RECITATION 3
CLASSIFICATION AND REGRESSION

10-301/10-601: INTRODUCTION TO MACHINE LEARNING
02/07/2025

Decision Trees and Beyond

. Decision Tree Classification with Continuous Attributes

Given the dataset D; = {x®, ¢y where x) € R?,y® € {Yellow, Purple, Green} as
shown in Fig. 1, we wish to learn a decision tree for classifying such points. Provided
with a possible tree structure in Fig. 1, what values of «, 8 and leaf node predictions
could we use to perfectly classify the points? Now, draw the associated decision bound-
aries on the scatter plot.

Pl
.Purple 1

ﬂrp‘“‘ﬁﬂ?ple ourple Yes No

&

1 Yellow

x2

Yellow

Yellow

Yellow

o UTRgurple

oFurple

Yellqu

Yelloww

Yellow

Yellow

&Furple

oCreen

.

e

Green
L)

oCreen

Green

T T
o] 1

T T
2 3

x1

T
4

T
5

T
6

T
7

8

Figure 1: Classification of 2D points, with Decision Tree to fill in

Solution:

ple
s v X, <4
.Purple
Yes No
P ST
6 oURgurple
ofurple Furle .Oi[a%e" { X2 <4] [Green]
@Creen eGiEen
4 .R‘;Qirnzen
® oGreen Yes No
.GrEen
- gCreen
5 ellow
Yellow Yellgw, Yellow
Yellow eyl
04
Yellow
Yellow

T T
o] 1

T T
2 3

x1

4

T
5

T
6

T
7

8

10-301/10-601: Recitation 3 Page 2 of 18

Note how our decision tree actually creates partitions in the 2D space of points, and
each partition is associated with one predicted class. If we had trees of larger maximum
depth, we gain the ability to create even more fine-grained partitions of the feature
space, resulting in greater flexibility of predictions.

2. Choosing a Tree: What might happen if we increased the max-depth of the tree?
When predicting on unseen data, would we prefer the depth-2 tree above or a very deep
tree?

oFurple
81 Surple
s
T
64 o Urpjgurple
rple reen
o ."Urplsaree“ et
PR s
N elow . gCreen
Gre
.Gr el .
5 Yellow
Yelow Vellag,
Yell
S Yallatsw
0
Yellow
ellow

0 1 2 3 4 5 6 7 8
xL

We would overfit to the training data by learning a complex decision boundary, and
would rather prefer the depth-2 tree during inference.

The smaller the depth of the tree, the fewer splits we make, which simplifies the decision
boundary.

This question is getting at the inductive bias of a decision tree wherein we prefer trees
with a smaller depth that work.

4 +|= =

4+ + = -
=2 O e
+ +

4 +

= =

Consider the dataset above. The complex decision boundary on the left overfits the
training data, while the simpler boundary on the right will probably generalize to test
data better.

10-301/10-601: Recitation 3 Page 3 of 18

3. Pruning a Tree: Which node would be the first to be pruned in the following decision
tree? In the case of a tie, break the tie in favor of the alphabetically earlier node (eg.
prune node B before D)

A: T

e
A

The following is the validation set, along with additional columns for us to use while
solving. For simplicity, suppose that a pruned node is replaced by a prediction of 1.

x1 | x9 | x3 | Label | No prune | Prune A | Prune B | Prune C' | Prune D
0] 010 1
00711 0
0] 110 1
1101 0
11110 1

x1 | w9 | x3 | Label | No prune | Prune A | Prune B | Prune C' | Prune D
0] 010 1 0 1 1 0 1
0071 0 1 1 1 1 1
0O 110 1 1 1 1 1 1
1101 0 0 1 0 1 0
11110 1 1 1 1 1 1

Resulting error when pruning:
No prune: 40%

Prune A: 40%

Prune B: 20%

Prune C: 60%

10-301/10-601: Recitation 3 Page 4 of 18

Prune D: 20%

Since B is tied with D for the best node, we will prune node B.
Follow-up question: How do we know when we are done pruning a decision tree?

We know we are done when pruning any of the remaining nodes does not improve our
validation error.

10-301/10-601: Recitation 3 Page 5 of 18

2 Perceptron

2.1 Perceptron Mistake Bound Guarantee

If a dataset has margin « and all points inside a ball of radius R, then the perceptron makes
less than or equal to (R/~)? mistakes.

Figure 2: Perceptron Mistake Bound Setup

2.2 Definitions
Margin:

e The margin of example z wrt a linear separator w is the (absolute) distance from z to
the plane w - x = 0.

e The margin -, of a set of examples S wrt a linear separator w is the smallest margin
over points x € S.

e The margin « of a set of examples .S is the maximum =y, over all linear separators w.

Linear Separability: For a binary classification problem, a set of examples S is linearly
separable if there exists a linear decision boundary that can separate the points.

Update Rule: When the k-th mistake is made on data point x(¥, the parameter update is

oU+D) — g(k) | (i) (0)

We say the (batch) perceptron algorithm has converged when it stops making mistakes on the
training data.

10-301/10-601: Recitation 3 Page 6 of 18

2.3 Perceptron Mistake Bound: Example
Given dataset D = {(z@, y@)}N, suppose:
1. Finite size inputs: ||z®|| < R
2. Linearly separable data: 30* and v > 0 s.t. ||0*]| = 1 and y(0* -) > ~, Vi
Then, the number of mistakes & made by the perceptron algorithm on D is bounded by (R/~)%.

The following table shows a dataset of linearly separable datapoints.

[2 7]
1 -1 1
0o 2 -1
4 0 1

Assuming that the linear separator with the largest margin is given by:

67 [xl} =0, where § = [_1}
T2 1

Calculate the theoretical mistake bound for the perceptron.

The radius will be the distance of the point furthest from the origin i.e (4, 0). So, the radius,
r will be v/16 =4

Since the linear separator is already provided, the margin, ~, will the distance of the point

closest to the separator which is (1,-1). So,y = min,w \eﬂg‘<|i>| = ‘(7(1_)3:((_1);;?1‘ =2/V2=12

The mistake bound = ()% =8

10-301/10-601: Recitation 3 Page 7 of 18

2.4 Theorem: Block, Novikoff
Given dataset D = {(z@, y@)}N, suppose:
1. Finite size inputs: ||z®|| < R
2. Linearly separable data: 30* and v > 0 s.t. ||0*]| = 1 and y(0* -) > ~, Vi
Then, the number of mistakes & made by the perceptron algorithm on D is bounded by (R/~)%.

Proof:
Part 1: For some A, Ak < ||0(k+1)||

0"+ . 9" = (W) + yDz)) . 9% Perceptron algorithm update
= 0" . " 4y (9*.33))
> 0% . 9" + ~, by assumption
— 0%**Y . 9* > k~, by induction on k since 81 =0

— [|0%D|| > k~, since ||w|| x |[u]| > w - u and ||| = 1

Part 2: For some B, ||0%Y|| < BVEk
10112 = |0W) + 42| |2 Perceptron algorithm update

= 161+ ()| + 2 (69 -29)
< [|0M1% + (yD)?[|2D| %, since k™ mistake = yP(OF . 2D) <0
= ||0W |2 + R?, since (y)?||zD|?> = ||=z?||> < R?, by assumption and (y)% = 1
— ||@%*V]|? < kR?, by induction on k since (§@)% =0
= [|0* V|| < VKR

Part 3: Combine the bounds
ky < [16%Y]] < VER

= k< (R/7)’
e Perceptron will not converge.

e However, we can achieve a similar bound on the number of mistakes made in one pass
(Freund, Schapire)

Main Takeaway: For linearly separable data, if the perceptron algorithm repeatedly cycles
through the data, it will converge in a finite number of steps.

10-301/10-601: Recitation 3 Page 8 of 18

3 kNN

3.1 A Classification Example

Using the figure below, what would you categorize the green circle as with k = 37 k = 57
k=47

Figure 3: An example of k-NN on a small dataset; image source from Wikipedia

Example of &-NN classification. The test sample (green circle) should be classified either to
the first class of blue squares or to the second class of red triangles.

If k = 3 (solid line circle) it is assigned to the second class because there are 2 triangles and
only 1 square inside the inner circle.

If k = 5 (dashed line circle) it is assigned to the first class (3 squares vs. 2 triangles inside the
outer circle).

If k = 4, since there is a tie (2 squares vs. 2 triangles), we can arbitrarily break the tie by
randomly choosing one of the possible (squares, triangle) classes. Whenever there is a similar
tie for k-NNs, other ways to break the include choosing one more nearest sample point, or one
less, or taking a weighted vote of the neighbors, etc.

3.2 kNN for Regression

You want to predict a continuous variable Y with a continuous variable X. Having just
learned k-NN, you are super eager to try it out for regression. Given the data below, draw
the regression lines (what k-NN would predict Y to be for every X value if it was trained for
the given data) for k-NN regression with & = 1, weighted k = 2, and unweighted k = 2. For
weighted k& = 2, take the weighted average of the two nearest points. For unweighted k£ = 2,
take the unweighted average of the two nearest points. (Note: the points are equidistant along
the x-axis)

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm##/media/File:KnnClassification.svg

10-301/10-601: Recitation 3 Page 9 of 18

(b) weighted k = 2

(c) unweighted k = 2

10-301/10-601: Recitation 3 Page 10 of 18

SOLUTION:
—o—
Y Ty
o
X X
(a) k=1 (b) weighted k = 2

For X < 1, the regression line tends to the average of the first 2 points.
Similarly, for X > 5, the regression line tends to the average of the last 2 points.

(c) unweighted k = 2

10-301/10-601: Recitation 3 Page 11 of 18

3.3 kNN Decision Boundary and Cross Validation

(6, 6)
®

(2, 4)

X2
L
1

(5, 2)
L

x1

Draw the decision boundaries for the above training dataset given using kNN algorithm con-
sidering k=1.

10-301/10-601: Recitation 3 Page 12 of 18

SOLUTION:

Suppose we use 3-fold Cross Validation for this kNN, with k=1. The folds are [(1,1),(3,0)],
[(2,4),(6,6)], and [(4,5),(5,2)] What is the cross-validation error?

SOLUTION: The Cross validation error is % Zle CV;, where C'V; is the error of the i-th fold,
and k is the number of folds. Our measure of error is 1 - accuracy, but in general you can
use any error metric you want. For each fold, we have to train the model, and test it on the
held out fold. Since there are 3-folds, we train it three times and evaluate it. Below are the
decision boundaries of the three trained models.

In the first graph, one of the unlabeled points are classified incorrectly, and in the other
two graphs, both unlabeled points are classified correctly, so the cross validation error is
%(0.5 +0+0) = % (Note: The color of the unlabeled points should be red not blue, this is a

typo)

10-301/10-601: Recitation 3 Page 13 of 18

2-Class classification
(k=1, weights="distance')

x1

2-Class classification
(k=1, weights="distance")

10-301/10-601: Recitation 3 Page 14 of 18

2-Class classification

(k=1, weights="distance')

10-301/10-601: Recitation 3

Page 15 of 18

4 Linear Regression

4.1 Defining the Objective Function
1. What does an objective function J(#) do?

A function to measure how “good” the linear model is

2. What are some examples?

— Mean Squared Error Ai Zf\il e’

/ . e A N o
Mean Absolute Error: + > ", |e]

3. What are some desirable properties of this function?

e Should be differentiable

e Preferably convex

10-301/10-601: Recitation 3

Page 16 of 18

4.2 Solving Linear Regression using Gradient Descent

O @ xB @)
z; 10 2.0 30 40 5.0
zy -20 -5.0 -6.0 -8.0 -11.0

y 20 40 70 80 11.0

Now, we want to implement the gradient descent method.

Assuming that v = 0.1 and 6 has been initialized to [0,0,0]”, perform one iteration

of gradient descent:

1. What is the gradient of the objective function .J(#) with respect to 6: VyJ(6)?

i=1 7=0
dJ ()
0o
dJ(0
VoJ(0) = d9<1)
J(6)
dBy
1 5 . 2 '
LSS 2l — 3 0,00
01 i=0
5 2
1 7 4 7
| A - S0l
i=1 =0
) 2
1 7 I3 7
LS 2y - 3 0
=1 j=0

2. How do we carry out the update rule?

We initialize:

S
I
o oo

Follow the update rule:
gD = o) — “/V(;w:e(kdj(g)

10-301/10-601: Recitation 3 Page 17 of 18

, where k = 0 here

5

1 0o 0y =2

52—2:155)@“) > 0y = — (@+4+T+8+11)
=128

R : N =2

- Z —22{(y D =" 0;21) = — +(2+8+21 432+ 55)
= 4722

1< - N =2

- Z —225(y @ =3 0;21) = — (420 - 42 - 64— 121)

=100.4

0D =00 — Vg0 J(0)

0 —12.8
=|0] =01 —472
0 100.4
1.28
= 4.72
—10.04

3. How could we pick which value of v to use if we weren’t given the step size?

Cross-validation or use a hold-out validation dataset

10-301/10-601: Recitation 3

Page 18 of 18

5 Summary

5.1 Decision Tree

Pros Cons Inductive bias When to use
e Hasy to e Tree may grow very e Prefer the e Most cases.
understand and large and tend to smallest tree Random forests are
interpret overfit. consistent w/ widely used in
e Very fast for e Greedy behaviour the training industry.
inference may be sub-optimal data (i.e. 0 error
rate)
5.2 kNN
Pros Cons Inductive bias When to use
e No training of e Slow for large e Similar (i.e. e Small dataset
parameters datasets nearby) points e Small
e Can apply to e Must select good k should have dimensionality

multi-class
problems and
use different
metrics

e Imbalanced data
and outliers can
lead to misleading
results

similar labels
e All label

dimensions are

created equal

e Data is clean (no
missing data)

e Inductive bias is
strong for dataset

5.3 Linear regression

understand and
works for online
learning.

e Provable
guarantees on
mistakes made
for linearly
separable data.

finding best
(maximum-margin)
hyperplane.

e Qutput is sensitive
to noise in the
training data.

classes are
separable in the
feature space by
a line.

Pros Cons Inductive bias When to use
e Fasy to e Sensitive to noise e The true e Most cases (can be
understand and (other than relationship extended by adding
train zero-mean between the non-linear feature
e Closed form Gaussian noise) inputs and transformations)
solution output is linear.
5.4 Perceptron
Pros Cons Inductive bias When to use
e FEasy to e No guarantees on e The binary e Not used much

anymore, but
variants (kernel
perceptron,
structured
perceptron) may
have more success.

	Decision Trees and Beyond
	Perceptron
	Perceptron Mistake Bound Guarantee
	Definitions
	Perceptron Mistake Bound: Example
	Theorem: Block, Novikoff

	k-NN
	A Classification Example
	k-NN for Regression
	k-NN Decision Boundary and Cross Validation

	Linear Regression
	Defining the Objective Function
	Solving Linear Regression using Gradient Descent

	Summary
	Decision Tree
	k-NN
	Linear regression
	Perceptron

