
Recitation 3
Classification and Regression

10-301/10-601: Introduction to Machine Learning

02/07/2025

1 Decision Trees and Beyond

1. Decision Tree Classification with Continuous Attributes
Given the dataset D1 = {x(i), y(i)}Ni=1 where x(i) ∈ R2, y(i) ∈ {Yellow,Purple,Green} as
shown in Fig. 1, we wish to learn a decision tree for classifying such points. Provided
with a possible tree structure in Fig. 1, what values of α, β and leaf node predictions
could we use to perfectly classify the points? Now, draw the associated decision bound-
aries on the scatter plot.

Figure 1: Classification of 2D points, with Decision Tree to fill in

2. Choosing a Tree: What might happen if we increased the max-depth of the tree?
When predicting on unseen data, would we prefer the depth-2 tree above or a very deep
tree?
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3. Pruning a Tree: Which node would be the first to be pruned in the following decision
tree? In the case of a tie, break the tie in favor of the alphabetically earlier node (eg.
prune node B before D)

A: x1

B: x2 C: x2

D: x3

0 1

1 0 1

0 1

0

0 1

1 0 1

The following is the validation set, along with additional columns for us to use while
solving. For simplicity, suppose that a pruned node is replaced by a prediction of 1.
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x1 x2 x3 Label No prune Prune A Prune B Prune C Prune D
0 0 0 1
0 0 1 0
0 1 0 1
1 0 1 0
1 1 0 1

Follow-up question: How do we know when we are done pruning a decision tree?
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2 Perceptron

2.1 Perceptron Mistake Bound Guarantee

If a dataset has margin γ and all points inside a ball of radius R, then the perceptron makes
less than or equal to (R/γ)2 mistakes.

Figure 2: Perceptron Mistake Bound Setup

2.2 Definitions

Margin:

• The margin of example x wrt a linear separator w is the (absolute) distance from x to
the plane w · x = 0.

• The margin γw of a set of examples S wrt a linear separator w is the smallest margin
over points x ∈ S.

• The margin γ of a set of examples S is the maximum γw over all linear separators w.

Linear Separability: For a binary classification problem, a set of examples S is linearly
separable if there exists a linear decision boundary that can separate the points.

Update Rule: When the k-th mistake is made on data point x(i), the parameter update is

θ(k+1) = θ(k) + y(i)x(i)

We say the (batch) perceptron algorithm has converged when it stops making mistakes on the
training data.
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2.3 Perceptron Mistake Bound: Example

Given dataset D = {(x(i), y(i))}Ni=1, suppose:

1. Finite size inputs: ||x(i)|| ≤ R

2. Linearly separable data: ∃θ∗ and γ > 0 s.t. ||θ∗|| = 1 and y(i)(θ∗ · x(i)) ≥ γ, ∀i

Then, the number of mistakes k made by the perceptron algorithm on D is bounded by (R/γ)2.

The following table shows a dataset of linearly separable datapoints.

x1 x2 y

1 -1 1
0 2 -1
4 0 1

Assuming that the linear separator with the largest margin is given by:

θT
[
x1

x2

]
= 0, where θ =

[
−1
1

]

Calculate the theoretical mistake bound for the perceptron.
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2.4 Theorem: Block, Novikoff

Given dataset D = {(x(i), y(i))}Ni=1, suppose:

1. Finite size inputs: ||x(i)|| ≤ R

2. Linearly separable data: ∃θ∗ and γ > 0 s.t. ||θ∗|| = 1 and y(i)(θ∗ · x(i)) ≥ γ, ∀i

Then, the number of mistakes k made by the perceptron algorithm on D is bounded by (R/γ)2.

Proof:
Part 1: For some A, Ak ≤ ||θ(k+1)||

θ(k+1) · θ∗ = (θ(k) + y(i)x(i)) · θ∗, Perceptron algorithm update

= θ(k) · θ∗ + y(i)(θ∗ · x(i)))

≥ θ(k) · θ∗ + γ, by assumption

=⇒ θ(k+1) · θ∗ ≥ kγ, by induction on k since θ(1) = 0

=⇒ ||θ(k+1)|| ≥ kγ, since ||w|| × ||u|| ≥ w · u and ||θ∗|| = 1

Part 2: For some B, ||θ(k+1)|| ≤ B
√
k

||θ(k+1)||2 = ||θ(k) + y(i)x(i)||2, Perceptron algorithm update

= ||θ(k)||2 + (y(i))2||x(i)||2 + 2y(i)(θ(k) · x(i))

≤ ||θ(k)||2 + (y(i))2||x(i)||2, since kth mistake =⇒ y(i)(θ(k) · x(i)) ≤ 0

= ||θ(k)||2 +R2, since (y(i))2||x(i)||2 = ||x(i)||2 ≤ R2, by assumption and (y(i))2 = 1

=⇒ ||θ(k+1)||2 ≤ kR2, by induction on k since (θ(i))2 = 0

=⇒ ||θ(k+1)|| ≤
√
kR

Part 3: Combine the bounds
kγ ≤ ||θ(k+1)|| ≤

√
kR

=⇒ k ≤ (R/γ)2

• Perceptron will not converge.

• However, we can achieve a similar bound on the number of mistakes made in one pass
(Freund, Schapire)

Main Takeaway:
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3 k-NN

3.1 A Classification Example

Using the figure below, what would you categorize the green circle as with k = 3? k = 5?
k = 4?

Figure 3: An example of k-NN on a small dataset; image source from Wikipedia

3.2 k-NN for Regression

You want to predict a continuous variable Y with a continuous variable X. Having just
learned k-NN, you are super eager to try it out for regression. Given the data below, draw
the regression lines (what k-NN would predict Y to be for every X value if it was trained for
the given data) for k-NN regression with k = 1, weighted k = 2, and unweighted k = 2. For
weighted k = 2, take the weighted average of the two nearest points. For unweighted k = 2,
take the unweighted average of the two nearest points. (Note: the points are equidistant along
the x-axis)

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm##/media/File:KnnClassification.svg
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(a) k = 1

(b) weighted k = 2

(c) unweighted k = 2



10-301/10-601: Recitation 3 Page 9 of 12

3.3 k-NN Decision Boundary and Cross Validation

Draw the decision boundaries for the above training dataset given using kNN algorithm con-
sidering k=1.

Suppose we use 3-fold Cross Validation for this kNN, with k=1. The folds are [(1,1),(3,0)],
[(2,4),(6,6)], and [(4,5),(5,2)] What is the cross-validation error?
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4 Linear Regression

4.1 Defining the Objective Function

1. What does an objective function J(θ) do?

2. What are some examples?

3. What are some desirable properties of this function?
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4.2 Solving Linear Regression using Gradient Descent

x(1) x(2) x(3) x(4) x(5)

x1 1.0 2.0 3.0 4.0 5.0
x2 -2.0 -5.0 -6.0 -8.0 -11.0
y 2.0 4.0 7.0 8.0 11.0

Now, we want to implement the gradient descent method.

Assuming that γ = 0.1 and θ has been initialized to [0, 0, 0]T , perform one iteration
of gradient descent:

1. What is the gradient of the objective function J(θ) with respect to θ: ∇θJ(θ)?

2. How do we carry out the update rule?

3. How could we pick which value of γ to use if we weren’t given the step size?
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5 Summary

5.1 Decision Tree

Pros Cons Inductive bias When to use

• Easy to
understand and
interpret

• Very fast for
inference

• Tree may grow very
large and tend to
overfit.

• Greedy behaviour
may be sub-optimal

• Prefer the
smallest tree
consistent w/
the training
data (i.e. 0 error
rate)

• Most cases.
Random forests are
widely used in
industry.

5.2 k-NN

Pros Cons Inductive bias When to use

• No training of
parameters

• Can apply to
multi-class
problems and
use different
metrics

• Slow for large
datasets

• Must select good k
• Imbalanced data

and outliers can
lead to misleading
results

• Similar (i.e.
nearby) points
should have
similar labels

• All label
dimensions are
created equal

• Small dataset
• Small

dimensionality
• Data is clean (no

missing data)
• Inductive bias is

strong for dataset

5.3 Linear regression

Pros Cons Inductive bias When to use

• Easy to
understand and
train

• Closed form
solution

• Sensitive to noise
(other than
zero-mean
Gaussian noise)

• The true
relationship
between the
inputs and
output is linear.

• Most cases (can be
extended by adding
non-linear feature
transformations)

5.4 Perceptron

Pros Cons Inductive bias When to use

• Easy to
understand and
works for online
learning.

• Provable
guarantees on
mistakes made
for linearly
separable data.

• No guarantees on
finding best
(maximum-margin)
hyperplane.

• Output is sensitive
to noise in the
training data.

• The binary
classes are
separable in the
feature space by
a line.

• Not used much
anymore, but
variants (kernel
perceptron,
structured
perceptron) may
have more success.
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