

10-301/10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Machine Learning as Function Approximation

Matt Gormley
Lecture 2
Jan. 14, 2026

Reminders

- **Homework 1: Background**
 - **Out: Mon, Jan 12**
 - **Due: Wed, Jan 21 at 11:59pm**
 - Two parts:
 1. written part to Gradescope
 2. programming part to Gradescope
 - **unique policies for this assignment:**
 1. **unlimited submissions** for programming (i.e. keep submitting until you get 100%)
 2. for Slot A submissions (human only – no AI use!), we will grant any reasonable extension requests (helps with late adds), but you must request one; and it must be in before we finish grading

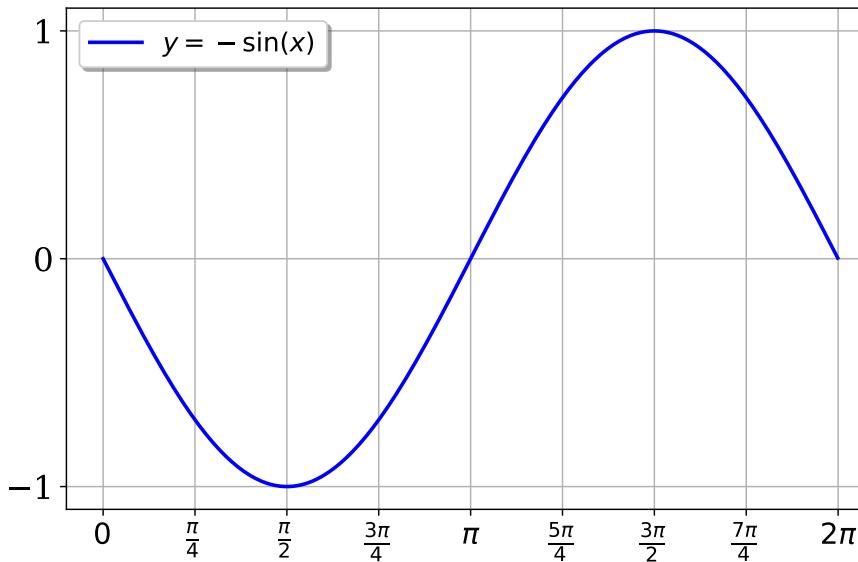
Big Ideas

1. How to formalize a learning problem
2. How to learn an expert system (i.e. Decision Tree)
3. Importance of inductive bias for generalization
4. Overfitting

FUNCTION APPROXIMATION

Function Approximation

Quiz: Implement a simple function which returns $-\sin(x)$.



A few constraints are imposed:

1. You can't call any other trigonometric functions
2. You can call an existing implementation of $\sin(x)$ a few times (e.g. 100) to test your solution
3. You only need to evaluate it for x in $[0, 2\pi]$

SUPERVISED MACHINE LEARNING

Medical Diagnosis

- Setting:
 - Doctor must decide whether or not patient is sick
 - Looks at attributes of a patient to make a medical diagnosis
 - (Prescribes treatment if diagnosis is positive)
- Key problem area for Machine Learning
- Potential to reshape health care

Medical Diagnosis

Interview Transcript

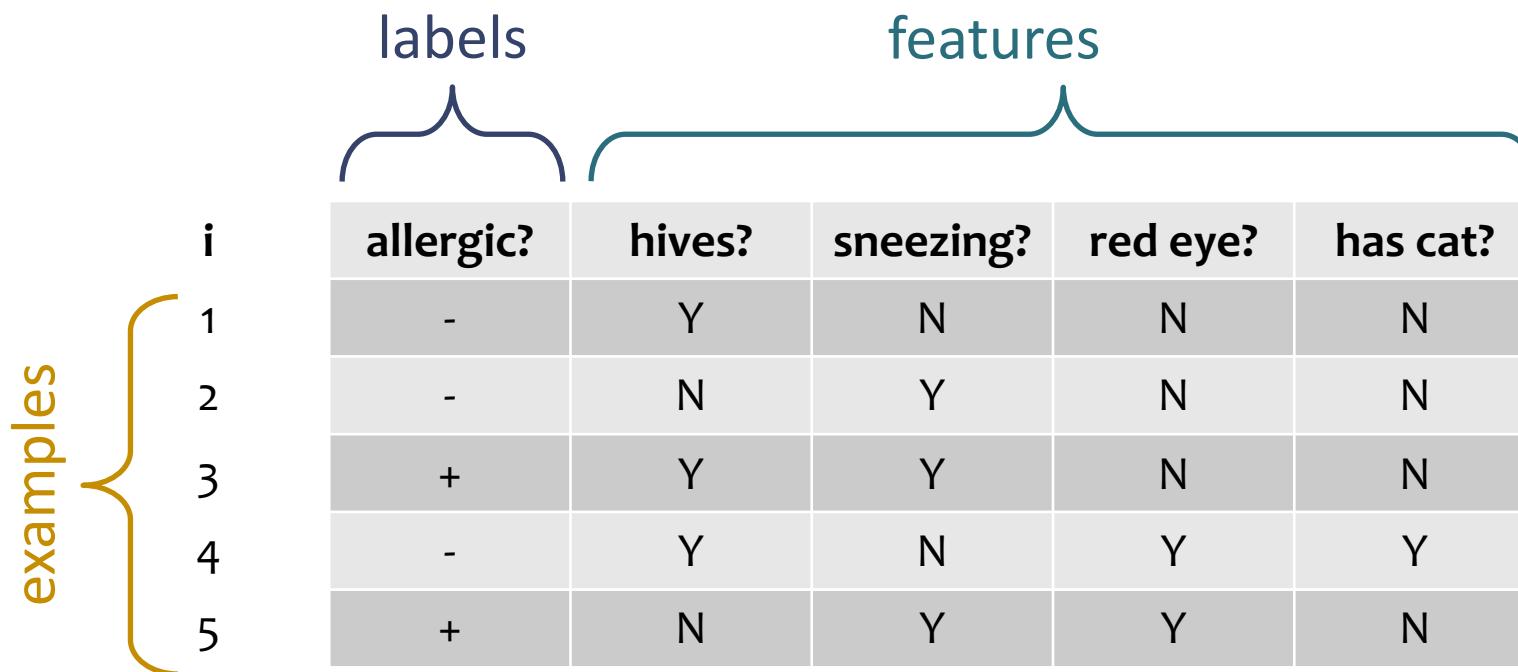
Date: Jan. 15, 2023

Parties: Matt Gormley and Doctor S.

Topic: Medical decision making

Medical Diagnosis Dataset

As a (supervised) binary classification task



i	labels		features		
	allergic?	hives?	sneezing?	red eye?	has cat?
1	-	Y	N	N	N
2	-	N	Y	N	N
3	+	Y	Y	N	N
4	-	Y	N	Y	Y
5	+	N	Y	Y	N

Medical Diagnosis Dataset

As a (supervised) binary classification task

Diagram illustrating a Medical Diagnosis Dataset as a supervised binary classification task. The dataset is represented as a table with 5 examples (rows) and 6 columns (features and labels).

The columns are labeled as follows:

- labels: allergic?
- features: hives?, sneezing?, red eye?, has cat?

The rows are labeled as examples (i), with i ranging from 1 to 5.

i	allergic?	hives?	sneezing?	red eye?	has cat?
1	-	Y	N	N	N
2	-	N	Y	N	N
3	+	Y	Y	N	N
4	-	Y	N	Y	Y
5	+	N	Y	Y	N

Medical Diagnosis Dataset

As a (supervised) binary classification task

labels

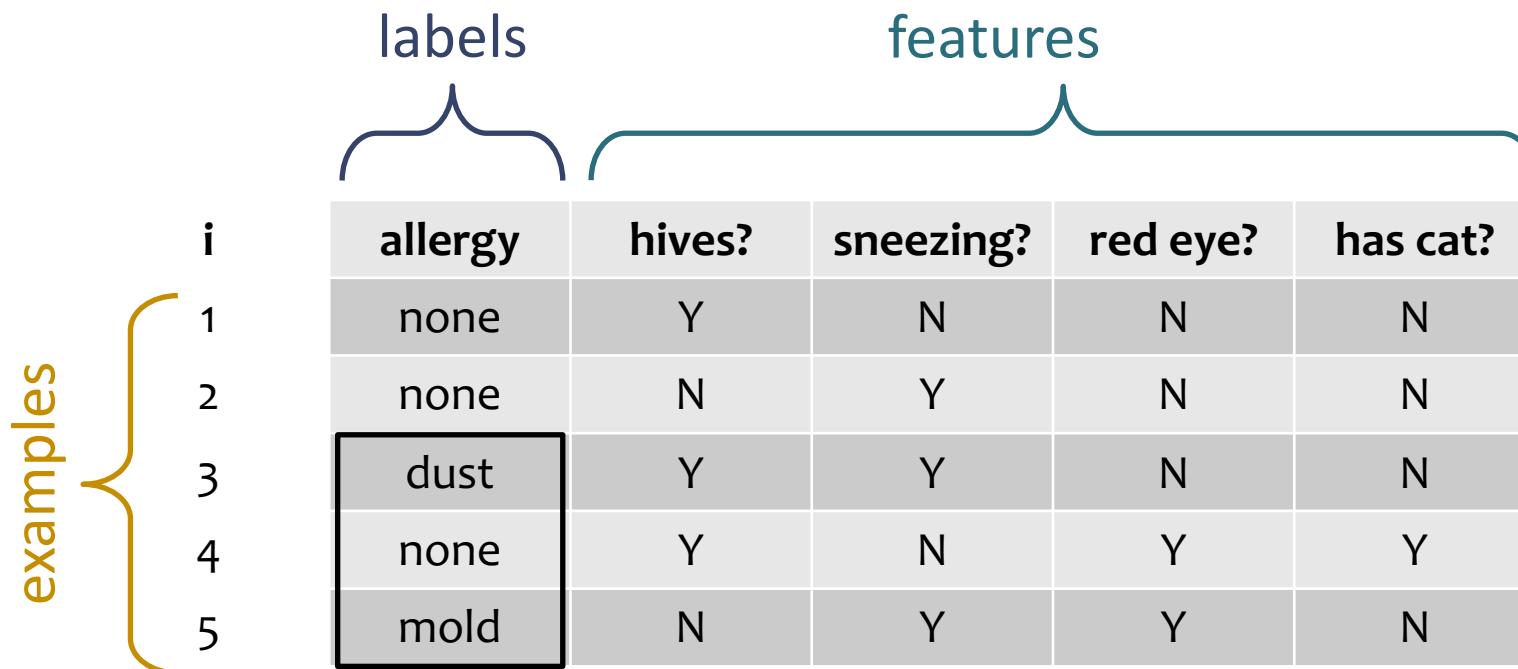
features

examples

i	allergic?	hives?	sneezing?	red eye?	has cat?
1	-	Y	N	N	N
2	-	N	Y	N	N
3	+	Y	Y	N	N
4	-	Y	N	Y	Y
5	+	N	Y	Y	N

Medical Diagnosis Dataset

As a (supervised) classification task



i	allergy	hives?	sneezing?	red eye?	has cat?
1	none	Y	N	N	N
2	none	N	Y	N	N
3	dust	Y	Y	N	N
4	none	Y	N	Y	Y
5	mold	N	Y	Y	N

Medical Diagnosis Dataset

As a (supervised)
output

regression task

The diagram illustrates a medical diagnosis dataset. It features a vertical column of indices labeled 'i' (1, 2, 3, 4, 5) on the left, a horizontal row of 'examples' at the bottom, and a horizontal row of 'features' at the top. A bracket labeled 'examples' spans the indices, and a bracket labeled 'features' spans the 'hives?', 'sneezing?', 'red eye?', and 'has cat?' columns. A bracket labeled 'output' spans the 'treatment' and 'cost' columns. The 'treatment' and 'cost' columns are grouped together and labeled 'output'.

i	treatment	cost	hives?	sneezing?	red eye?	has cat?
1		\$10	Y	N	N	N
2		\$25	N	Y	N	N
3		\$1000	Y	Y	N	N
4		\$25	Y	N	Y	Y
5		\$2000	N	Y	Y	N

Medical Diagnosis Dataset

As a (supervised) binary classification task

Diagram illustrating the structure of a medical diagnosis dataset as a supervised binary classification task. The dataset is represented as a table with 5 examples (rows) and 6 columns (features and labels).

The columns are labeled as follows:

- labels (top row, spanning columns 1-2)
- features (top row, spanning columns 3-6)
- i (index column, spanning rows 1-2)

A yellow bracket on the left is labeled "examples" and spans the rows 1-5.

i	allergic?	hives?	sneezing?	red eye?	has cat?
1	-	Y	N	N	N
2	-	N	Y	N	N
3	+	Y	Y	N	N
4	-	Y	N	Y	Y
5	+	N	Y	Y	N

Medical Diagnosis Dataset

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$
based on attributes of the patient x_1, x_2, \dots, x_M

	y	x_1	x_2	x_3	x_4
i	allergic?	hives?	sneezing?	red eye?	has cat?
1	-	Y	N	N	N

Medical Diagnosis Dataset

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$
based on attributes of the patient x_1, x_2, \dots, x_M

	y	x_1	x_2	x_3	x_4
i	allergic?	hives?	sneezing?	red eye?	has cat?
1	-	Y	N	N	N
2	-	N	Y	N	N
3	+	Y	Y	N	N
4	-	Y	N	Y	Y
5	+	N	Y	Y	N

Medical Diagnosis Dataset

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$
based on attributes of the patient x_1, x_2, \dots, x_M

	y	x_1	x_2	x_3	x_4
i	allergic?	hives?	sneezing?	red eye?	has cat?
1	$y^{(1)}$ -	$x_1^{(1)}$ Y	$x_2^{(1)}$ N	$x_3^{(1)}$ N	$x_4^{(1)}$ N
2	$y^{(2)}$ -	$x_1^{(2)}$ N	$x_2^{(2)}$ Y	$x_3^{(2)}$ N	$x_4^{(2)}$ N
3	$y^{(3)}$ +	$x_1^{(3)}$ Y	$x_2^{(3)}$ Y	$x_3^{(3)}$ N	$x_4^{(3)}$ N
4	$y^{(4)}$ -	$x_1^{(4)}$ Y	$x_2^{(4)}$ N	$x_3^{(4)}$ Y	$x_4^{(4)}$ Y
5	$y^{(5)}$ +	$x_1^{(5)}$ N	$x_2^{(5)}$ Y	$x_3^{(5)}$ Y	$x_4^{(5)}$ N

Medical Diagnosis Dataset

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$
based on attributes of the patient x_1, x_2, \dots, x_M

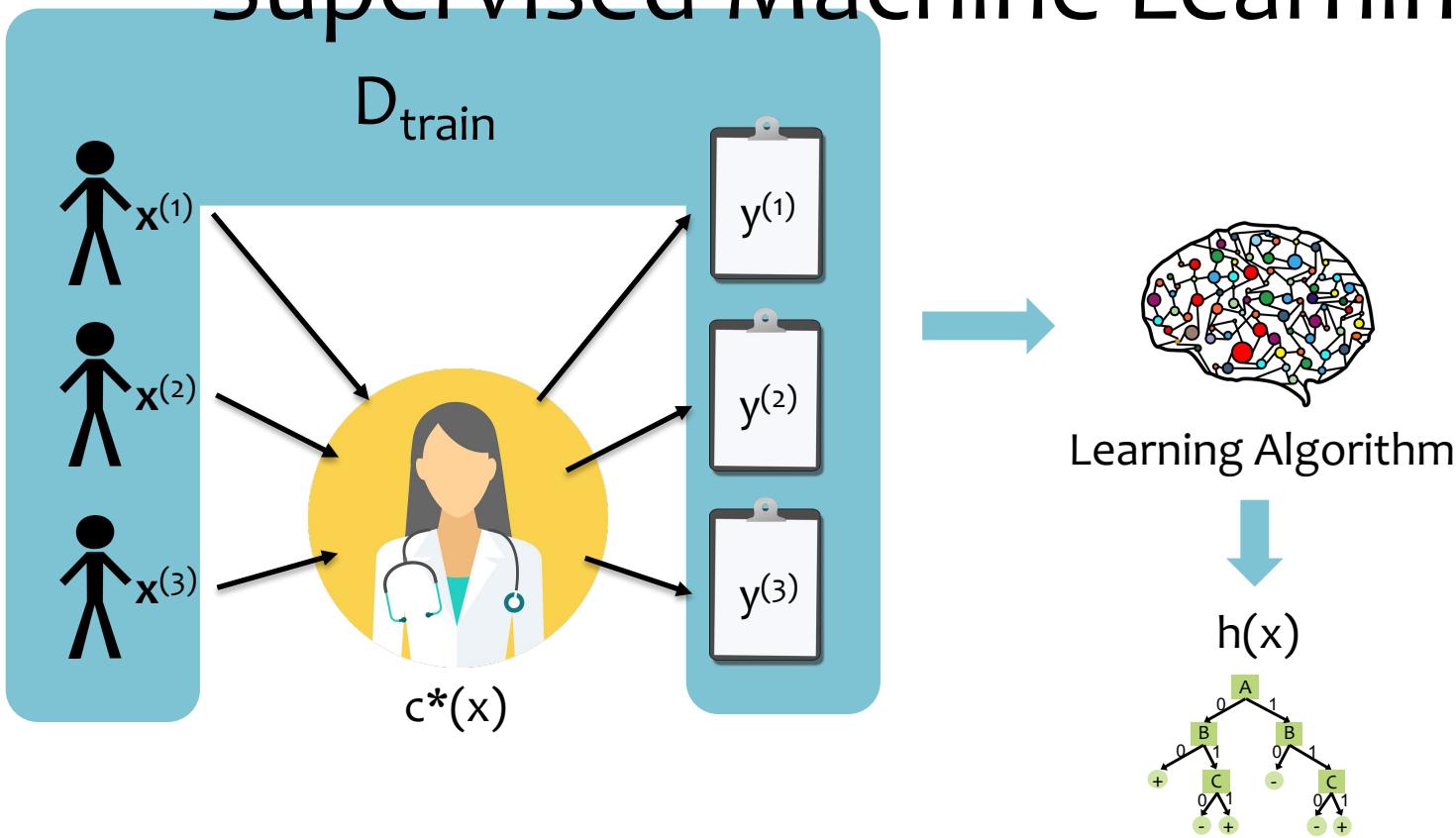
	y	x_1	x_2	x_3	x_4	
i	allergic?	hives?	sneezing?	red eye?	has cat?	
1	$y^{(1)}$ -	$x_1^{(1)}$ Y	$x_2^{(1)}$ N	$x_3^{(1)}$ N	$x_4^{(1)}$ N	$x^{(1)}$
2	$y^{(2)}$ -	$x_1^{(2)}$ N	$x_2^{(2)}$ Y	$x_3^{(2)}$ N	$x_4^{(2)}$ N	$x^{(2)}$
3	$y^{(3)}$ +	$x_1^{(3)}$ Y	$x_2^{(3)}$ Y	$x_3^{(3)}$ N	$x_4^{(3)}$ N	$x^{(3)}$
4	$y^{(4)}$ -	$x_1^{(4)}$ Y	$x_2^{(4)}$ N	$x_3^{(4)}$ Y	$x_4^{(4)}$ Y	$x^{(4)}$
5	$y^{(5)}$ +	$x_1^{(5)}$ N	$x_2^{(5)}$ Y	$x_3^{(5)}$ Y	$x_4^{(5)}$ N	$x^{(5)}$

$N = 5$ training examples

$M = 4$ attributes

ML as Function Approximation

Supervised Machine Learning



Medical Diagnosis Dataset

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$
based on attributes of the patient x_1, x_2, \dots, x_M

	y	x_1	x_2	x_3	x_4		
i		allergic? c^*	hives?	sneezing?	red eye?	has cat?	
1	$y^{(1)}$	-	$x_1^{(1)}$ Y	$x_2^{(1)}$ N	$x_3^{(1)}$ N	$x_4^{(1)}$ N	$x^{(1)}$
2	$y^{(2)}$	-	$x_1^{(2)}$ N	$x_2^{(2)}$ Y	$x_3^{(2)}$ N	$x_4^{(2)}$ N	$x^{(2)}$
3	$y^{(3)}$	+	$x_1^{(3)}$ Y	$x_2^{(3)}$ Y	$x_3^{(3)}$ N	$x_4^{(3)}$ N	$x^{(3)}$
4	$y^{(4)}$	-	$x_1^{(4)}$ Y	$x_2^{(4)}$ N	$x_3^{(4)}$ Y	$x_4^{(4)}$ Y	$x^{(4)}$
5	$y^{(5)}$	+	$x_1^{(5)}$ N	$x_2^{(5)}$ Y	$x_3^{(5)}$ Y	$x_4^{(5)}$ N	$x^{(5)}$

$N = 5$ training examples

$M = 4$ attributes

Example hypothesis
function:

$$h(x) = \begin{cases} + & \text{if sneezing} = Y \\ - & \text{otherwise} \end{cases}$$

Supervised Machine Learning

- **Problem Setting**
 - Set of possible inputs, $x \in \mathcal{X}$ (all possible patients)
 - Set of possible outputs, $y \in \mathcal{Y}$ (all possible diagnoses)
 - Exists an unknown target function, $c^* : \mathcal{X} \rightarrow \mathcal{Y}$
(the doctor's brain)
 - Set, \mathcal{H} , of candidate hypothesis functions, $h : \mathcal{X} \rightarrow \mathcal{Y}$
(all possible decision trees)
- **Learner is given N training examples**
 $D = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(N)}, y^{(N)})\}$
where $y^{(i)} = c^*(x^{(i)})$
(history of patients and their diagnoses)
- **Learner produces** a hypothesis function, $\hat{y} = h(x)$, that best approximates unknown target function $y = c^*(x)$ on the training data

Supervised Machine Learning

- **Problem Setting**
 - Set of possible inputs, $\mathbf{x} \in \mathcal{X}$ (all possible patients)
 - Set of possible outputs, $y \in \mathcal{Y}$ (all possible diagnoses)
 - Exists an unknown target function, $c^* : \mathcal{X} \rightarrow \mathcal{Y}$
(the doctor's brain)
 - Set, \mathcal{H} , of candidate hypotheses (all possible decision trees)
- **Learner is given** N training data
 $D = \{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\}$,
where $y^{(i)} = c^*(\mathbf{x}^{(i)})$
(history of patients and their diagnoses)
- **Learner produces** a hypothesis that approximates unknown target function

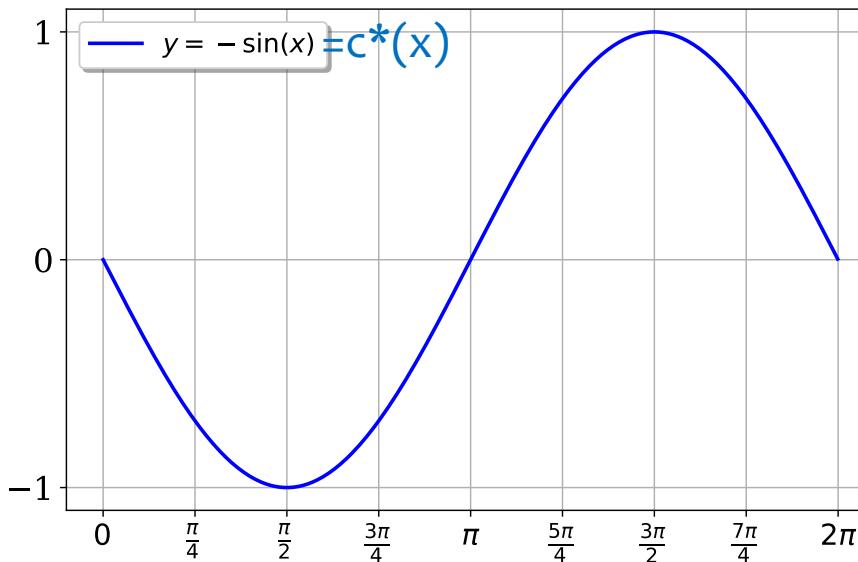
Two important settings we'll consider:

1. **Classification:** the possible outputs are **discrete**
2. **Regression:** the possible outputs are **real-valued**

data

Function Approximation

Quiz: Implement a simple function which returns $-\sin(x)$.



A few constraints are imposed:

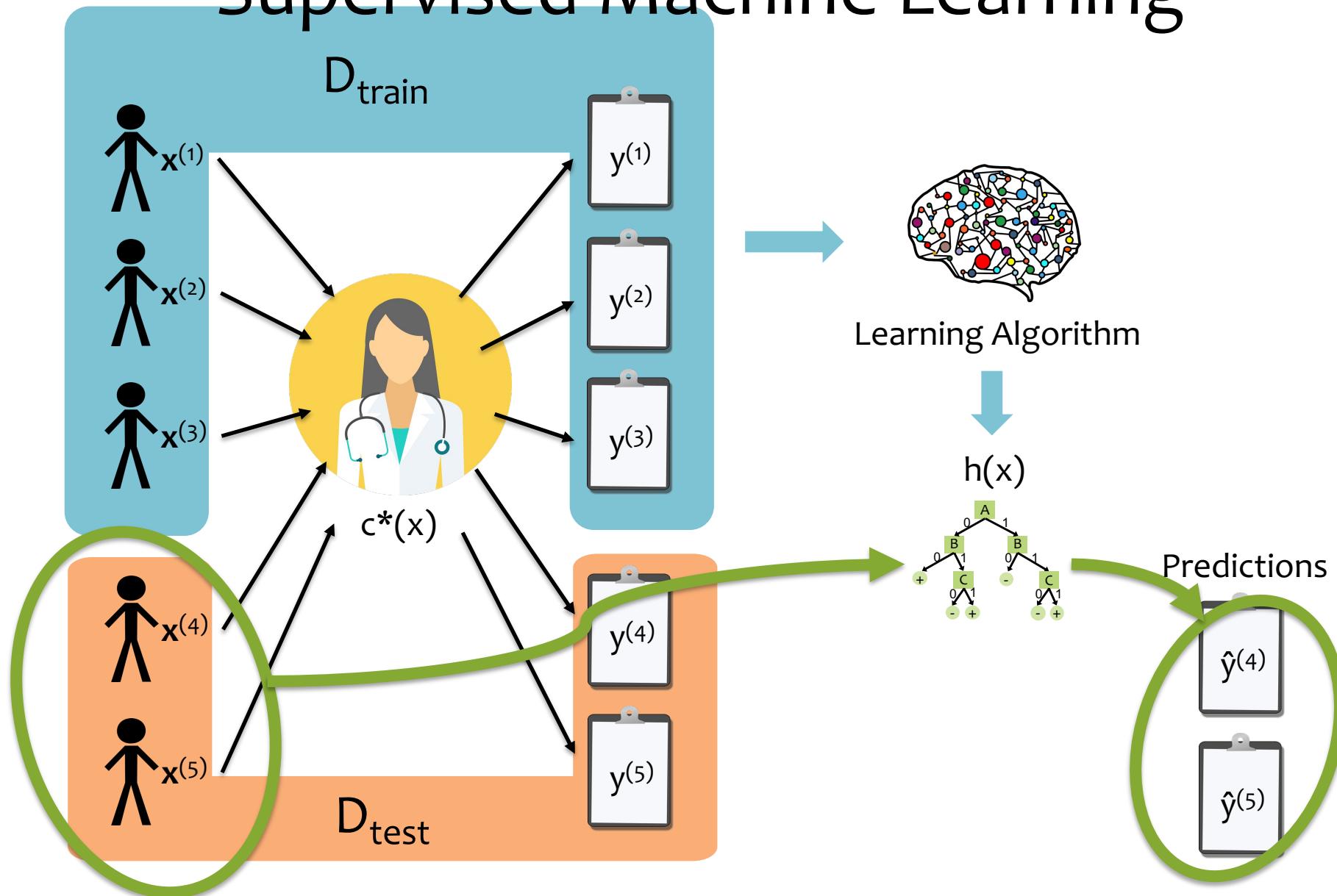
1. You can't call any other trigonometric functions
2. You can call an existing implementation of $\sin(x)$ a few times (e.g. 100) to test your solution
3. You only need to evaluate it for x in $[0, 2\pi]$

Supervised Machine Learning

- **Problem Setting**
 - Set of possible inputs, $x \in \mathcal{X}$ (all values in $[0, 2\pi]$)
 - Set of possible outputs, $y \in \mathcal{Y}$ (all values in $[-1, 1]$)
 - Exists an unknown target function, $c^* : \mathcal{X} \rightarrow \mathcal{Y}$
($c^*(x) = \sin(x)$)
 - Set, \mathcal{H} , of candidate hypothesis functions, $h : \mathcal{X} \rightarrow \mathcal{Y}$
(all possible piecewise linear functions)
- **Learner is given N training examples**
 $D = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(N)}, y^{(N)})\}$
where $y^{(i)} = c^*(x^{(i)})$
(true values of $\sin(x)$ for a few random x 's)
- **Learner produces** a hypothesis function, $\hat{y} = h(x)$, that best approximates unknown target function $y = c^*(x)$ on the training data

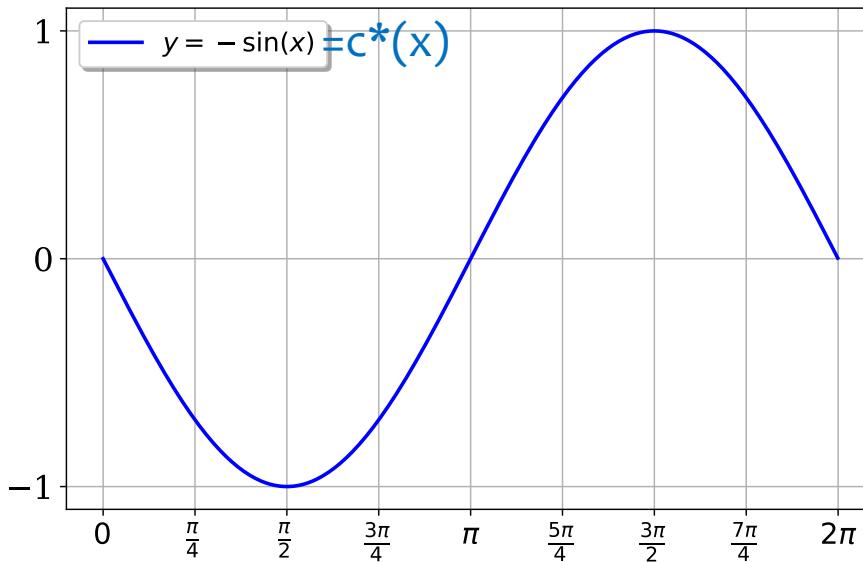
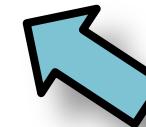
EVALUATION OF MACHINE LEARNING ALGORITHM

Supervised Machine Learning



Function Approximation

Quiz: Implement a simple function which returns $-\sin(x)$.



How well
does $h(x)$
approximate
 $c^*(x)$?

A few constraints are imposed:

1. You can't call any other trigonometric functions
2. You can call an existing implementation of $\sin(x)$ a few times (e.g. 100) to test your solution
3. You only need to evaluate it for x in $[0, 2\pi]$

Evaluation of ML Algorithms

- **Definition:** loss function, $\ell : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$

- Defines how “bad” predictions, $\hat{y} = h(x)$, are compared to the true labels, $y = c^*(x)$
- Common choices:

1. Squared loss (for regression): $\ell(y, \hat{y}) = (y - \hat{y})^2$

2. Binary or 0-1 loss (for classification): $\ell(y, \hat{y}) = \mathbb{1}(y \neq \hat{y}) = \begin{cases} 1, & \text{if } y \neq \hat{y} \\ 0, & \text{otherwise} \end{cases}$

Evaluation of ML Algorithms

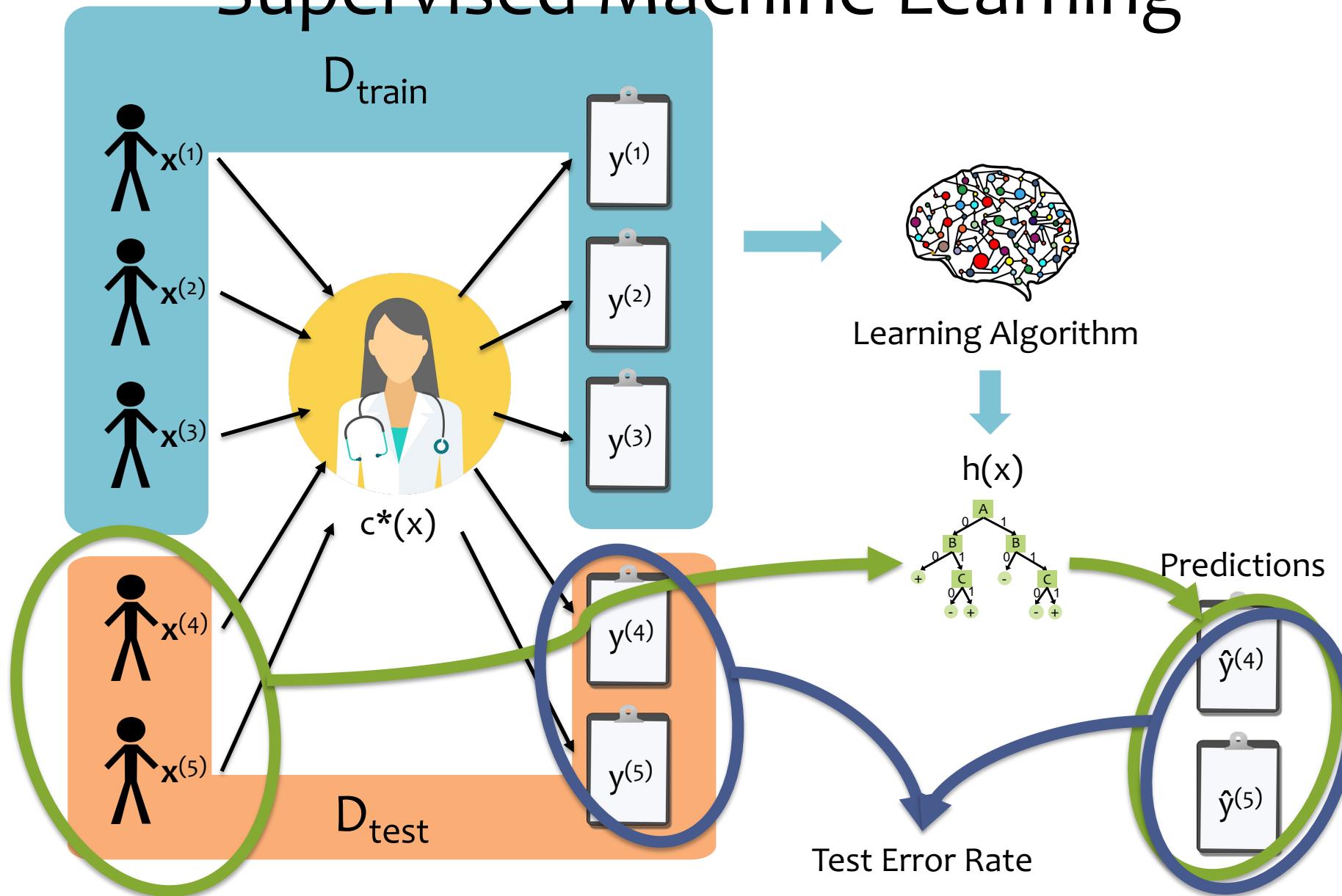
- **Definition:** loss function, $\ell : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$
 - Defines how “bad” predictions, $\hat{y} = h(x)$, are compared to the true labels, $y = c^*(x)$
 - Common choices:
 1. Squared loss (for regression): $\ell(y, \hat{y}) = (y - \hat{y})^2$
 2. Binary or 0-1 loss (for classification): $\ell(y, \hat{y}) = \mathbb{1}(y \neq \hat{y}) = \begin{cases} 1, & \text{if } y \neq \hat{y} \\ 0, & \text{otherwise} \end{cases}$

- **Definition:** the error rate of a hypothesis h on a dataset \mathcal{D} is the average 0-1 loss:

$$\text{error}(h, \mathcal{D}) = \frac{1}{N} \sum_{n=1}^N \mathbb{1}(y^{(n)} \neq \hat{y}^{(n)})$$

- **Definition:** the mean squared error is the average squared loss (more on this later)
- **Q:** How do we evaluate a machine learning algorithm?
A: Check its average loss on a separate test dataset, $\mathcal{D}_{\text{test}}$.

Supervised Machine Learning



Error Rate

- Consider a hypothesis h its...

... error rate over all training data: $\text{error}(h, D_{\text{train}})$

... error rate over all test data: $\text{error}(h, D_{\text{test}})$

... true error over all data: $\text{error}_{\text{true}}(h)$

So we'll use
 $\text{error}(h, D_{\text{test}})$
as a surrogate for
 $\text{error}_{\text{true}}(h)$ in
practice

This is the quantity we care most about!
But, in practice, $\text{error}_{\text{true}}(h)$ is **unknown**.

Majority Vote Classifier Example

Dataset:

Output Y, Attributes A and B

Y	A	B
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

In-Class Exercise

What is the **training error** (i.e. error rate on the training data) of the **majority vote classifier** on this dataset?

Choose one of:
 $\{0/8, 1/8, 2/8, \dots, 8/8\}$

Majority Vote Classifier Example

Dataset:

Output Y, Attributes A and B

Y	A	B
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

In-Class Exercise

Could this dataset have come from our “problem setting” defined earlier?

Why or why not?

LEARNING ALGORITHMS FOR SUPERVISED CLASSIFICATION

Algorithms for Classification

Algorithm 1 **majority vote**: predict the most common label in the training dataset

	y	x_1	x_2	x_3	x_4
predictions	allergic?	hives?	sneezing?	red eye?	has cat?
-	-	Y	N	N	N
-	-	N	Y	N	N
-	+	Y	Y	N	N
-	-	Y	N	Y	Y
-	+	N	Y	Y	N

Algorithms for Classification

Algorithm 2 memorizer: if a set of features exists in the training dataset, predict its corresponding label; otherwise, predict a random label

	y	x_1	x_2	x_3	x_4
predictions	allergic?	hives?	sneezing?	red eye?	has cat?
-	-	Y	N	N	N
-	-	N	Y	N	N
+	+	Y	Y	N	N
-	-	Y	N	Y	Y
+	+	N	Y	Y	N

The memorizer always gets zero training error!

Algorithms for Classification

Question:

If we have 100 features, how many patients does the memorizer need to see to ensure zero test error?

Answer:

Algorithm 1: Majority Vote

Pseudocode

Algorithm 2: Memorizer

Pseudocode

Algorithms for Classification

Algorithm 3 decision stump: based on a single feature, x_d , predict the most common label in the training dataset among all data points that have the same value for x_d

	y	x_1	x_2	x_3	x_4
predictions	allergic?	hives?	sneezing?	red eye?	has cat?
-	-	Y	N	N	N
+	-	N	Y	N	N
+	+	Y	Y	N	N
-	-	Y	N	Y	Y
+	+	N	Y	Y	N

Nonzero training error, but perhaps still better than the memorizer

Example decision stump:
$$h(x) = \begin{cases} + & \text{if sneezing} = Y \\ - & \text{otherwise} \end{cases}$$

Algorithm 3: Decision Stump

Pseudocode

Algorithms for Classification

Algorithm 3 **decision stump**: based on a single feature, x_d , predict the most common label in the training dataset among all data points that have the same value for x_d

Questions:

1. How do we pick which feature to split on?
2. Why stop at one feature?

Algorithm 4: Decision Tree (preview)

Example

Tree to Predict C-Section Risk

Learned from medical records of 1000 women (Sims et al., 2000)

Negative examples are C-sections

```
[833+,167-] .83+ .17-
Fetal_Presentation = 1: [822+,116-] .88+ .12-
| Previous_Csection = 0: [767+,81-] .90+ .10-
| | Primiparous = 0: [399+,13-] .97+ .03-
| | Primiparous = 1: [368+,68-] .84+ .16-
| | | Fetal_Distress = 0: [334+,47-] .88+ .12-
| | | | Birth_Weight < 3349: [201+,10.6-] .95+ .
| | | | Birth_Weight >= 3349: [133+,36.4-] .78+
| | | Fetal_Distress = 1: [34+,21-] .62+ .38-
| Previous_Csection = 1: [55+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-
```