
Recitation 5
Neural Networks

10-301/10-601: Introduction to Machine Learning

2024-02-28

1 Matrix Calculus

Consider x ∈ Rp, y ∈ Rr, z ∈ Rn where z = g(y), and y = f(x). We want to derive dz/dx (a
vector form of the scalar chain rule).

1. If x, y, and z were all scalars, what would dz/dx be?

dz

dx
=

dz

dy

dy

dx

Shape matching:

2. Fill in the following shapes:

dy

dx
:

dz

dy
:

dz

dx
:

dy

dx
: p× r

dz

dy
: r × n

dz

dx
: p× n

3. Therefore, the correct derivative is
dz

dx
=

dz

dx
=

dy

dx

dz

dy



10-301/10-601: Recitation 5 Page 2 of 13

Generalizing a single element: In order to ensure your derivatives are correct, we recom-
mend you use matrix calculus rules whenever possible. When you’re not sure how to apply
a rule or if one applies, use the method of generalizing a single element.

4. Example: Suppose A ∈ Rn×n,x ∈ Rn, and we want to compute dAx
dx

. Note that our
numerator and denominator are both length-n vectors, so our derivative has shape Rn×n.

5. Is
(
dAx
dx

)
ij
equal to dAxi

dxj
or

dAxj

dxi
? Why?

The latter. To see why, use a non-square matrix A and observe where the indices must fall
in order for the dimensions to work.

6. Compute
(
dAx
dx

)
ij
:

(
dAx

dx

)
ij

=
d(Ax)j
dxi

=
dA⊤

j,:x

dxi

=
d

dxi

n∑
k=1

Aj,kxk

= Aj,i

What matrix has Aji as its ijth element? A⊤.



10-301/10-601: Recitation 5 Page 3 of 13

Applying Matrix Calculus For example, suppose we are finding the closed-form solution
to linear regression: given X ∈ Rn×d,y ∈ Rn, we wish to find θ ∈ Rd that minimizes
∥y −Xθ∥22.

7. What is the shape of X⊤y? Is this our solution?

X⊤y ∈ Rd, the same shape as θ. This is not the solution.

8. What is the closed-form solution? Use matrix calculus to derive the solution.

d

dθ
∥y −Xθ∥22 =

d

dθ
(y −Xθ)⊤(y −Xθ)

=
d

dθ

(
y⊤y − y⊤(Xθ)− (Xθ)⊤y + (Xθ)⊤(Xθ)

)
=

d

dθ

(
y⊤y − 2y⊤(Xθ) + (Xθ)⊤(Xθ)

)
=

d

dθ

(
y⊤y − 2(X⊤y)⊤θ + (Xθ)⊤(Xθ)

)
=

d

dθ

(
y⊤y − 2(X⊤y)⊤θ + (Xθ)⊤(Xθ)

)
= −2

d

dθ
(X⊤y)⊤θ +

d

dθ
(Xθ)⊤(Xθ)

= −2(X⊤y) +
d

dθ
(Xθ)⊤(Xθ)

= −2(X⊤y) +

(
d

dθ
(Xθ)

)
2(Xθ)

= −2(X⊤y) +X⊤2(Xθ)

= 2
(
X⊤y −X⊤Xθ

)
Set equal to 0 and solve:

0 = 2
(
X⊤y −X⊤Xθ

)
= X⊤y −X⊤Xθ

X⊤Xθ = X⊤y

θ = (X⊤X)−1X⊤y



10-301/10-601: Recitation 5 Page 4 of 13

2 Forward Propagation

x1

x2

z1

z2

y

Figure 1: Neural Network For Example Questions

Forward Propagation is the process of calculating the value of your loss function, given data,
weights and activation functions. Given the input data x, we can transform it by the given weights,
α, then apply the corresponding activation function to it and finally pass the result to the next
layer. Forward propagation does not involve taking derivatives and proceeds from the input layer
to the output layer.

Network Overview Consider the neural network with one hidden layer shown in Figure 2.
The input layer consists of 2 features x = [x1, x2]

T , the hidden layer has 2 nodes with output
z = [z1, z2]

T , and the output layer is a scalar ŷ. We also add an intercept to the input, x0 = 1 and
the output of the hidden layer z0 = 1, both of which are fixed to 1.

α is the matrix of weights from the inputs to the hidden layer and β is the matrix of weights from
the hidden layer to the output layer. αj,i represents the weight going to the node zj in the hidden
layer from the node xi in the input layer (e.g. α1,2 is the weight from x2 to z1), and β is defined
similarly. We will use a ReLU activation function for the hidden layer and no activation for the
output layer.

Network Details Equivalently, we define each of the following.

The input:

x = [x0, x1, x2]
T (1)

Linear combination at the first (hidden) layer:

aj =
2∑

i=0

αj,i · xi, ∀j ∈ {1, . . . , 2} (2)

Activation at the first (hidden) layer:

zj = ReLU(aj) = max(0, aj), ∀j ∈ {1, . . . , 2} (3)

z = [z0, z1, z2]
T (4)

Linear combination at the second (output) layer:

ŷ =
2∑

j=0

βj · zj, (5)



10-301/10-601: Recitation 5 Page 5 of 13

Here we fold in the intercept term αj,0 by thinking of x0 = 1, and fold in β0 by thinking of z0 = 1.

Loss We will use Squared error loss, ℓ(ŷ, y):

ℓ(ŷ, y) =
1

2
(ŷ − y)2 (6)

1. Why and how do we include an intercept term in the input and in the hidden-layer?

Similar to how an intercept term in linear regression allows it to better fit data, the intercept
term helps the neural network better fit its data as well.

We simply fold in the intercept term into our input vector as the 0th term and make the value
equal 1.

2. Why do we need to use nonlinear activation functions in our neural net?

A neural network with only linear activation functions would be no different than a linear
regression. (Try forward propagating with only linear functions on the given example)



10-301/10-601: Recitation 5 Page 6 of 13

We initialize the network weights as:

α =

[
2 1 0
0 2 0

]

β =
[
0 1 2

]
For the following questions, we use y = 3.

1. Scalar Form:

• Given x1 = 1, x2 = 2, What are the values of a?

a2 =
2∑

i=0

α2,ixi =

a2 =
2∑

i=0

α2,ixi = 2

• Given z1 = 0, z2 = 1 calculate ŷ, l

ŷ =
2∑

i=0

βi · zi =

ŷ =
2∑

i=0

βi · zi = 2

l =
1

2
(2− 3)2 =

1

2



10-301/10-601: Recitation 5 Page 7 of 13

2. Vector Form: Find the vector form of forward computation, given x is a column vector.

a = αx̂

=

[
α1,0 α1,1 α1,2

α2,0 α2,1 α2,2

]x0

x1

x2


=

[
α1,0x0 + α1,1x1 + α1,2x2

α2,0x0 + α2,1x1 + α2,2x2

]
=

[
a1
a2

]
z = ReLU(a)

ŷ = βẑ

=
[
β0 β1 β2

] z0z1
z2


= β0z0 + β1z1 + β2z2

(7)



10-301/10-601: Recitation 5 Page 8 of 13

3 Computation Diagrams

1. For the following function f , create the computation graph using the conventions defined in
lecture.

f(x, y, z) =
sin(xy)

z
+

exz

xy

2. For the following neural network, draw the corresponding computation graph. Assume that
all hidden units use the ReLU function as the activation function and that the loss is mean
squared error. Provide the shape of all parameters defined in the computation graph. Assume
the weights for the first layer and second layers are respectively the matrices α and β.

+1

x1

x2

z1

z2

+1

y



10-301/10-601: Recitation 5 Page 9 of 13

x⃗1:2 x⃗′

[1, x⃗′] x⃗

αx⃗ ⇐⇒ aj =
∑2

i=0 αj,ixi, ∀j ∈ {1, 2} a⃗

ReLU(a⃗) z⃗′

[1, z⃗′] z⃗

βz⃗ ⇐⇒
∑2

j=0 βjzj ŷ

1
2 (ŷ − y)2 ℓ

α

β

y

augment with bias

augment with bias

α ∈ R2×3 β ∈ R1×3



10-301/10-601: Recitation 5 Page 10 of 13

4 Backward Propagation

x1

x2

z1

z2

y

Figure 2: Neural Network For Example Questions

Given a Neural Network and a corresponding loss function J(θ), backpropagation gives us the
gradient of the loss function with respect to the weights of the neural network. The method is
called backward propagation because we calculate the gradients of the final layer of weights first,
then proceed backward to the first layer. In a simple neural network with one hidden layer, the
partial derivatives that we need for learning are ∂ℓ

∂αji
and ∂ℓ

∂βkj
, and we need to apply chain rule

recursively to obtain these. Note that in implementation, it is easier to use matrix/vector forms
to conduct computations.

1. Many gradients are calculated in back propagation. Which of these gradients are used to
update the weights? Do not include intermediate value(s) used to calculate these gradient(s).
The gradients with respect to α and β are used in updating. The rest are intermediate values
used to calculate these two gradients



10-301/10-601: Recitation 5 Page 11 of 13

2. Scalar Form: Given

• x1 = 1, x2 = 2

• a1 = 3, a2 = 2

• z1 = 3, z2 = 2

• α =

[
2 1 0
0 2 0

]
• β =

[
0 1 2

]
• y = 3,

what are the values of ∂ℓ
∂β1

, ∂ℓ
∂α1,1

?

Hint: Derive expressions for ∂ℓ
∂βi

and ∂ℓ
∂αj,i

first, then substitute in values.

For convenience, the computation graph for the neural network is displayed below:

x⃗1:2 x⃗′

[1, x⃗′] x⃗

αx⃗ ⇐⇒ aj =
∑2

i=0 αj,ixi, ∀j ∈ {1, 2} a⃗

ReLU(a⃗) z⃗′
∂z′i
∂ai

=

[1, z⃗′] z⃗
∂zi
∂z′i

=

βz⃗ ⇐⇒
∑2

j=0 βjzj ŷ
∂ŷ
∂zi

=

1
2 (ŷ − y)2 ℓ

∂ℓ
∂ŷ =

α

β

y

augment with bias

augment with bias

Figure 3: Computation graph for the neural network in Figure 2

Hint: ∂ReLU(x)
∂x

= 1 if x > 0, 0 if x <= 0

∂ℓ

∂βi

=
∂ℓ

∂ŷ

∂ŷ

∂βi

∂ℓ

∂β1

=

As a reminder, we were given that ℓ = 1
2
(ŷ − y)2 and ŷ =

∑3
j=0 βjzj



10-301/10-601: Recitation 5 Page 12 of 13

So we can calculate:

∂ℓ

∂β1

=
∂ℓ

∂ŷ

∂ŷ

∂β1

=
∂

∂ŷ

[
1

2
(ŷ − y)2

]
∂

∂β1

[
3∑

j=0

βjzj

]
= (ŷ − y) z1 = (7− 3) ∗ 3 = 12

The backprop algorithm caches the value of ∂ℓ
∂ŷ

for computing further downstream values.
This is in contrast to simple symbolic differentiation, which would calculate all the partial
derivatives each time.

∂ℓ

∂αj,i

=
∂ℓ

∂ŷ

∂ŷ

∂zj

∂zj
∂aj

∂aj
∂αj,i

∂ℓ

∂α1,1

=

To find ∂ℓ
∂α1,1

, we would have to step backwards through the network and store the relevant

partial derivatives.

∂ℓ

∂ŷ
= 4 (calculated above)

∂ℓ

∂z1
=

∂ℓ

∂ŷ

∂ŷ

∂z1
= 4 ∗ β1 = 4 ∗ 1 = 4

∂ℓ

∂a1
=

∂ℓ

∂z1

∂z1
∂a1

= 4 ∗ 1 = 4

∂ℓ

∂α1,1

=
∂ℓ

∂a1

∂a1
∂α1,1

= 4 ∗ x1 = 4 ∗ 1 = 4



10-301/10-601: Recitation 5 Page 13 of 13

3. Vector Form: What are the values of ∂ℓ
∂β
, ∂ℓ

∂α
?

∂ℓ

∂β
=

∂ℓ

∂ŷ

∂ŷ

∂β
= (ŷ − y)zT =

[
4 12 8

]
Denote β̂ as β without the first entry.

∂ŷ

∂zi
= βi ∀i ∈ {1, 2}

∂ŷ

∂z
= β̂T

∂zi
∂ai

=

{
1 if ai > 0

0 if ai <= 0

∂ℓ

∂a
=

∂ℓ

∂ŷ

∂ŷ

∂z

∂z

∂a

= (ŷ − y) · β̂T · (∂ReLU(a)

∂a
)

= (ŷ − y) · β̂T ⊙ (
∂ReLU(a)

∂a
) (⊙ is element-wise multiplication)

= 4

[
1
2

]
⊙

[
∂ReLU(a1)

∂a1
∂ReLU(a2)

∂a2

]

= 4

[
1
2

]
⊙

[
1
1

]
=

[
4
8

]

∂ℓ

∂αji

=
∂ℓ

∂aj

∂aj
∂αji

=
∂ℓ

∂aj
xi

∂ℓ

∂α
=

 ∂ℓ
∂a1

x0
∂ℓ
∂a1

x1
∂ℓ
∂a1

x2

∂ℓ
∂a2

x0
∂ℓ
∂a2

x1
∂ℓ
∂a2

x2


=

∂ℓ

∂a
xT

=

[
4 4 8
8 8 16

]


	Matrix Calculus
	Forward Propagation
	Computation Diagrams
	Backward Propagation

