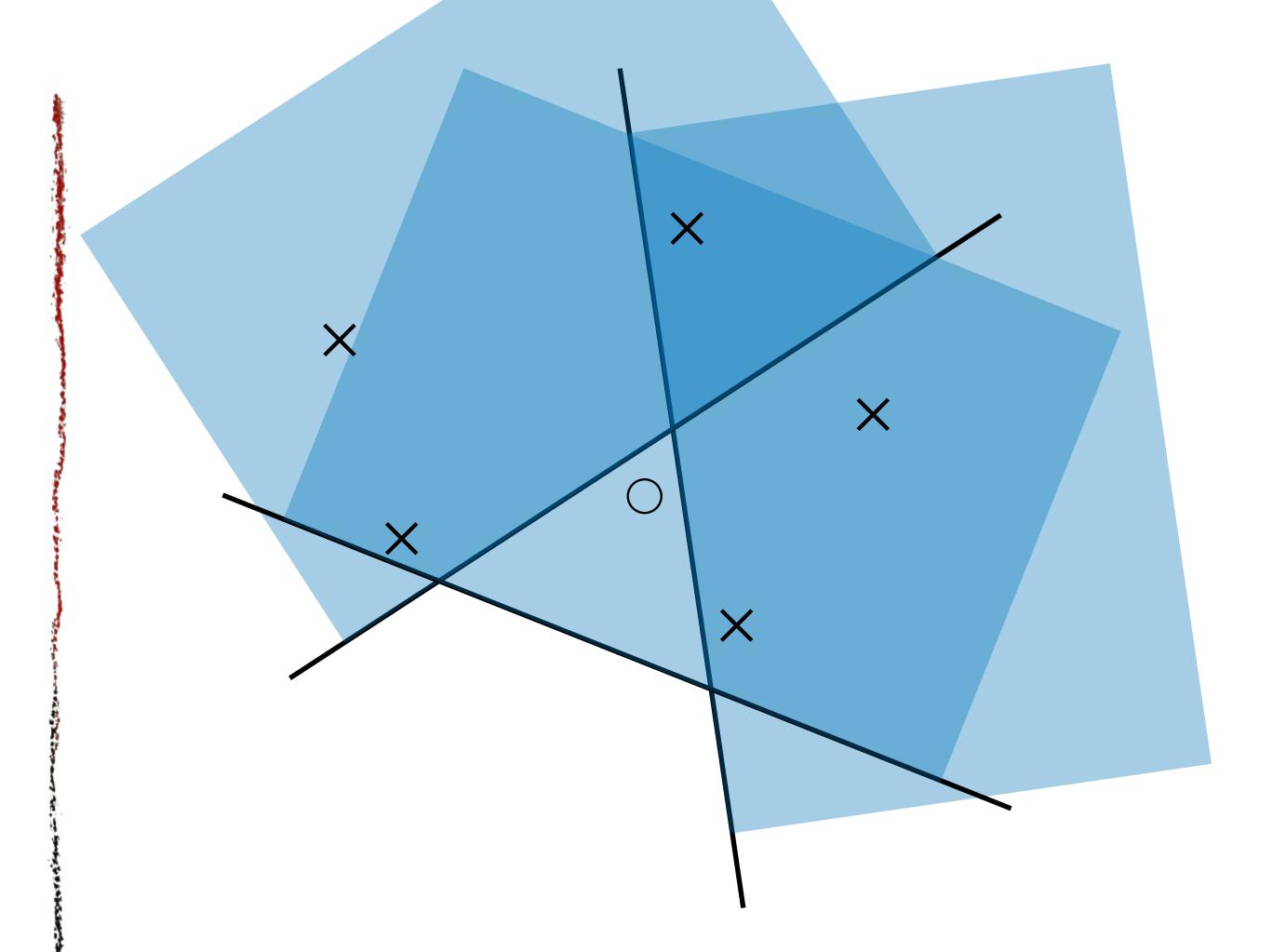
$$\sum_{t=1}^{|\mathcal{H}|} \alpha_t h_t(\mathbf{x})$$



$$\sum_{t=1}^{|\mathcal{H}|} \alpha_t h_t(\mathbf{x})$$



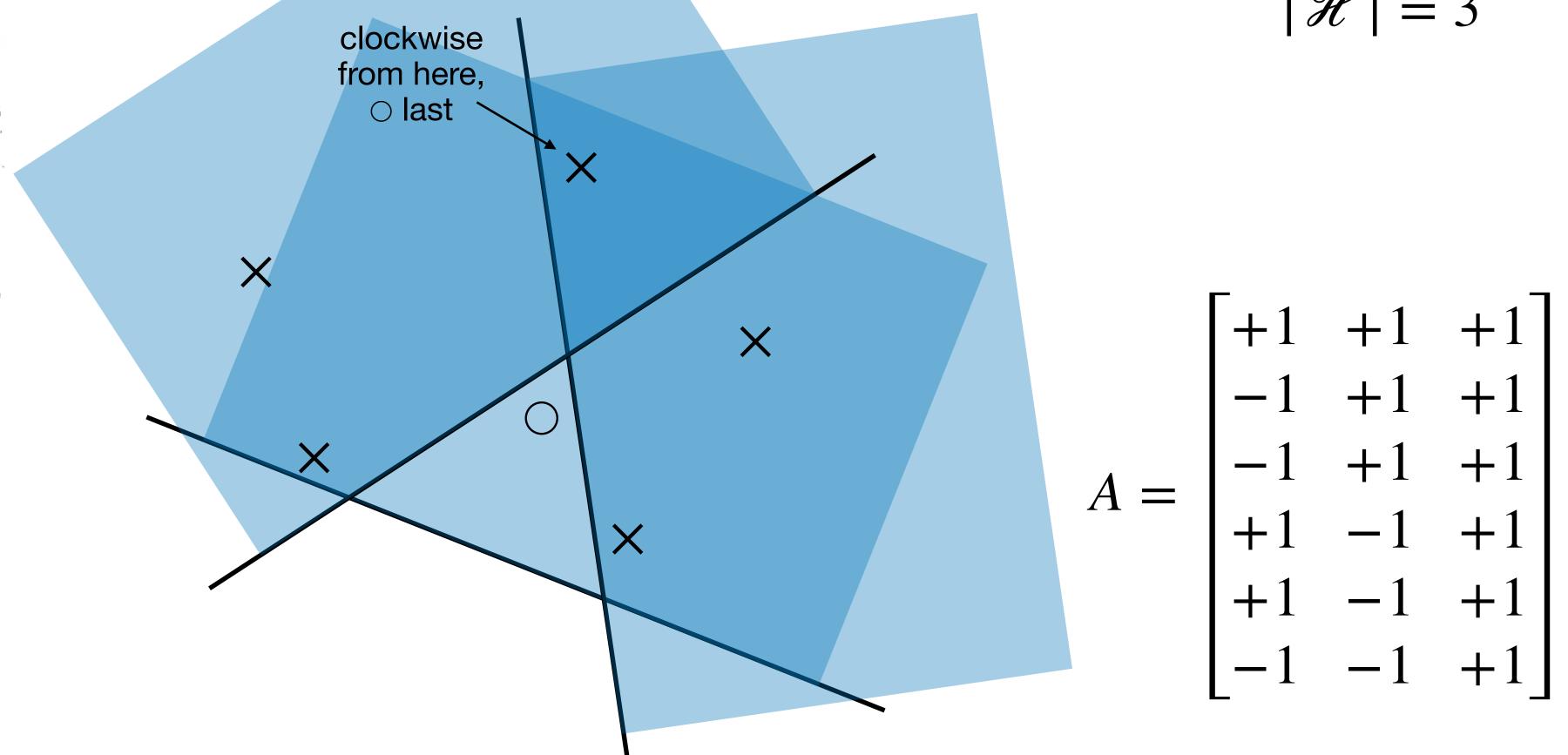
$$\sum_{t=1}^{|\mathcal{H}|} \alpha_t h_t(\mathbf{x})$$



$$\sum_{t=1}^{|\mathcal{H}|} \alpha_t h_t(\mathbf{x})$$

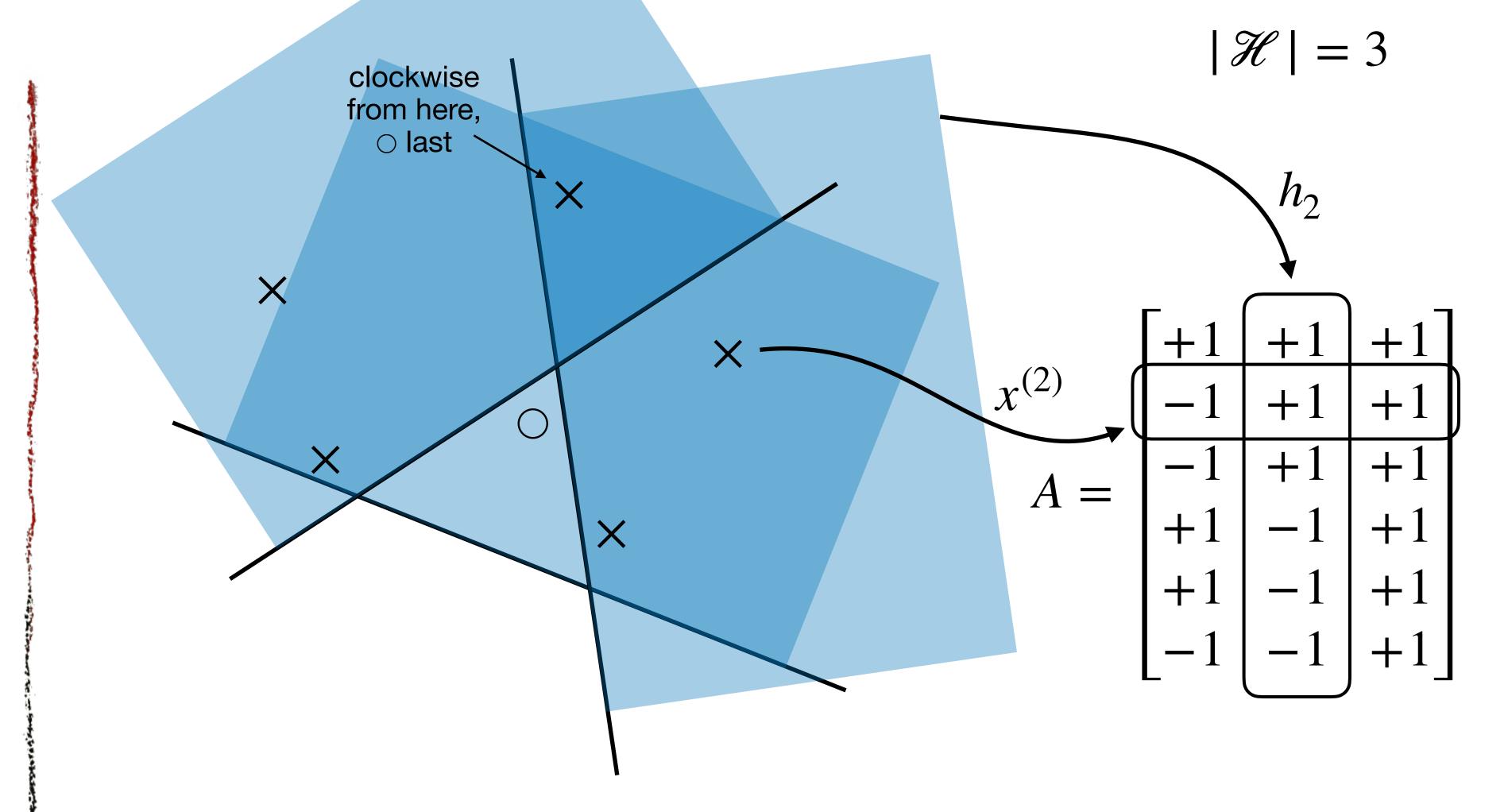
$|\mathcal{H}| = 3$

Classifiers as features



• Can treat each classifier as a *feature*: value +1 for points classified positive, value -1 for points classified negative, making a data matrix A with $A_{it} = h_t(\mathbf{x}^{(i)})$

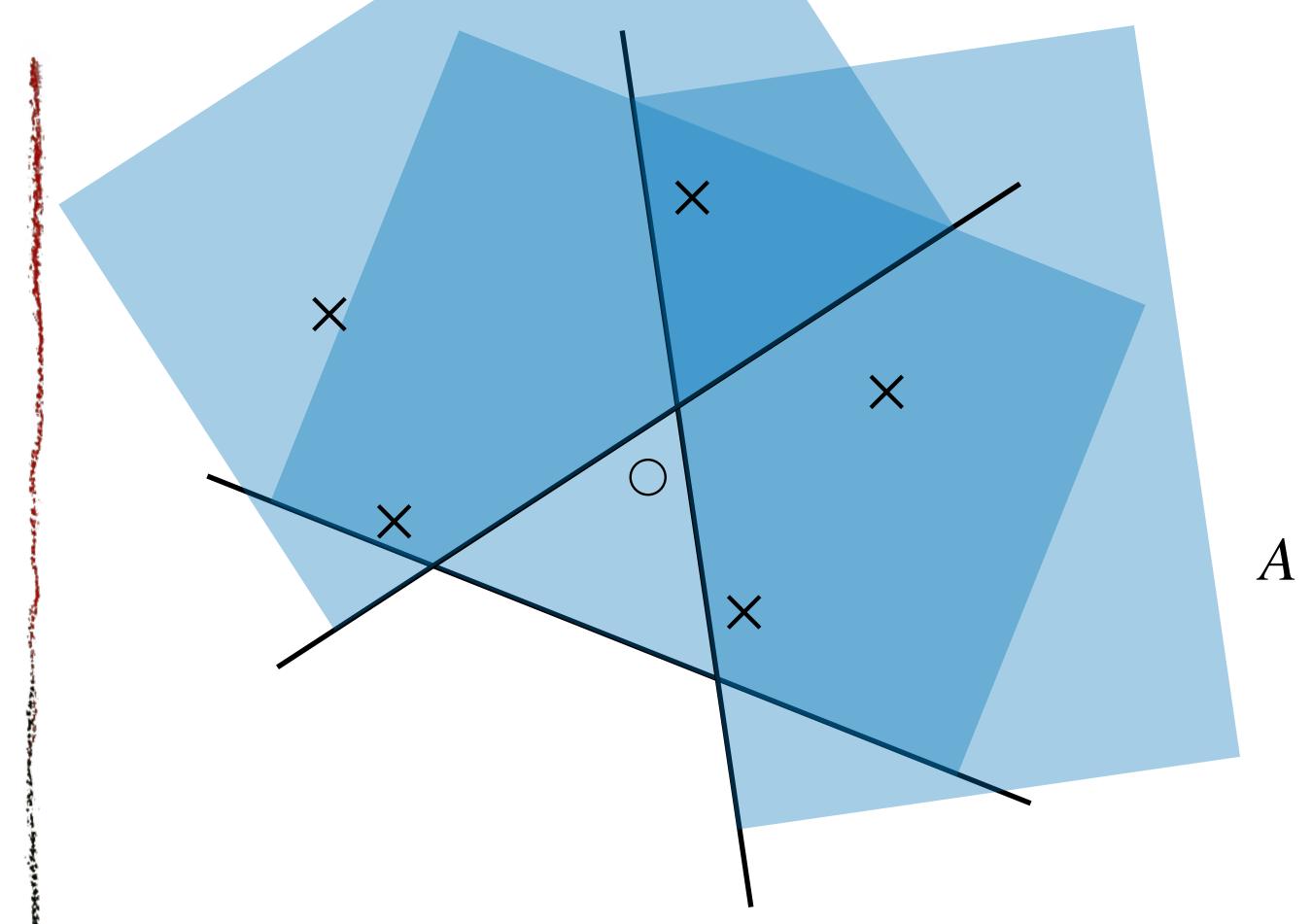
Classifiers as features



- Each column of A corresponds to a single classifier h_t (evaluated on all training examples $\mathbf{x}^{(i)}$)
- Each row of A corresponds to a single training example $\mathbf{x}^{(i)}$ (classified by all hypotheses h_t): $\mathbf{a}^{(i)} = (h_t(\mathbf{x}^{(i)}))_{t=1}^{|\mathcal{H}|}$

$|\mathcal{H}| = 3$

Classifiers as features



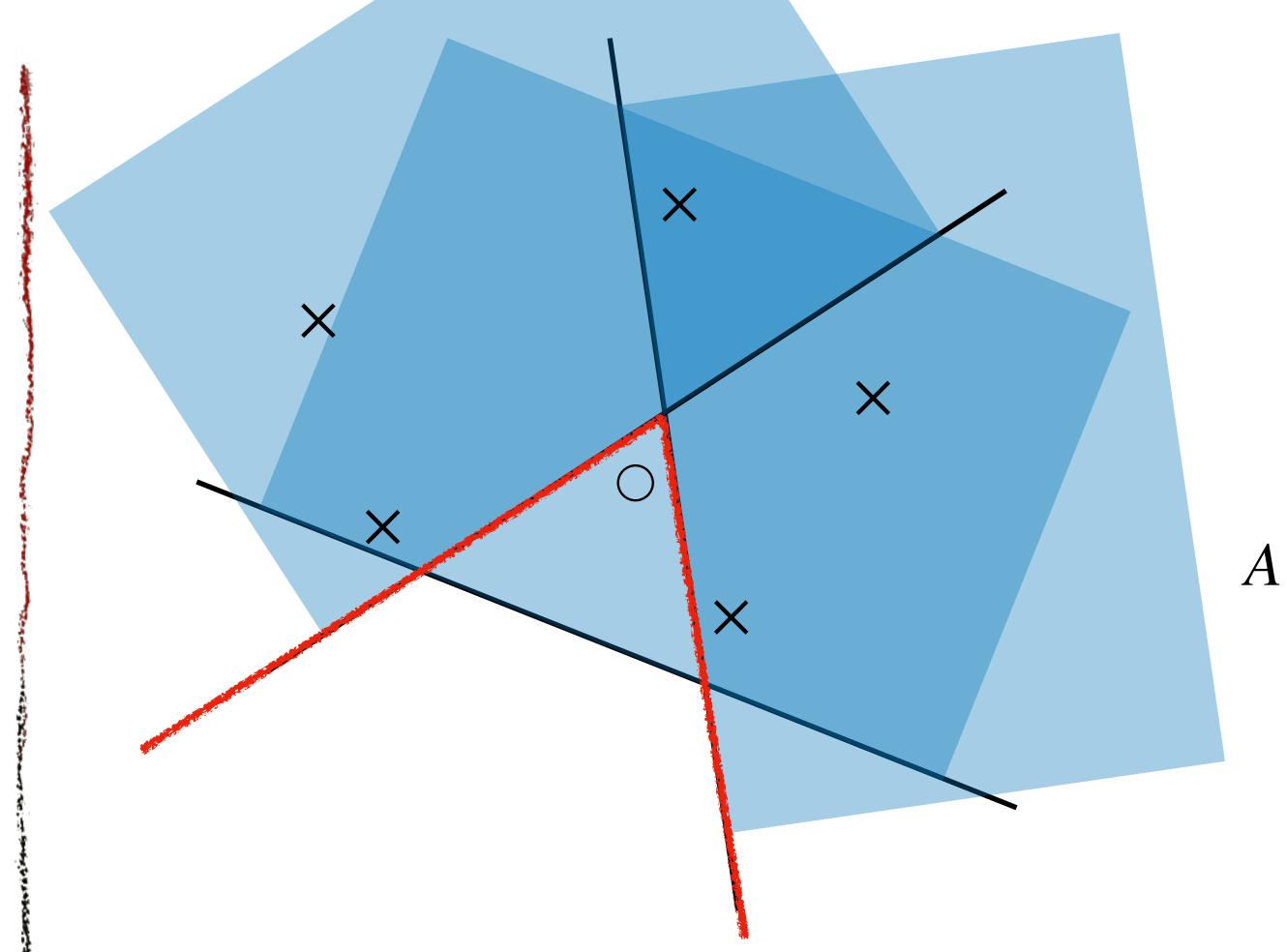
$$A = \begin{bmatrix} +1 & +1 & +1 \\ -1 & +1 & +1 \\ -1 & +1 & +1 \\ +1 & -1 & +1 \\ +1 & -1 & +1 \\ -1 & -1 & +1 \end{bmatrix}$$

• Vote $\sum_{t=1}^{|\mathcal{H}|} \alpha_t h_t(\mathbf{x})$ becomes a linear classifier $\alpha \cdot \mathbf{a}$ on top of the features \mathbf{a} (so, nonlinear in \mathbf{x})

$$\alpha = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad A\alpha = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$|\mathcal{H}| = 3$

Classifiers as features

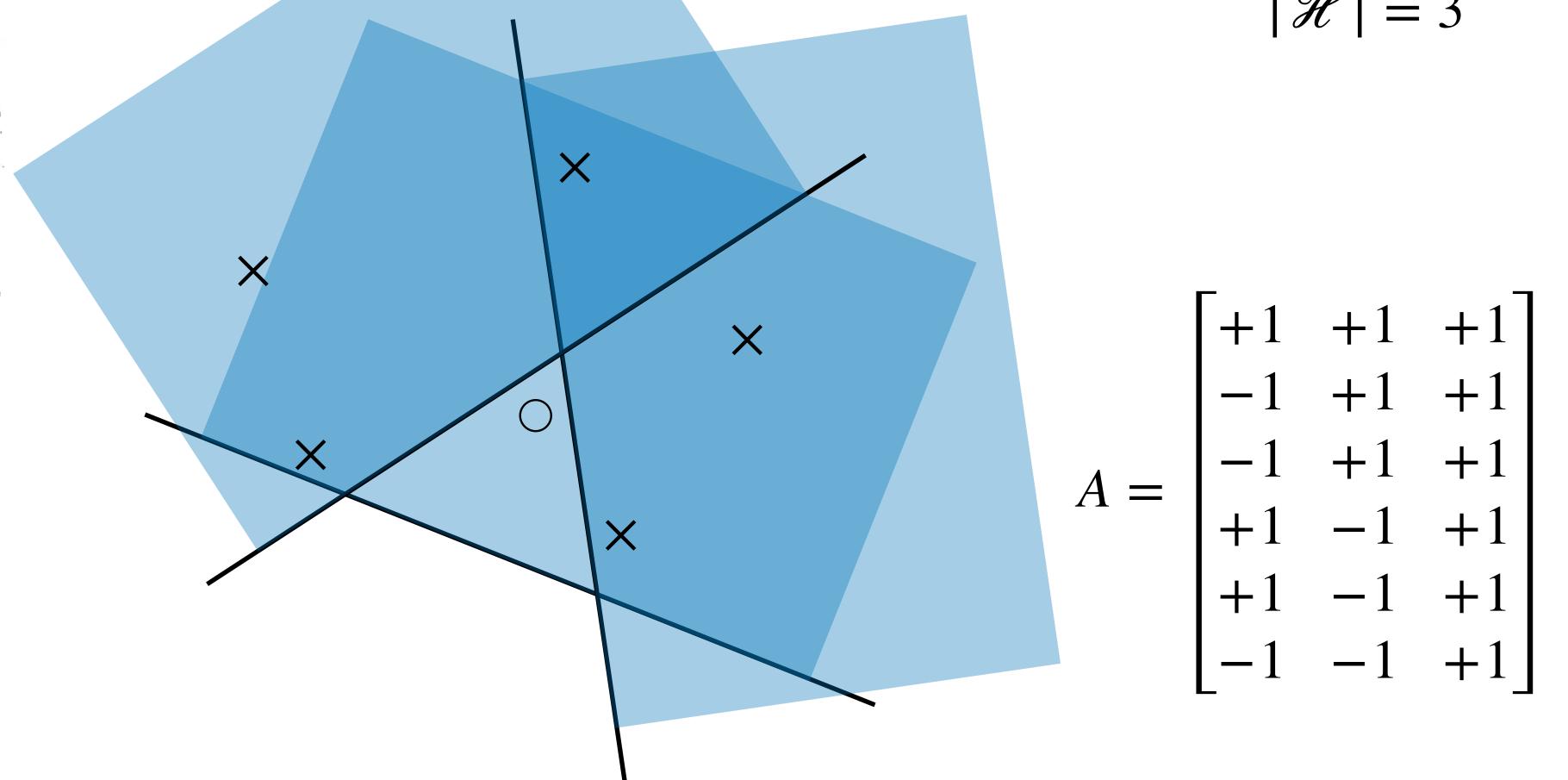


 $A = \begin{bmatrix} -1 & +1 & +1 \\ -1 & +1 & +1 \\ +1 & -1 & +1 \\ +1 & -1 & +1 \\ -1 & -1 & +1 \end{bmatrix}$

• Vote $\sum_{t=1}^{|\mathcal{H}|} \alpha_t h_t(\mathbf{x})$ becomes a linear classifier $\alpha \cdot \mathbf{a}$ on top of the features \mathbf{a} (so, nonlinear in \mathbf{x})

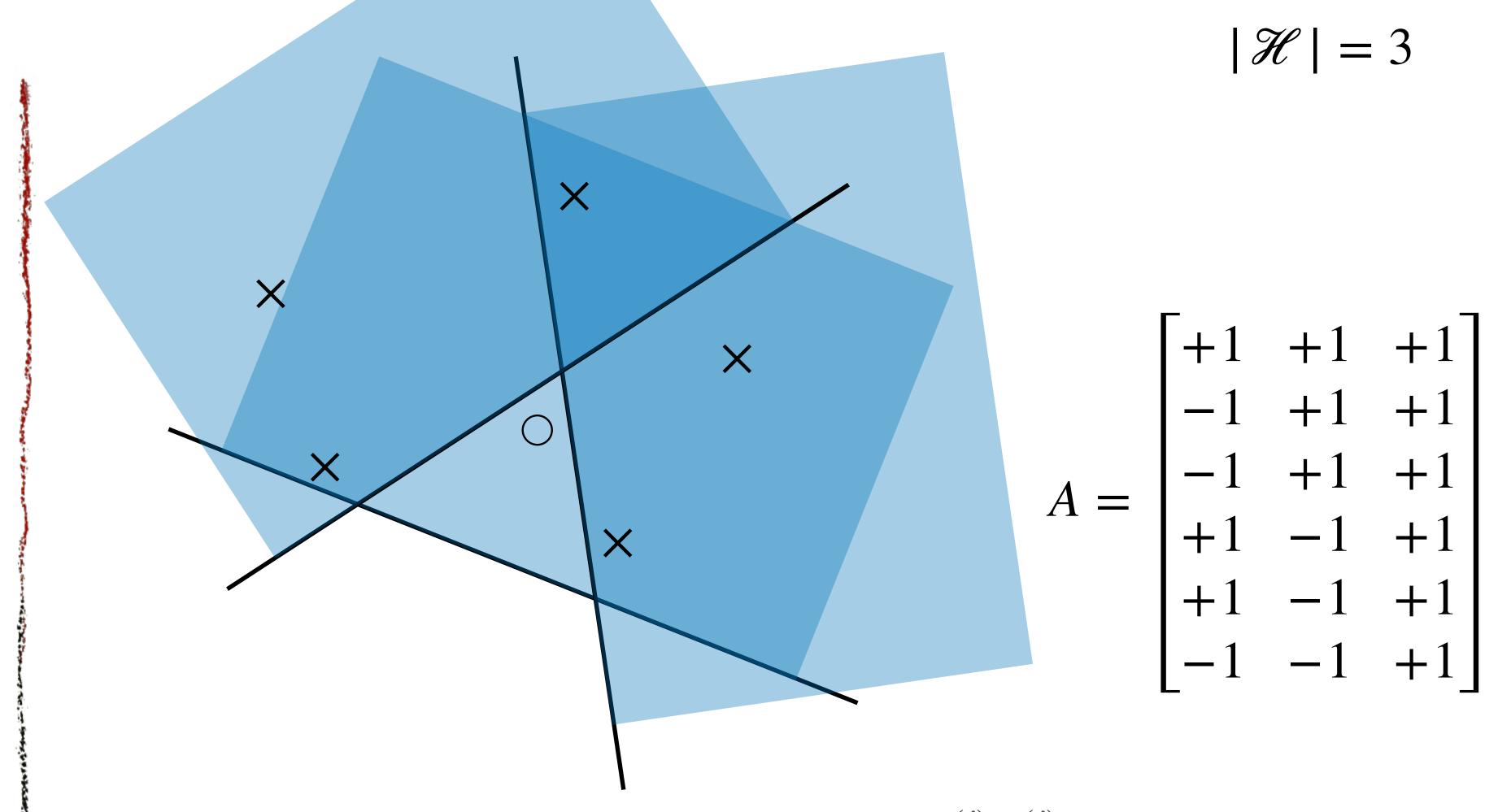
$$\alpha = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad A\alpha = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

What's the best vote weight α ?



- First try: perceptron algorithm
 - lacktriangle each time we're wrong on an example $\mathbf{x}^{(i)}$ (equivalently $\mathbf{a}^{(i)}$), add 1 to weights of classifiers that vote for the correct answer $y^{(i)}$, subtract 1 for those that don't

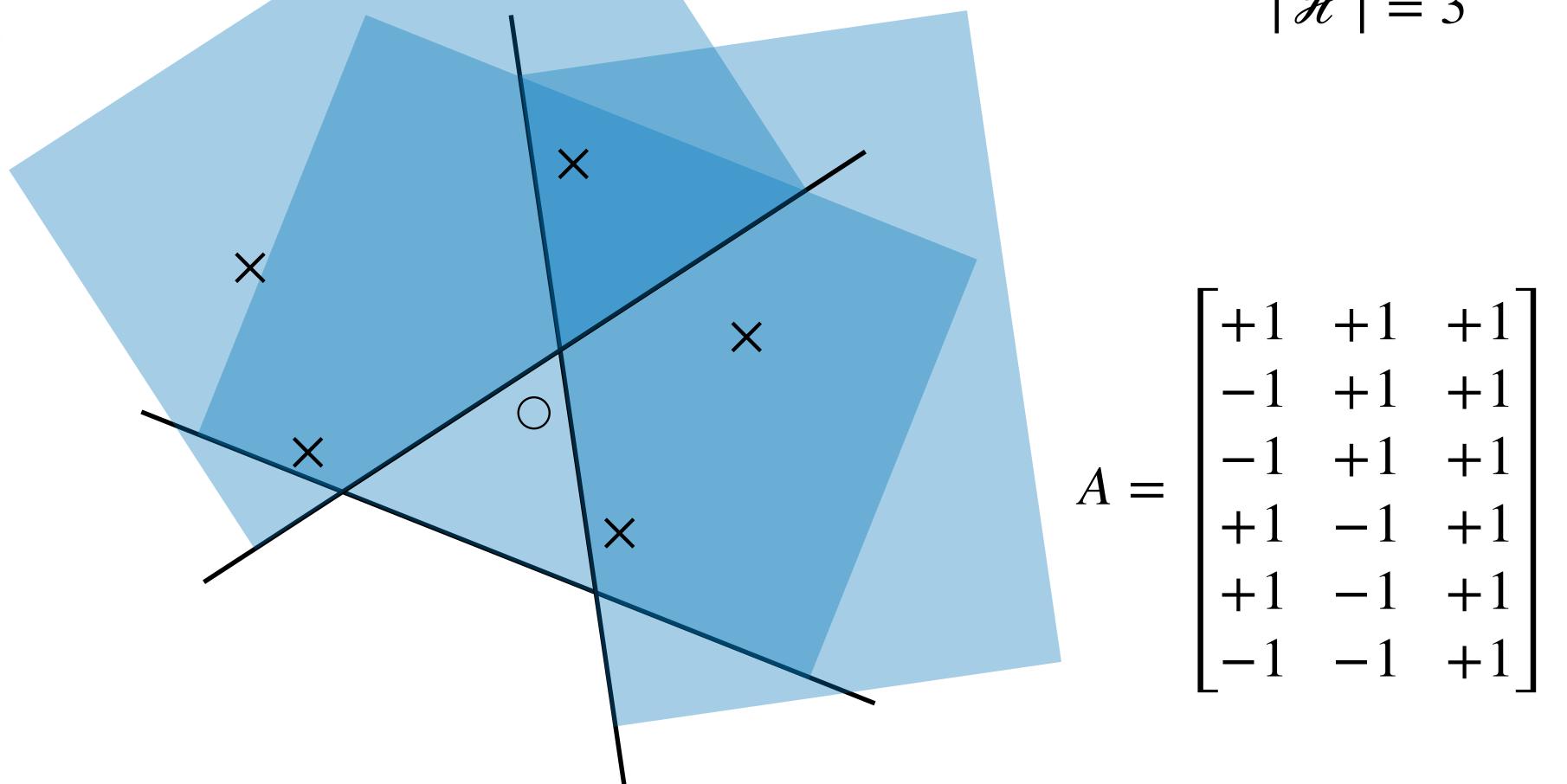
What's the best vote weight α?



- Pro: would try to get positive margin $y^{(i)}\mathbf{a}^{(i)} \cdot \boldsymbol{\alpha}$ for all i
 - ightharpoonup recall: positive margin ightharpoonup we get example i correct

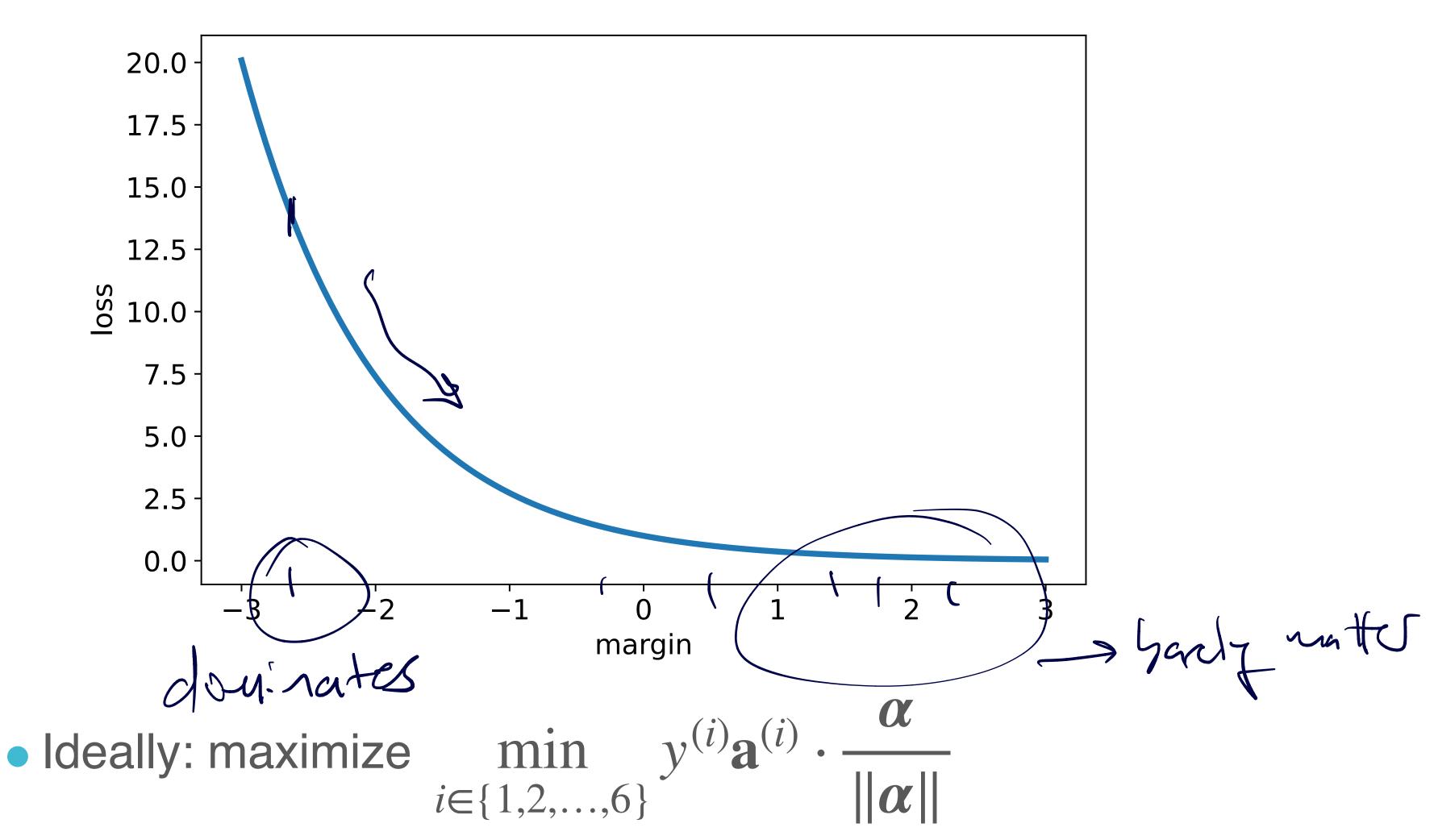
margin is in $\mathbb{R}^{|\mathcal{H}|}$ not \mathbb{R}^2

What's the best vote weight α ?



• Second try: optimize a loss that favors positive margin $y^{(i)}\mathbf{a}^{(i)}\cdot \pmb{\alpha}>0$ for all i

(Approximately) maximize smallest margin



- but this isn't convex
- Instead: minimize $L(\alpha) = \sum_{i=1}^{6} \exp(-y^{(i)}\mathbf{a}^{(i)} \cdot \alpha)$
 - most-negative margin dominates the sum

Coordinate descent

- Which optimizer should we use?
 - could use SGD, but same problems as perceptron
- Instead, use a simpler method that will scale better:
 coordinate descent
- While not converged

 - adjust its weight α_t to reduce loss

Weight update

C= Silver rate

E= error rate

Non

$$L(\alpha) = \sum_{i=1}^{N} \exp(-y^{(i)} \mathbf{a}^{(i)} \cdot \boldsymbol{\alpha})$$

$$\frac{d}{d\alpha_{i}} L = \sum_{i=1}^{N} \exp(-y^{(i)} \mathbf{a}^{(i)} \cdot \boldsymbol{\alpha}) \left(-y^{(i)} A_{i+}\right) = 0$$

$$\text{solve for } \Delta \alpha_{i} : \sum_{i=1}^{N} \exp(-y^{(i)} \mathbf{a}^{(i)} \cdot \boldsymbol{\alpha} + A_{i+} \Delta x_{i}) \left(-y^{(i)} A_{i+}\right)$$

$$Z = \sum_{i=1}^{N} \exp(-y^{(i)} \mathbf{a}^{(i)} \cdot \boldsymbol{\alpha}) \quad \omega^{(i)} = \exp(y^{(i)} \mathbf{a}^{(i)} \cdot \boldsymbol{\alpha}) / 2$$

$$\sum_{i=1}^{N} \omega^{(i)} = y^{(i)} A_{i+} \Delta \alpha_{i} \quad (-y^{(i)} A_{i+}) = 0$$

$$\sum_{i=1}^{N} \omega^{(i)} = \Delta^{N} \quad + \sum_{i=1}^{N} \omega^{(i)} = \Delta^{N} \quad + \sum_{i=1}$$

- ullet normalize, split by $y_i A_{it}$, define weighted error rate ϵ
- \bullet consider updating $\alpha_t \rightarrow \alpha_t + \Delta \alpha_{\rm L}$

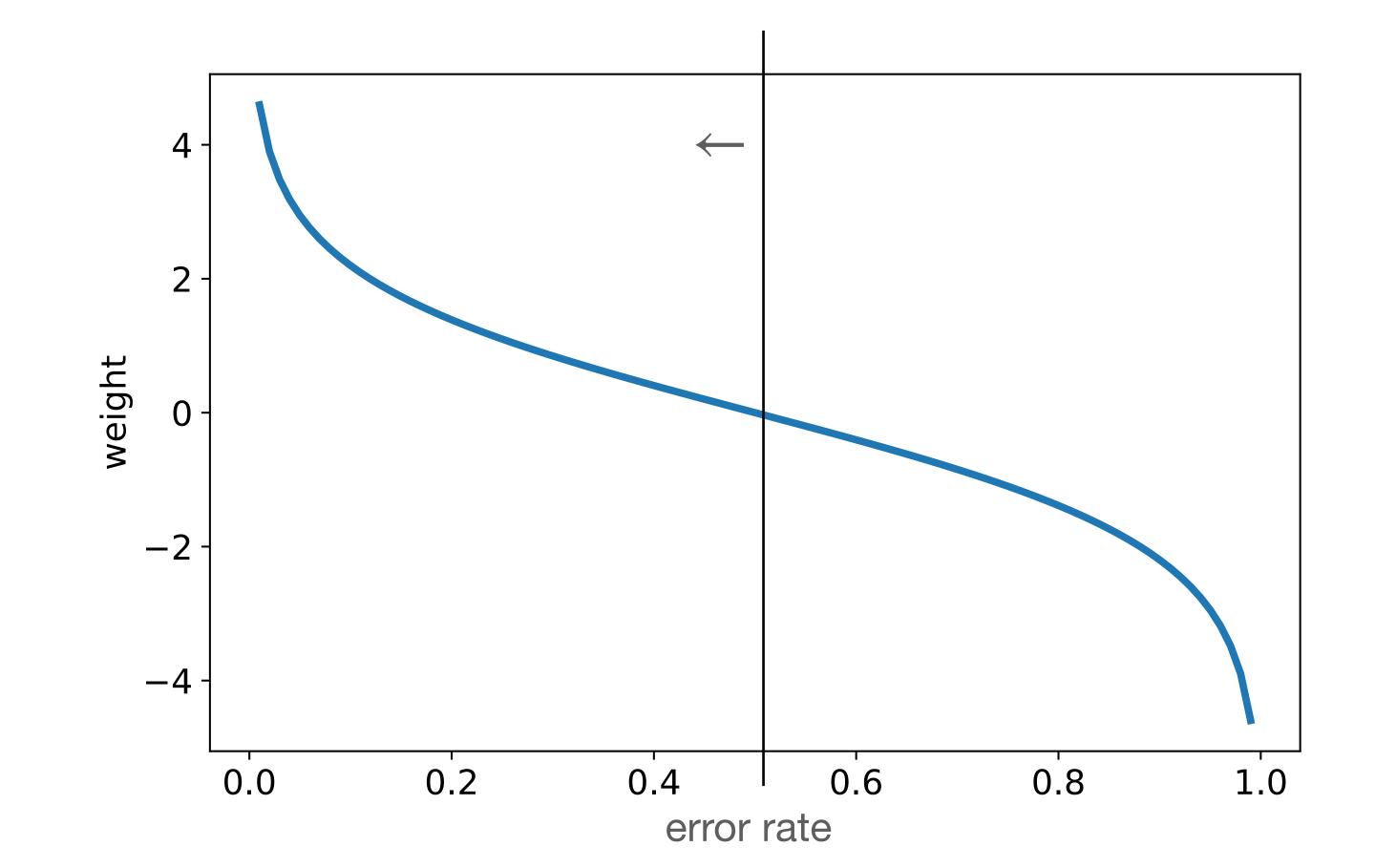
Weight update

$$0 = (1 - \epsilon)e^{-\Delta\alpha_{t}} + \epsilon e^{\Delta\alpha_{t}}$$

$$(1 - \epsilon)e^{-\Delta\alpha_{t}} = e^{2\Delta\alpha_{t}}$$

$$= e^{2\Delta\alpha_{t}}$$

Effect of update



$$\Delta \alpha = \frac{1}{2} \ln \frac{1-\epsilon}{\epsilon}$$
: this is positive, increases as $\epsilon \to 0$

$$\omega_i \leftarrow \omega_i \cdot \begin{cases} e^{-\Delta \alpha}/Z & \text{if } y^{(i)} = h_t(\mathbf{x}^{(i)}) \\ e^{\Delta \alpha}/Z & \text{o/w} \end{cases}$$

→ upweight mistakes

Which coordinate?

- Which coordinate h_t should we pick to update?
- ullet Better weighted error ullet bigger update, bigger decrease in L
 - best h_t = lowest error
 - ▶ OK to pick any h_t with error $\leq \frac{1}{2}$ const

Poll question 1

- ullet Suppose we have two weak hypotheses, h and h'
 - ► *h* is 95% accurate
 - h' is 5% accurate (!)
- How do their weights compare?
 - A. Same magnitude, same sign ——

- B. Same magnitude, opposite sign
- C. Different magnitude, same sign
- D. Different magnitude, opposite sign

Infinite **H**

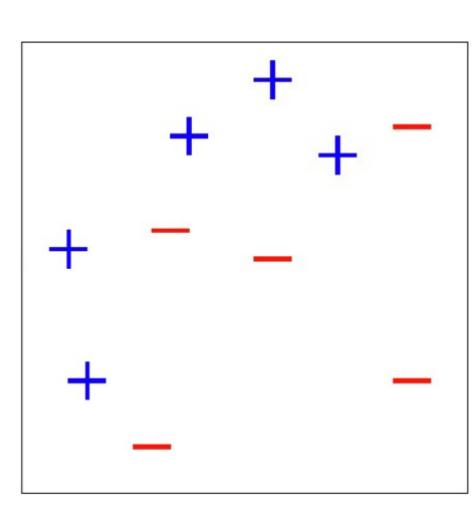
- ullet Our algorithm doesn't depend on $|\mathcal{H}|$ any more!
 - lacktriangleright only way we access ${\mathscr H}$ is to pick h_t with low error
 - ► this is a weighted classification problem → we have plenty of ML methods to solve it
 - once we have h_t , finding α_t is a 1-D minimization problem, fast/easy to solve exactly
- \bullet Only code change needed is to train a classifier (the weak learner) instead of looking at each element of ${\mathcal H}$ to find a good one
- Called AdaBoost

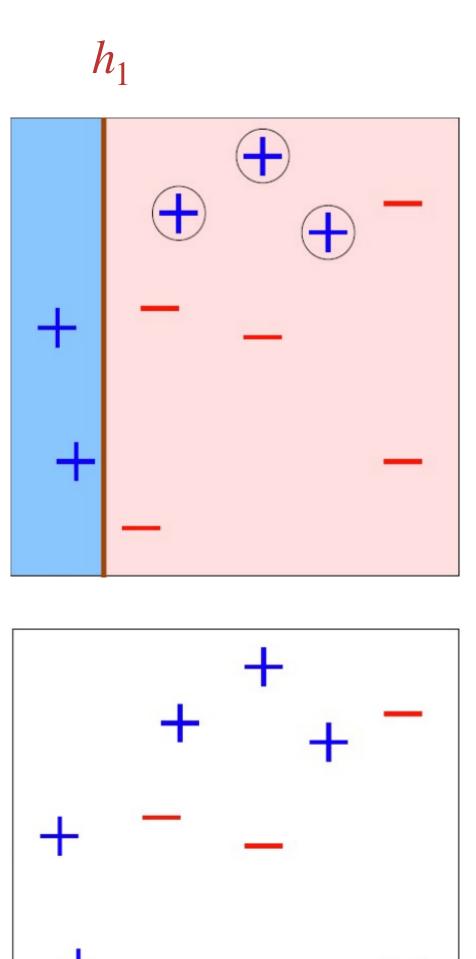
AdaBoost summary

- Input: number of rounds T, dataset $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^N$
- Initialize datapoint weights $\omega_0^{(i)} = \frac{1}{N}$ for all i
- For t = 1, ..., T:
 - Train a weak learner h_t by minimizing weighted training error on \mathscr{D} (weights $\omega_{t-1}^{(i)}$)
 - Find weighted training error of h_t : $\epsilon_t = \sum_{i=1}^N \omega_{t-1}^{(i)} \mathbb{I}(y^{(i)} \neq h_t(\mathbf{x}^{(i)}))$
 - Compute the vote weight of h_t : $\alpha_t = \frac{1}{2} \ln \frac{1 \epsilon_t}{\epsilon_t}$
 - Update datapoint weights:

$$\omega_t^{(i)} = \frac{\omega_{t-1}^{(i)}}{Z_t} \cdot \begin{cases} e^{-\alpha_t} & y^{(i)} = h_t(\mathbf{x}^{(i)}) \\ e^{\alpha_t} & \text{o/w} \end{cases}$$
 (Z_t is normalizer)

• Return: weighted vote classifier $\hat{y} = \mathrm{sign}\left(\sum_{t=1}^T \alpha_t h_t(\mathbf{x})\right)$





$$e_{1} = 0.3$$

$$\alpha_{1} = 0.42$$

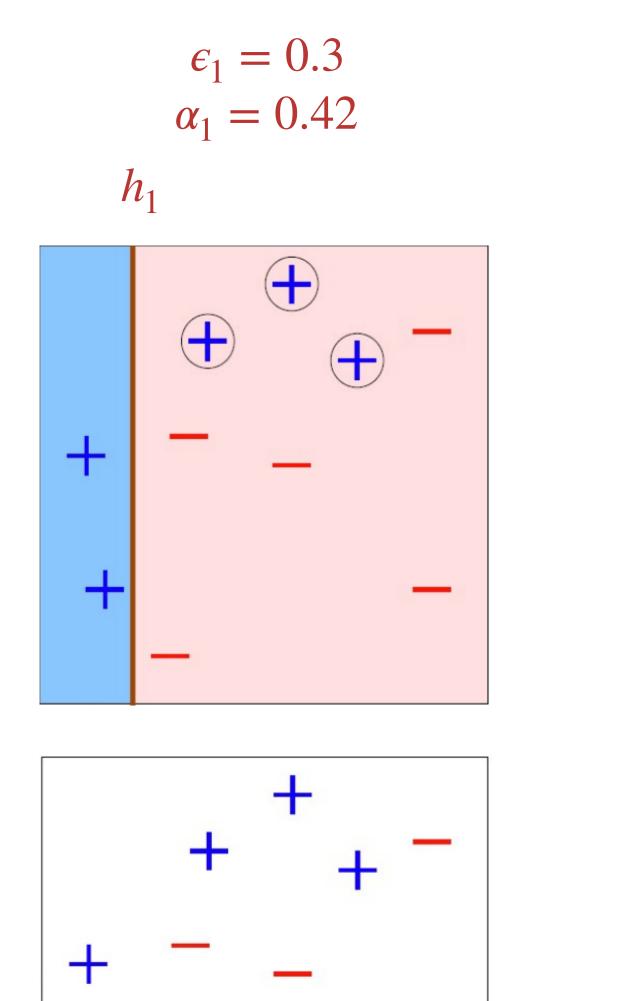
$$h_{1}$$

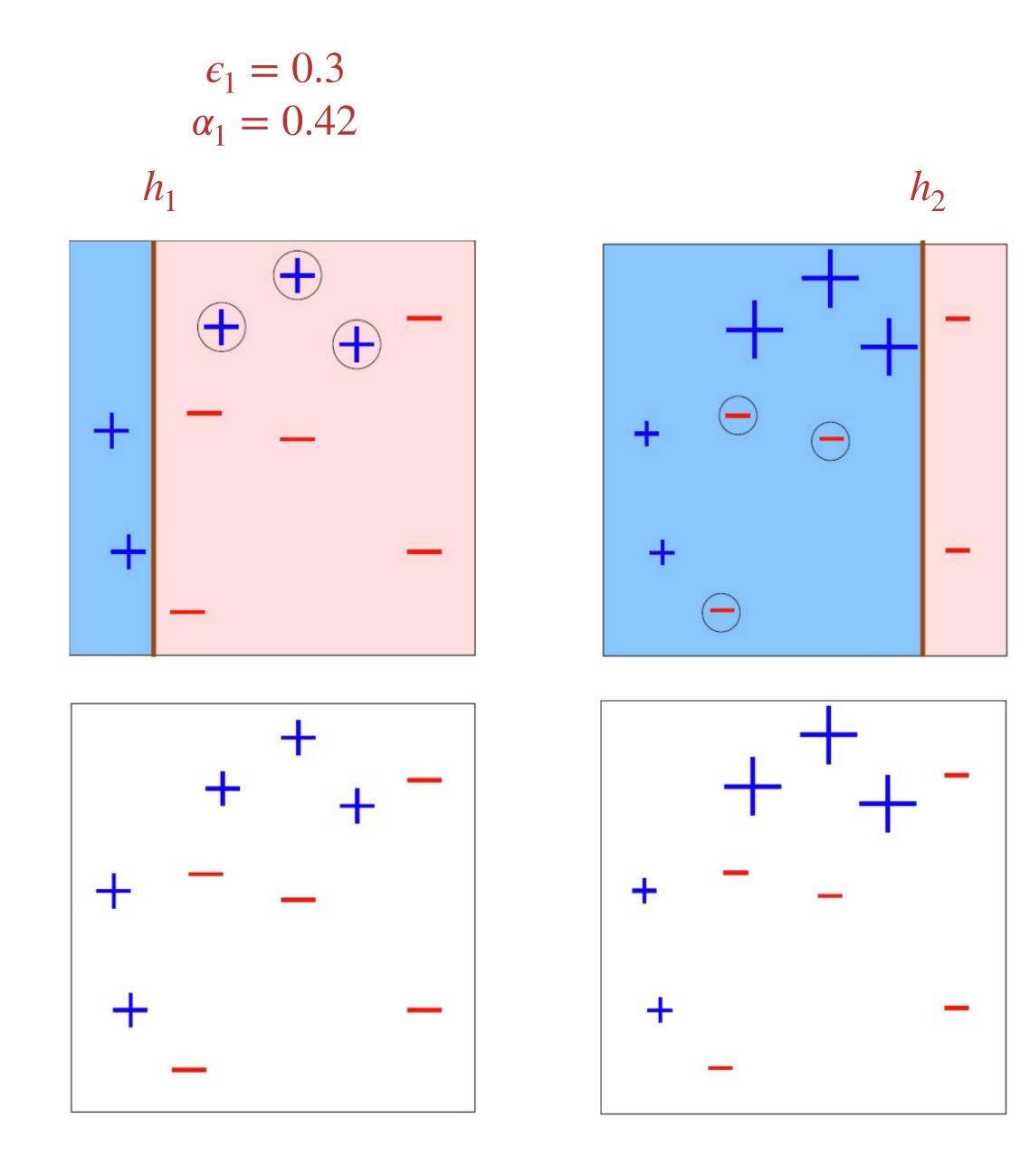
$$+ - -$$

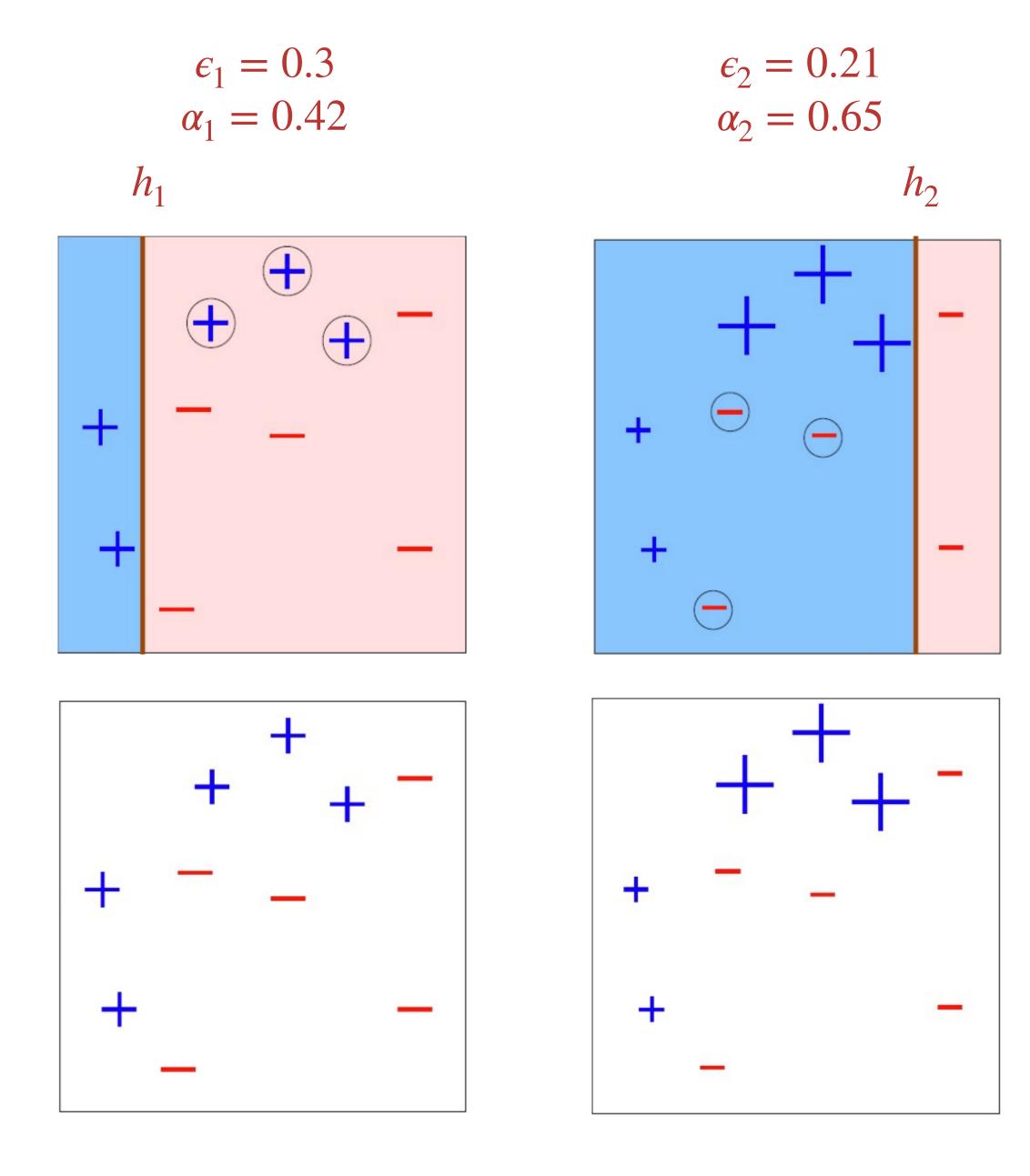
$$+ - -$$

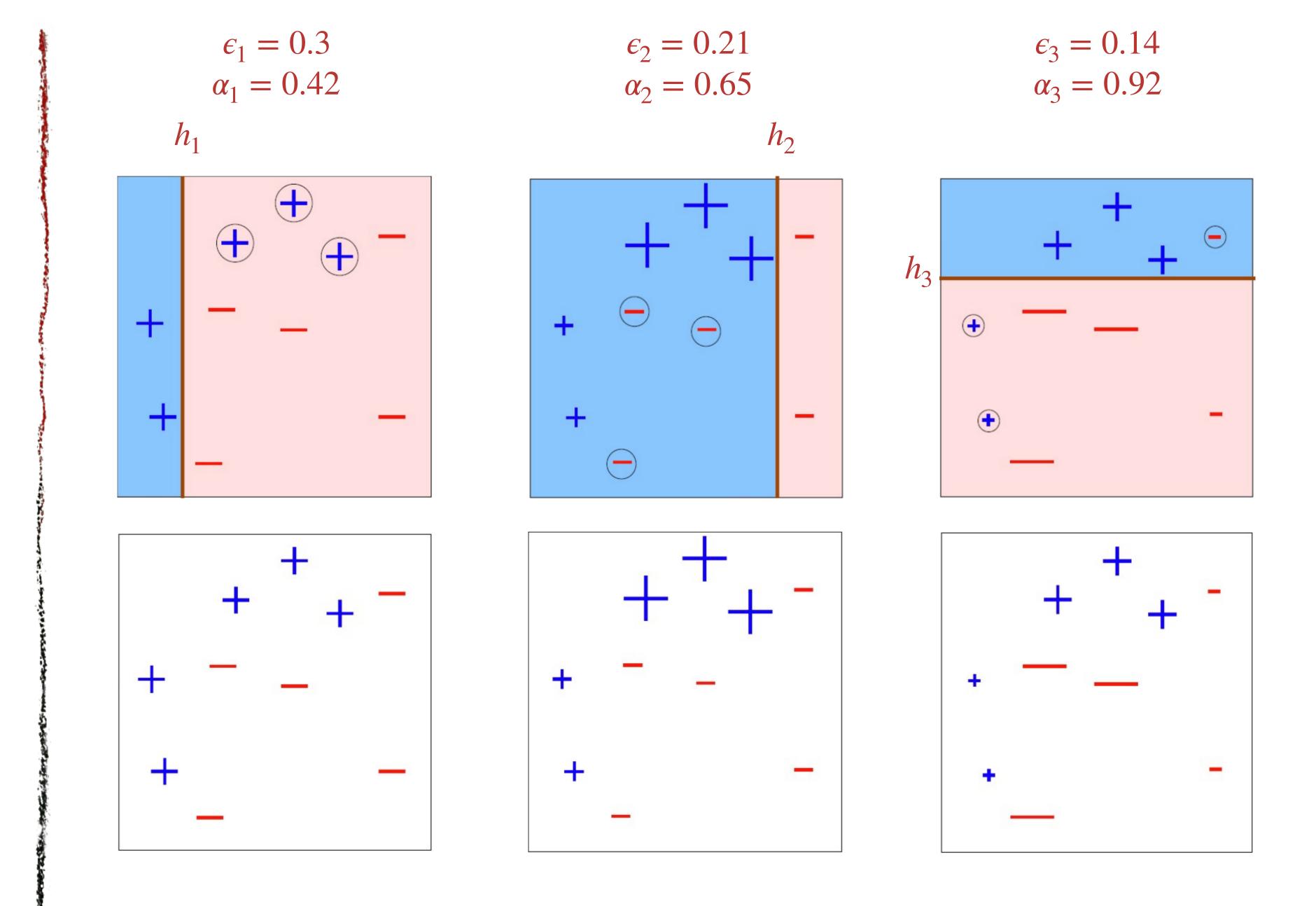
$$+ - -$$

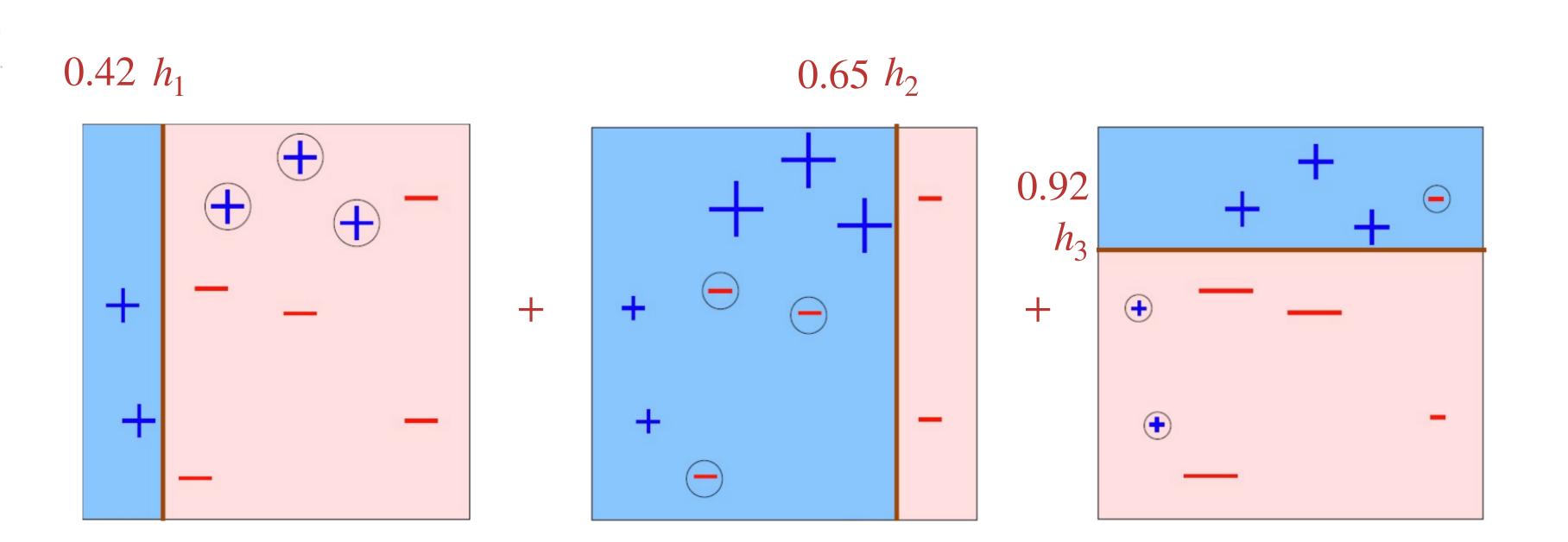
$$+ - -$$

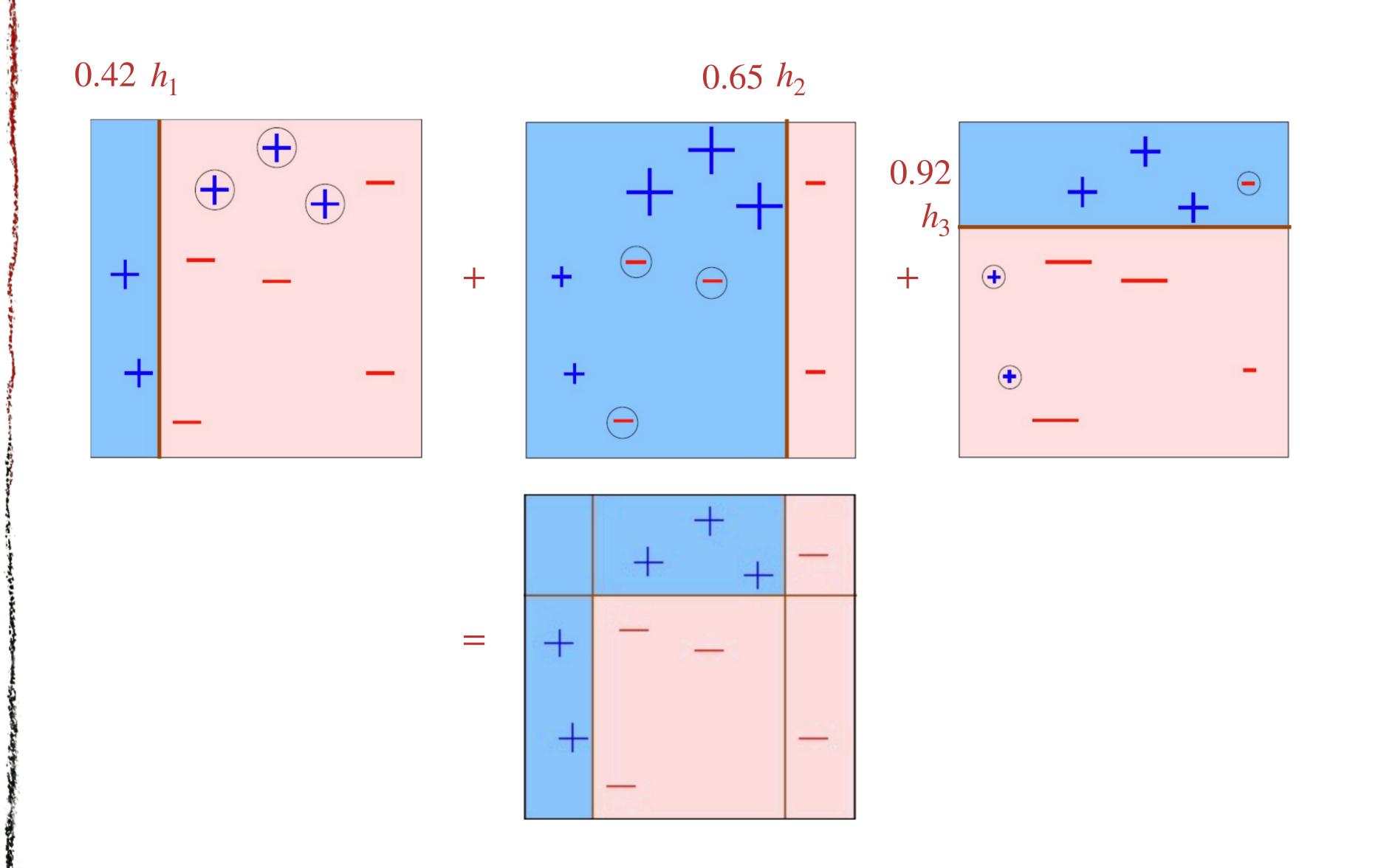




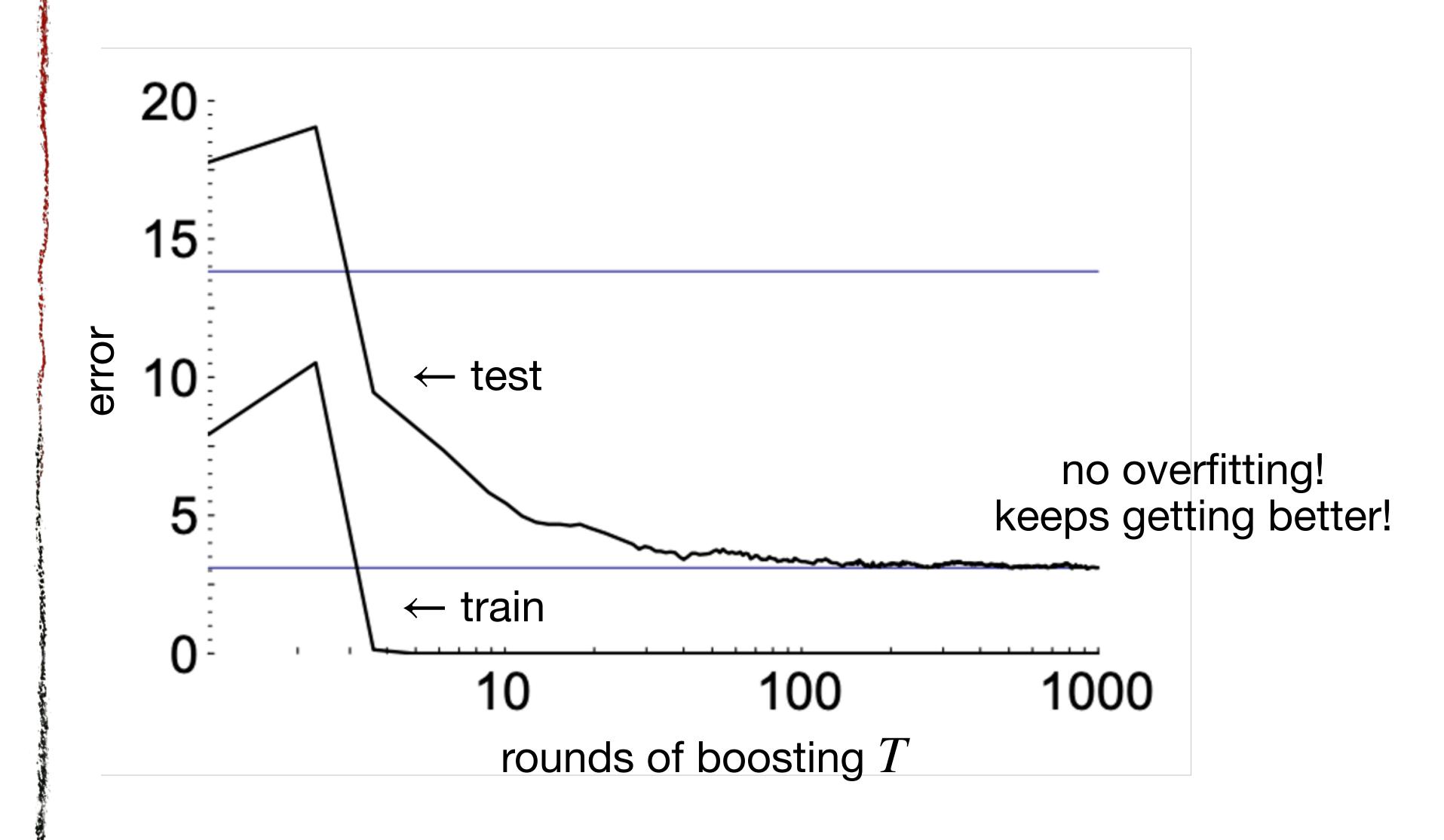








Another AdaBoost example



Source: http://rob.schapire.net/papers/msri.pdf

AdaBoost analysis

- ullet Suppose we fix ${\mathcal H}$ and train until all margins are positive
- With probability $1-\delta$,

true *error* of final vote
$$\leq$$
 boosting $loss + O\left(\frac{A + \sqrt{\ln 1/\delta}}{\sqrt{N}}\right)$ where A bounds weights: $\sum_t \alpha_t \leq A$

- Constant in big-O depends on complexity of hypothesis class of weak learners
 - bound *increases* with lower failure probability δ , higher loss, bigger weights, more complex weak learners
 - \blacktriangleright bound *decreases* with bigger training set N
 - ightharpoonup no dependence on number of rounds T

[Bartlett & Mendelson 2002, Thm 7, Thm 12] — they actually prove something stronger, and many extensions

Boosting vs. bagging

- Both boosting and bagging learn a vote over an ensemble of hypotheses from base hypothesis class
- But their purpose is different:
 - bagging tries to capture uncertainty (posterior over classifiers, predictive distribution) without necessarily beating the base hypothesis class
 - boosting tries to beat the base hypothesis class (weak learners), doesn't help much with estimating uncertainty since votes tend to be lopsided
 - bagging is easy to use for multi-class and regression; boosting was designed for binary classification (though generalizations have been proposed)

Boosting vs. bagging

- And their behavior is different
 - many small trees / weak hypotheses (boosting) vs. fewer large trees / stronger hypotheses (bagging)
 - fit different parts of target concept (boosting) vs. all of it (bagging)
 - limits overfitting by maximizing minimum margin (boosting) vs. by randomization and averaging (bagging)

Learning objectives: boosting

- \bullet Explain how to construct a feature matrix where each column corresponds to a classifier h_t
- Explain how a vote over linear classifiers can lead to a nonlinear decision boundary
- Implement and explain AdaBoost
 - ightharpoonup how $e^{-{
 m margin}}$ loss function approximately maximizes minimum margin
 - what is coordinate descent
 - repeated calls to weak learner with weighted dataset
- Explain the generalization bound for AdaBoost

Learning objectives: bagging

- Distinguish between bagging, column subsampling, and random forests
- Implement bagging for an arbitrary base learner
- Implement column subsampling for an arbitrary base learner (classifier or regressor)
- Implement random forests
- Contrast out-of-bag error with cross-validation error
- Differentiate boosting from bagging
- Compare weighted and unweighted votes of classifiers