
Recitation 7
Deep Learning

10-601: Introduction to Machine Learning

11/08/2024

1 PyTorch Basics

1.1 Colab Notebook

See the following Colab Notebook:
https://colab.research.google.com/drive/11qHaSszo_mHhGGKP4ZN8zvf_iyzd3WHo?usp=

sharing

2 Transformers

2.1 Concepts

1. What is a word embedding?

• A word embedding is a vector representation of a word. Ideally words with similar
meanings should produce vectors which are close to each other. The difficulty of
this task is that context affects the meaning of a word.

2. What is attention?

• In language models, attention is a weighting used to quantify how much other
words in a sentence affect the context of a single word.

x′
i =

∑
j

αijxj

Here, x′
i is the contextualized vector for word i, xj is the vector embedding for

any arbitrary word j in a sentence, and αij is the attention weight for word j.

• For example, in the sentence ‘I went to the bank to deposit my paycheck’, we
know bank is referring to the financial institution. However, ‘bank’ by itself could
also refer to the side of the river. Thus, the context of this sentence tells us
that bank refers to the financial institution. Specifically, the words ‘deposit’ and
‘paycheck’ indicate this. Therefore, these would have high attention weights when
determining the contextualized vector for ‘bank’.

3. How do you calculate attention?

https://colab.research.google.com/drive/11qHaSszo_mHhGGKP4ZN8zvf_iyzd3WHo?usp=sharing
https://colab.research.google.com/drive/11qHaSszo_mHhGGKP4ZN8zvf_iyzd3WHo?usp=sharing


10-601: Recitation 7 Page 2 of 12 11/08/2024

• Attention is meant to represent the relatedness between two words. One easy
way to calculate this is to take the dot products of two vectors. In the case of a
transformer, these vectors are the query and key vectors.

• We also want these attention weights to be fractions, to avoid x′
i from becoming

very large or very small. This is why we use the softmax, so that the attention
weights become a valid probability distribution.

Attention(q,k,v) = softmax

(
qkT

√
dk

)
v

4. What are query, key, value vectors?

• Query vector represents what each word is looking for when determining context.

• Key vector represent how related a word is to a query (how relevant am I to your
question?).

• Value vector represents value of a word.

• Analogous to looking up things in a database. I want a fancy lamp (query).
Database contains keys which are easy to compare against query (i.e. small lamp,
big table, twin bed). Value is the actual lamp (REGNSKUR IKEA lamp).

5. Why are there different attention heads?

• We want to model multiple different relationships between words.

• ‘The dog chased the cat because it was hungry.’ How can we figure out what ‘it’
is referring to?

• We know ‘dog’, ‘chased’, ‘cat’ and ‘hungry’ are all relevant to determining what
‘it’ is, but it’s difficult to imagine a single weighted addition can capture all of
the context describing what ‘it’ is.

• Easier to believe one head determines from ‘dog’ and ‘cat’ that ‘it’ represents
one of these animals. A separate head would then determine from ‘chased’ and
‘hungry’ that the dog is hungry. Ideally, combining these insights using the feed-
forward layer produces a modified ‘it’ vector which knows it refers to the dog.

Questions:

1. Let’s say you are using a transformer for an image captioning model. Your model would
therefore take in an image, and produce a text caption for the image. For each of the
query, key and value vectors, which modality do they come from, image or text?

• Query: Image or Text

• Key: Image or Text

• Value: Image or Text



10-601: Recitation 7 Page 3 of 12 11/08/2024

The query vector comes from the image, and the key and value vectors come from the
text. You are using the image to query the matrix of text keys to get a text value
(caption) for the image.

2. You are using a text transformer to fill in the blank word in the following sentence. ‘I
want to go in the park later. It’s really nice out and I haven’t worked out in a while.’
What kinds of relationships might different heads within the transformer be considering
to determine the best word to fill in the blank?

The blank is likely a verb (part of speech). The verb also likely ends in -ing (synatactic
- correct structure). Worked out indicates the word is likely some kind of physical
activity (semantic - meaning). The park indicates the word is something outdoors (also
semantic). Another head might be paying attention to the word later to capture temporal
nature of action.

2.2 Parameters

Here is the illustration of a self-attention block from lecture:

Figure 1: Self-attention block, illustrated



10-601: Recitation 7 Page 4 of 12 11/08/2024

Let’s define some terms:

• dmodel is the dimension of each input vector xi

• dk is the dimension of the query, key and value vectors.

• h is the number of attention heads

1. What is the shape of the Wq,Wk,Wv matrices (without biases)?

dmodel × dk

2. How many parameters are there in each of the Wq,Wk,Wv matrices (including biases)?

dk ∗ (dmodel + 1)

3. How many parameters are there in total for a multiheaded attention block, as illustrated
in lecture?

3 ∗ dk ∗ (dmodel + 1) ∗ h
= 3 ∗ dmodel ∗ (dmodel + 1)

4. Where else in the transformer are there additional parameters?

Fully connected layers, embedding layer to produce input vectors, normalization layers,
positional embeddings.

5. What is the big-O relationship between the number of parameters for a multiheaded
attention block and the length of each input vector?

O(d2model)

2.3 Links

Visualization of transformer https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/


10-601: Recitation 7 Page 5 of 12 11/08/2024

3 Convolutional Neural Networks

3.1 Concepts

1. What are filters?

• Filters (also called kernels) are feature extractors in the form of a small matrix
used in convolutional neural layers. They usually have a width, height, depth,
stride, padding, channels (output) associated with them.

2. What are convolutions?

• We sweep the filter around the input tensor and take element-wise product sums
based on factors such as filter size, stride, padding. These output product-sums
form a new tensor, which is the output of a convolutional layer.

3. How do we calculate the output shape of a convolution?

• Given input width Win, kernel width KW , padding P , and stride S, the output
width Wout can be calculated as:

Wout = ⌊Win −Kw + 2× P

S
⌋+ 1

.

• Output height can be calculated similarly.

4. What are some benefits of CNNs over fully connected (also called dense) layers?

• Good for image-related machine learning (learns the kernels that do feature en-
gineering)

• Pseudo translational invariance

• Parameter efficient

5. How does the number of channels vary through convolutional networks?

• Each convolution filter will have as many channels as the input, and there will be
as many filters as there are output channels.

• Pooling and activations often maintain the number of channels.



10-601: Recitation 7 Page 6 of 12 11/08/2024

3.2 Dance Dance Convolution

Consider the following 4 x 4 image and 2x2 filter below.

1 3 -2 4

0 8 6 5

2 1 -9 0

4 -1 3 7

1 2

-2 -1

1. Assume that there is no padding and stride = 1. What are the dimensions of the output,
and what is the value in the bottom right corner of the output image? output is 3x3,
and the bottom right value is −9 + 0− 6− 7 = −22.

2. Now assume that we having padding = 1. Given that, what are the new dimensions
of the output, and the new value in the bottom right corner? output is now 5x5, and
bottom right value is 7 + 0 + 0 + 0 = 7.

3.3 Parameters

Suppose that we want to classify images that belong to one of ten possible classes (i.e. [cat,
dog, bird, turtle, ..., horse]). The images come in RGB format (one channel for
each color), and are downsampled to dimension 128x128.

Figure 2 illustrates one such image from the MS-COCO dataset1.

Figure 2: Image of a horse from the MS-COCO dataset, downsampled to 128x128

1https://cocodataset.org/



10-601: Recitation 7 Page 7 of 12 11/08/2024

We construct a Convolutional Neural Network that has the following structure: the input is
first max-pooled with a 2x2 filter with stride 2 and 3 output channels. The results are then
sent to a convolutional layer that uses a 17x17 filter of stride 1 and 12 output channels. Those
values are then passed through a max-pool with a 3x3 filter with stride 3 and also 12 output
channels. The result is then flattened and passed through a fully connected layer (ReLU
activation) with 128 hidden units followed by a fully connected layer (softmax activation)
with 10 hidden units. We say that the final 10 hidden units thus represent the categorical
probability for each of the ten classes. With enough labeled data, we can simply use some
optimizer like SGD to train this model through backprogation.

Note: By default, please assume we have bias terms in all neural network layers unless
explicitly stated otherwise.

1. Fill the table below with channels and dimensions of the tensors before and after every
neural net operation.

Layer / Operation Shape

Input 3@128× 128
maxpool-1 (a)
conv (b)
maxpool-2 (c)
flatten (d)
fully-connected-1 (e)
ReLU (f)
fully-connected-2 (g)
softmax (h)

Layer / Operation Shape

Input 3@128× 128
maxpool-1 3@64× 64

conv 12@48× 48
maxpool-2 12@16× 16
flatten 3072

fully-connected-1 128
ReLU 128

fully-connected-2 10
softmax 10



10-601: Recitation 7 Page 8 of 12 11/08/2024



10-601: Recitation 7 Page 9 of 12 11/08/2024

2. How many parameters are in this network for the convolutional components?

Nconv = (3× 12× 17× 17 + 12)

= 10416

3. How many parameters are in this network for the fully connected (also called dense)
components?

Nfc = (3072× 128 + 128) + (128 ∗ 10 + 10)

= 393344 + 1290

= 394634

4. From these parameter calculations, what can you say about convolutional layers and
fully connected layers in terms of parameter efficiency2? Why do you think this is the

case?

Ntotal = 10416 + 394634

= 405050

NconvNtotal = 2.57%

NfcNtotal = 97.43%

Convolutional layers are much more parameter efficient, mainly because we are reusing
the convolutional filter repeatedly for each convolutional layer (we only need to train
one kernel per channel per layer). In comparison, the fully connected layer requires all

nodes between two layers to be fully connected.

2the ratio between the number of parameters from some layer type and the total number of parameters.



10-601: Recitation 7 Page 10 of 12 11/08/2024

3.4 Links

Visualization of convolutional filter sweep steps https://github.com/vdumoulin/

conv_arithmetic

Visualization of convolutional filter smooth sweep with outputs https://www.

youtube.com/watch?v=f0t-OCG79-U

Visualization of neural network layer outputs http://cs231n.stanford.edu/

The architecture used there is (conv→ relu → conv → relu → pool) x3 → fc → softmax

https://github.com/vdumoulin/conv_arithmetic
https://github.com/vdumoulin/conv_arithmetic
https://www.youtube.com/watch?v=f0t-OCG79-U
https://www.youtube.com/watch?v=f0t-OCG79-U
http://cs231n.stanford.edu/


10-601: Recitation 7 Page 11 of 12 11/08/2024

4 Recurrent Neural Networks

4.1 Sample RNN

Where the layers and their corresponding weights are given below:

xt ∈ R3 Whx ∈ R4×3

ht ∈ R4 Wyh ∈ R2×4

yt, ŷt ∈ R2 Whh ∈ R4×4

ŷt = σ(ot)

ot = Wyhht

ht = ψ(zt)

zt = Whhht−1 +Whxxt

Where σ and ψ are activations.

1. Redraw the above diagram in a compact form such that we don’t need to unroll it across
several timesteps.



10-601: Recitation 7 Page 12 of 12 11/08/2024

4.2 Concepts

1. What are recurrent neural networks?

• A recurrent neural network (RNN) can be characterized by connections between
nodes creating a cycle 3. Outputs from some nodes can affect subsequent compu-
tations. This allows it to exhibit temporal dynamic behavior.

• the recurrent nature makes them useful when the input is sequential (or temporal).

2. How do they use both inputs and previous outputs?

• Hidden nodes have two sets of weights, one to process input from the current
timestep, and one to process their own outputs from the previous timestep.

3. How do we optimize RNNs?

• Applying chain rule to the ’unrolled’ RNN (as above) is no different than a regular
feed forward neural network aside from the fact that the same parameters are
repeated throughout the network at each timestep.

• Called as backpropagation through time (BPTT).

3Article linked here.

https://en.wikipedia.org/wiki/Recurrent_neural_network

	PyTorch Basics
	Colab Notebook

	Transformers
	Concepts
	Parameters
	Links

	Convolutional Neural Networks
	Concepts
	Dance Dance Convolution
	Parameters
	Links

	Recurrent Neural Networks
	Sample RNN
	Concepts


