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1 PAC Learning

Some Important Definitions

1. Basic notation:

Probability distribution (unknown): X ~ p*

True function (unknown): ¢*: X —»Y

Hypothesis space H and hypothesis h e H: X — Y
Training dataset D = {z(™), ... 2V}

2. True Error (expected risk)
R(h) = Pyop(a) (¢ (z) # h(z))

3. Train Error (empirical risk)

R(h) =

R
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I
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1(y™ # h(z?))
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The PAC criterion is that we produce a high accuracy hypothesis with high probability.
More formally,

Vv

P(Yh € H, < )

P(VYh e H,|R(h) —R(h)| <€) >1—14
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Sample Complexity is the minimum number of training examples N such that the PAC
criterion is satisfied for a given e and ¢

Sample Complexity for 4 Cases: See Figure 1. Note that
e Realizable means ¢* € H

e Agnostic means ¢* may or may not be in H
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Realizable

Agnostic

Thm. 1 N > I[log(|H|) +log(3)] la-

Thm. 2 N > 3% [log(|H]) + log(3)]

Finite |H| beled examples are sufficient so that with | labeled examples are sufficient so that
probability (1—0) all h € H with R(h) = 0 | with probability (1 — &) forall h € H we
have R(h) < e. have that |R(h) — R(h)| < e.
Thm. 3 N=0O(1 [VC(H)log(1) +1og(3)]) | Thm. 4 N = O(% [VC(H) + log(})])
]nﬁnite |H‘ labeled examples are sufficient so that | labeled examples are sufficient so that

with probability (1 — 4) all h € H with
R(h) = 0have R(h) < e.

with probability (1 — &) forall h € H we
have that |R(h) — R(h)| < e.

Figure 1: Sample Complexity for 4 Cases

The VC dimension of a hypothesis space H, denoted VC(H) or dy¢(H), is the maximum
number of points such that there exists at least one arrangement of these points and a
hypothesis h € H that is consistent with any labelling of this arrangement of points.

To show that VC(H) = n:
e Show there exists a set of points of size n that H can shatter
e Show H cannot shatter any set of points of size n + 1
Questions

1. For the following examples, write whether or not there exists a dataset with the given
properties that can be shattered by a linear classifier.

e 2 points in 1D
e 3 points in 1D
e 3 points in 2D
e 4 points in 2D

How many points can a linear boundary (with bias) classify exactly for d-Dimensions?

e Yes

d+1
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2. Consider a rectangle classifier (i.e. the classifier is uniquely defined 3 points xy, x5, x3 €

R? that specify 3 out of the four corners), where all points within the rectangle must
equal 1 and all points outside must equal -1

(a) Which of the configurations of 4 points in figure 2 can a rectangle shatter?

(a) (b) (c)

Figure 2

(a), (b), since the rectangle can be scaled and rotated it can always perfectly classify
the points. (c) is not perfectly classifiable in the case that all the exterior points
are positive and the interior point is negative.

(b) What about the configurations of 5 points in figure 37

(d) (e)

Figure 3

None of the above. For (d), consider (from left to right) the labeling 1, 1 -1, -1, 1.
For (e), same issue as (c).
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3. In the below table, state in which case the sample complexity of the hypothesis falls

under.
Problem Hypothesis Space Realizable/ Finite/ Infi-
Agnostic nite
A Dbinary classification | Set of all linear classifiers
problem, where the data
points are linearly separa-
ble
Predict whether it will | A decision tree with max
rain or mnot based on | depth 2, where each node
the  following  dataset: | can only split on one fea-
Temp | Humid | Wind | Rain? | | ture, and the features can-
High | Yes Yes | Yes not be repeated along a
Low | Yes No [ No branch
Low | No Yes | Yes
High | No No Yes
Classifying a set of real- | Set of all linear classifiers
valued points where the un-
derlying data distribution is
unknown
A binary classification | K-nearest neighbour classi-
problem on a given set of | fier with Euclidean distance
data points, where the data | as distance metric
is not linearly separable
‘ ‘ Realizable/ Agnostic ‘ Finite/ Infinite ‘
1 | Realizable Infinite (All possible linear classifiers)

Realizable (We can split the | Finite (There are only a finite set of decision
given data using a depth 2 de- | trees that can be formed with the given con-
cision tree) straints)

3 | Agnostic (The data may or may | Infinite

not be linearly separable)
4 | Agnostic (The KNN classifier | Finite (The hypothesis space is the set of all
may or not be able to perfectly | possible partitions of the input space into k-
classify each point) nearest regions - which is finite for all possible
values of k )
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4. Let x1, 29, ..., z, be n random variables that represent binary literals (x € {0,1}"). Let
the hypothesis class H,, denote the conjunctions of no more than n literals in which each
variable occurs at most once. Assume that ¢* € H,,.

Example: For n =4, (1 A xy A xy), (21 A —x3) € Hy

Find the minimum number of examples required to learn h € H;o which guarantees at
least 99% accuracy with at least 98% confidence.

’Hn‘ =3"
|Hyo| = 3'°,¢ = 0.01,6 = 0.02
N(Hig,€,0) > [L[In|Hyo| + In 5] = [1489.81] = 1490
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2 MLE/MAP

In probabilistic learning, we are trying to learn a target probability distribution as opposed
to a target function. We'll review two ways of estimating the parameters of a probability
distribution: Maximum Likelihood Estimation (MLE) and Maximum a posterior (MAP)

estimation.

For MLE, we have

Orre = arg max p(D|0)
0

= argmin — log (p(D|0))
0

For MAP, we have
Orrap = arg max p(0|D)
0

= arg max p(Plo)p(9)
9 Normalizing Constant

— argmax p(D|0)p(6)
%

= arg min —log (p(D]0)p(0))

1. Suppose you are a data scientist working for a customer service company that tracks
the number of complaints received per day. You want to estimate the average number
of complaints per day, denoted as #. Over N days, the number of complaints observed

1S:
[Z’l,iﬂg, e ,I’N]

Each z; follows a Poisson distribution:

e 0z

p(x; | 0) =
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(a) Write the likelihood function
The likelihood function for independent Poisson observations is:

N

e*QHLBZ
p(x|0) =[] —

;!
i=1 v

Ignoring the factorial terms (which do not depend on 0), we get:

p(x ] 0) x e NopE T

(b) Write the log-likelihood function
Taking the natural logarithm:

logp(z | ) = —NO + <ZCL‘2> log + C

where C' is a constant independent of 6.

(c) Take the derivative with respect to 6

d DT
@logp(x |0) = —N + 7

(d) Set the derivative equal to 0 and solve for Ny

T, A T,
Z Z=0¢9MLE=Z .

N
T N
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(e) Compute the MLE estimate given x = [3,4, 1]

in:3+4+1:8,]\7:3

- 8
HMLE = 5 ~ 2.67
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2. Suppose you are an avid Neural and Markov fan who monitors the @neuralthenarwhal
Instagram account each day. You wish to determine the probability that Neural or
Markov will post at any time of day. Over three days, you check Instagram and find
the following number of new posts:

xr=[3,4,1]

A fellow fan tells you that the number of posts follows a Poisson distribution:

e 09"

plalt) =

Furthermore, you are told that the prior distribution for # follows a Gamma distribu-
tion:
. 1 0
0 ~ Gamma(2,2), with pdf: p(f) = Z@e 2, 0>0.

(a) Derive the MAP estimator, éM Ap, in terms of the data.

i. Write the log-likelihood function.
From Q1:

log p(x|0) = —nb + (Z 5132-> logf + C,

where C'is a constant independent of 6.

ii. Include the prior and write the log-posterior
The prior distribution is:

[

p(f) o< e 2.
Taking the log:
0
log p(6) = log 6 — 5 + .

Adding the log-likelihood and log-prior, the log-posterior is:

0
logp(8|x) = logp(z | 0) + log p(f) = —nb + (Z x,) log 6 + log 6 — 5T c”,
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which simplifies to:

1 "
logp(f|z) = — (n—i— 2) 0 + (Zxﬁ- 1)logé + C".

iii. Take the derivative with respect to 6.
Differentiating the log-posterior:

d 1 ZIZ‘—Fl
| ) = — ) PO
7 ogp(f]x) (TL+ 2) + 7

iv. Set the derivative to zero and solve for éM AP-
Setting the derivative to zero:

— - =—=0.
(n+2) + 0
Solving for 6:
Opvap = =—F—.
n+§

(b) Compute the MAP estimate using the observed data, = = [3,4, 1].
Given z = [3,4,1]:

}:@=3+4+1=& n = 3.
Substituting into the formula:
8+1 9

éMAP = 73 e 35 ~ 2.57.

2
Thus, the MAP estimate of 6 is 2.57.
3. Compare the éMLE and the éMAP estimates

(a) How do the estimates differ?
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e The MLE estimate éMLE = 2.67 is entirely data-driven, making it unbiased
but more sensitive to fluctuations in the observed data.

e The MAP estimate 0y 4p = 2.57 incorporates a Gamma(2,2) prior, which
slightly shrinks the estimate towards the prior belief.

Thus, MAP trades off variance for bias by incorporating prior information.
(b) Which estimate is better?
o [f we trust the prior, MAP is better because it has lower variance.
e If we do not trust the prior, MLE is better because it is unbiased.

In practical settings, if we have prior knowledge, MAP is often preferred, but if
we believe the data is independent and representative, MLE is reasonable.
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3 Societal Impacts and Fairness

3.1 Precision and Recall

relevant elements

false negatives true negatives

©oq © O o

true positives false positives

retrieved elements

How many retrieved How many relevant
items are relevant? items are retrieved?
Precision = —— Recall = —
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The following chart is known as a confusion matriz and helps formalize the concepts displayed
above. There are 4 categories in the chart:

e True positives: items that are predicted positive and have actual label positive
e [ualse positives: items that are predicted positive but have actual label negative
e True negatives: items that are predicted negative and have actual label negative

e Fulse negatives: items that are predicted negative but have actual label positive

Actual Values

Positive (1) Negative (0)

Positive (1) TP FP

Predicted Values

Negative (0) FN TN

e Type I error: occurs when we predict a false positive (erroneously predict a positive
label when the true label is negative)

e Type II error: occurs when we predict a false negative (erroneously predict a negative
label when the true label is positive)

1. What is the formula for precision in terms of the values in the confusion matrix? What
about recall? Precision = TP/(TP + FP), Recall = TP/(TP + FN)

2. The base rate is the proportion of items that have true label positive. What is the
formula for the base rate in terms of the confusion matrix? base rate = (TP + FN) /
(TP + FP + FN + TN)

3. Suppose we predict every item to be positive. What is the precision? What is the
recall? precision = base rate, recall = 1
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4. The F} score is defined as the harmonic mean of the precision and recall: F} =

2
TP+I/R

The following image shows an example curve of precision and recall for a classifier when
varying the threshold between the positive and negative classes. The point on the curve

with highest F score is marked.

Precision-Recall Curve
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Draw an example precision-recall curve for a “better” classifier than the one shown.
Mark the point with the optimal F} score.

Draw an example precision-recall curve for a “worse” classifier than the one shown.
Mark the point with the optimal F} score.
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Precision-Recall Curve F1=(1,1)
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3.2 Fairness

Fairness in machine learning is a critical consideration when designing predictive mod-
els, particularly in high-stakes domains like hiring, lending, and criminal justice. Below,
we outline three key definitions of fairness and their implications.

Independence (Selection Rate Parity)

e Definition: A model h satisfies independence if its prediction is statistically
independent of the sensitive attribute A. Mathematically, h(X, A) L A.

e Interpretation: The proportion of accepted applicants is the same across all
demographic groups.

Separation (Equality of FPR and FNR)

e Definition: A model satisfies separation if the false positive rate (FPR) and false
negative rate (FNR) are equal across groups. Mathematically, h(X,A) L A |Y.

e Interpretation: Among truly qualified (Y = 1) and unqualified (Y = 0) ap-
plicants, the likelihood of misclassification is the same regardless of the sensitive
attribute.

Sufficiency (Equality of PPV and NPV)

e Definition: A model satisfies sufficiency if the positive predictive value (PPV)
and negative predictive value (NPV) are equal across groups. Mathematically,
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Y L A|h(X,A).

e Interpretation: Given the model prediction, the likelihood of being truly qual-
ified (Y = 1) is the same across protected groups.

Each definition captures a different aspect of fairness and comes with trade-offs. The
appropriate choice depends on the specific application and the ethical considerations
at play. Practitioners should carefully evaluate these definitions in the context of their
models and societal impact.

1. Consider the following results for a dataset with a protected attribute A with three
different groups A, B, and C'. Each group has exactly 200 observations in the dataset.
Which of the three fairness criteria are satisfied by our model h?

Group A:
Predicted label
+1 -1
+1 1| 50 30
True label T 20 100
Group B:
Predicted label
+1 -1
+1 | 60 36
True label T o 30
Group C:
Predicted label
+1 -1
+1 1 40 24
True label T 16 190

Independence: Compute selection rates for each group:

o SR, — 3020 _ 10

200 200
_ 60424 _ 84
* SRp = 55" = 200
_ 40416 _ 56
e SRe = 555" = 300

Since SRa # SRp # SR¢ we conclude h(X, A) L A.

Separation: Compute FPR and FNR for each group:
e FPRy =2 =X PNR, =30 =30

204100  120° 50130 _ 80
_ 24 _ 24 _ 36 _ 36
* FPRp = 3775 = 100 F'N BB = 5735 = 56

_ 16 _ 16 _ 16 _ 24 _ 2
® FPRe = 151055 = 136 — 30 P VBe = f57m1 = @
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Although FNRy, = FPRg = FPRc, we see that FPRy # FPRg # FPRc. As such,
h(X,A) L A|Y.

Sufficiency: Compute PPV and NPV for each group:

_ 50 __ 50 100 __ 100
* PPVy= 50+20 70=NPVA — 30+100 — 130

_ 60 _ 60 _ 80 _ 80
® PPV = gova1 = s VPVB = 3575 = 116

40 __ 40 120 _ 120
* PPVe = 515 = 56 VPVe = 50155 = 11

Although PPV, = PPV = PPV, the NPVs across groups are not equal. Hence,
Y L A|R(X, A)

As illustrated above, it is difficult to achieve all three fairness criteria at once. In general,
any pair of these criteria are mutually exclusive in almost all situations!



	PAC Learning
	MLE/MAP
	Societal Impacts and Fairness
	Precision and Recall
	Fairness


