RECITATION 5
NEURAL NETWORKS

10-301/10-601: INTRODUCTION TO MACHINE LEARNING
2024-02-28

1 Matrix Calculus

Consider x € RP| y € R", z € R" where z = ¢g(y), and y = f(x). We want to derive dz/dx (a
vector form of the scalar chain rule).

1. If x, y, and z were all scalars, what would dz/dx be?

dz  dzdy
de  dydx
Shape matching:
2. Fill in the following shapes:
dy dz dz.
dx dy dx
dy " dz " dz "
— ro—IrXn —: n
ax P dy ax P
3. Therefore, the correct derivative is
dz
o
dz _ dy dz

&_&dy
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Generalizing a single element: In order to ensure your derivatives are correct, we recom-
mend you use matrix calculus rules whenever possible. When you’re not sure how to apply
a rule or if one applies, use the method of generalizing a single element.

. Example: Suppose A € R™" x € R", and we want to compute dj—xx. Note that our

numerator and denominator are both length-n vectors, so our derivative has shape R"*".

dAx dAx; dAx; o 2
s (—dx )Z,j equal to T O g Why*

The latter. To see why, use a non-square matrix A and observe where the indices must fall
in order for the dimensions to work.

6. Compute (

d;lA_Xx)ij:

What matrix has Aj; as its ijth element? AT,
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Applying Matrix Calculus For example, suppose we are finding the closed-form solution
to linear regression: given X € R™*? y € R", we wish to find @ € R? that minimizes
ly —X6.

7. What is the shape of X Ty? Is this our solution?

X Ty € R, the same shape as 0. This is not the solution.

8. What is the closed-form solution? Use matrix calculus to derive the solution.

| =

d
v - X0|3=—(y — X0) (y — X0)

QL
S

4

(v'y —y'(X6) - (X0)y + (X0) (X8))

y'y — 2y (X0) + (X6)'(X0))

y'y —2(X'y)'0+(X6)' (X0))

B R
—~ —~ —~

y'y —2(X'y)'0+(X6)' (X0))

QU
S

_ i T T i T
= —225(XTy) 0+ 25 (X0)T(X6)

=2(X"y)+ dde(xe)T(XO)
d

= —2(X"y) + (d@

= —2(X"y) + X"2(X0)
=2(X'y —X'X6)

(XH)) 2(X0)

Set equal to 0 and solve:

0=2(X"y - X'X0)
=Xy -X"X6
X'X0=X"y
0=(X"X)"'X"y
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2 Forward Propagation

o ?;:::{)

T 22

Figure 1: Neural Network For Example Questions

Forward Propagation is the process of calculating the value of your loss function, given data,
weights and activation functions. Given the input data x, we can transform it by the given weights,
«, then apply the corresponding activation function to it and finally pass the result to the next
layer. Forward propagation does not involve taking derivatives and proceeds from the input layer
to the output layer.

Network Overview Consider the neural network with one hidden layer shown in Figure 2.
The input layer consists of 2 features x = [z, 737, the hidden layer has 2 nodes with output
z = [21, 25]7, and the output layer is a scalar . We also add an intercept to the input, zo = 1 and
the output of the hidden layer zy = 1, both of which are fixed to 1.

« is the matrix of weights from the inputs to the hidden layer and 3 is the matrix of weights from
the hidden layer to the output layer. «;; represents the weight going to the node z; in the hidden
layer from the node x; in the input layer (e.g. a2 is the weight from x5 to z1), and 3 is defined
similarly. We will use a ReLU activation function for the hidden layer and no activation for the
output layer.

Network Details FEquivalently, we define each of the following.
The input:

X = [$0,$1,$2]T (1)

Linear combination at the first (hidden) layer:
2
aj:Zaj,i-xi, VJG{l,,Q} (2)
i=0

Activation at the first (hidden) layer:
z; = ReLU(a;) = max(0, a;),Vj € {1,...,2} (3)

z = (20, 21, 2] (4)

Linear combination at the second (output) layer:

2
0=> 52 (5)

=0
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Here we fold in the intercept term «; ¢ by thinking of ¢y = 1, and fold in §, by thinking of z, = 1.

Loss We will use Squared error loss, £(g,y):

(6)
1. Why and how do we include an intercept term in the input and in the hidden-layer?

Similar to how an intercept term in linear regression allows it to better fit data, the intercept
term helps the neural network better fit its data as well.

We simply fold in the intercept term into our input vector as the Oth term and make the value
equal 1.

2. Why do we need to use nonlinear activation functions in our neural net?

A neural network with only linear activation functions would be no different than a linear
regression. (Try forward propagating with only linear functions on the given example)
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We initialize the network weights as:

B=1[0 1 2]
For the following questions, we use y = 3.
1. Scalar Form:

e Given 1 = 1, x5 = 2, What are the values of a?

2
Qa2 = E Qo Ty =
i=0

2
Ay = E Qg iT; = 2
i=0

e Given z; = 0,29 = 1 calculate g,
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2. Vector Form: Find the vector form of forward computation, given x is a column vector.

A~

a = ax

- ZL’O
Q10 G711 041,2]

€y
Qoo (21 (29 r
- 2

_|a1,0To + 1171 + Q2%
| Q2,00 + Q2171 + (222

_ |1
az

Z = f_{eLU(a)
y =Pz
20
= [ﬁo B 52] 21
)

= Bozo + Biz1 + Paze
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3 Computation Diagrams

1. For the following function f, create the computation graph using the conventions defined in

lecture.

sin(zy) N ev?

z xy

f(x,y,2) =

a k

fix,y)=xy == f(a)=sin(a) — f(k,z)=kiz
> flcd)=c+d
f(L,a)=L/a

fix,z)=xz — f(b)=ed |—

YAV

b L d

2. For the following neural network, draw the corresponding computation graph. Assume that
all hidden units use the ReLLU function as the activation function and that the loss is mean
squared error. Provide the shape of all parameters defined in the computation graph. Assume
the weights for the first layer and second layers are respectively the matrices a and 3.

ON©O
\{a O
o=
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=/

X1:2| X

augment with bias

o [1,%] %

AN

aX < a; =37 a;xi, Vi€ {1,2}

ReLU(d) | 7

augment with bias

®

=
Ny
Ny

oy
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4 Backward Propagation

T 21

T2 22

Figure 2: Neural Network For Example Questions

Given a Neural Network and a corresponding loss function J(6), backpropagation gives us the
gradient of the loss function with respect to the weights of the neural network. The method is
called backward propagation because we calculate the gradients of the final layer of weights first,
then proceed backward to the first layer. In a simple neural network with one hidden layer, the

partial derivatives that we need for learning are % and %, and we need to apply chain rule
Jr J

recursively to obtain these. Note that in implementation, it is easier to use matrix/vector forms
to conduct computations.

1. Many gradients are calculated in back propagation. Which of these gradients are used to
update the weights? Do not include intermediate value(s) used to calculate these gradient(s).
The gradients with respect to o and [ are used in updating. The rest are intermediate values
used to calculate these two gradients
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2. Scalar Form: Given
e =1, 00=2
e a1 =3, a0 =2

e 21 =3, 20=2

.a:{21 ﬂ
0 20
e 3=1[0 1 2
o y =23,
what are the values of g—é, Bgf,l?
Hint: Derive expressions for g—é and 82_?1- first, then substitute in values.

For convenience, the computation graph for the neural network is displayed below:

o —/

X1:2| X

augment with bias

o | |[LE]|=

aX — a; = Z?:O Qi Ty Vj S {172} a

!
ReLU()| 7 9% _
8a,'
augment with bias
2 || Z a1 —
\ 0z;
9y
Bz <— 2.: Bizi| =
Z] 0rFI<i 1Y azi
R ol
Yy %(y_y)Z 4 8@ —

Figure 3: Computation graph for the neural network in Figure 2

Hint: 22000 — 1 4f 4 > 0,0if 2 <=0

o ot oy o
B 09 9B B

P S o ol N2, ~ 3
As a reminder, we were given that ¢ = 5(§ —y)” and § = > 7 B;2;
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So we can calculate:
o _oto;
0B 0y 0B

o1 L]0 |
=% [5(11—9) } 5, L;Oﬂjzj]
=(g—y)zn=(7T-3)*x3=12

The backprop algorithm caches the value of % for computing further downstream values.
This is in contrast to simple symbolic differentiation, which would calculate all the partial

derivatives each time.

or O 9y 0z da; o

804]'71' N 83} 8Zj 8aj 804“- 8041,1

To find %, we would have to step backwards through the network and store the relevant

partial derivatives.

g_g = 4 (calculated above)

or ol 0y

Ty =4x1=4
oz Ojon T

v ol 0z

da; 0z 0ay '

o ol day

6@171 8@1 804171
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ot ot 9
0B’ da”
o otop
08 0yoB

Denote B as (3 without the first entry.

3. Vector Form: What are the values of

(9—yz" =[4 12 8]

dy :

9, =06 Vie{l,2}
9 _ ar

a9, =P

02 {1ifai>0

da; 0if a; <=0
o _otojon
da  0y0zoa
N ~r OReLU(a)
p— —_ . T . —_—
= -y B0 (%{i](a)) (® is element-wise multiplication)
OReLU(ay)

1
=4 |:2:| © BRe%aUl(ag)
Oas

<l )= 1]

ot At da
(904ji N 8&]' 804],-
ol

8aj

0. oL, o
ot aalxo 6a1x1 8a1x2

da ¢ o¢ o
9420 Pag Tl g, T2

44 8
18 8 16
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