
Recitation 2
Decision Trees

10-301/10-601: Introduction to Machine Learning

01/24/2025

1 Programming: Tree Structures and Algorithms

Topics Covered:

• Depth of nodes and trees

• Recursive traversal of trees

– Depth First Search

∗ Pre-order Traversal

∗ In-order Traversal

∗ Post-order Traversal

– Breadth First Search (Self Study)

• Debugging in Python

Questions:

1. Depth of a tree definition
The depth of a tree is the length (number of edges) of the longest path from a root to

a leaf.

2. Depth of a node definition
The depth of a node is the number of edges between the root and the given node.

10-301/10-601: Recitation 2 Page 2 of 14 01/24/2025

3. What is the depth of tree A? What is the depth of node X4 in tree A?

X1

X2

X4

no yes

X5

no yes

X3

X6

no yes

X7

no yes

yes

ye
s

ye
s no

no

ye
s no

yes

ye
s

ye
s no

no

ye
s no

The depth of tree A is 3 and the depth of node X4 is 2.

4. What is the depth of tree B?

X1

no yes

ye
s no

The depth of tree B is 1 (decision stump).

5. What is the depth of tree C? What are the depths of nodes X1 and X5 in tree C?

10-301/10-601: Recitation 2 Page 3 of 14 01/24/2025

X1

X2

X4

X6

no yes

yes

no

X3

X5

no yes

no

ye
s

ye
s

ye
s

ye
s no

no

yes

yes

no

ye
s no

yes

The depth of tree C is 4. The depth of node X1 is 0 and the depth of X5 is 2.

10-301/10-601: Recitation 2 Page 4 of 14 01/24/2025

6. In-class coding and explanation of Depth First Traversal in Python.
Link to the code:
https://colab.research.google.com/drive/1VvNZUQ4ZikQXcvWL-EY1OPnGdye2P024?usp=
sharing

DFS Tree Traversals and Printing

This class represents an individual node
class Node:

def __init__(self , key):
self.left = None
self.right = None
self.val = key

def traversal1(root):
if root is not None:

First print the data of node
print(root.val , end=’\t’)
Then recurse on left child
traversal1(root.left)
Finally recurse on right child
traversal1(root.right)

def traversal2(root , [a]):
if root is not None:

First recurse on left child
traversal2(root.left , [b])
Then print the data of node
print(f’({root.val}, { [c] })’)
Now recurse on right child
traversal2(root.right , [d])

def build_a_tree ():
root = Node (1)
root.left = Node (2)
root.right = Node (3)
root.left.left = Node (4)
root.left.right = Node (5)
return root

if __name__ == ’__main__ ’:
root = build_a_tree ()
print(’traversal1 of the binary tree is: ’)
traversal1(root)
print()
print(’traversal2 of the binary tree is: ’)
traversal2(root , 0)

https://colab.research.google.com/drive/1VvNZUQ4ZikQXcvWL-EY1OPnGdye2P024?usp=sharing
https://colab.research.google.com/drive/1VvNZUQ4ZikQXcvWL-EY1OPnGdye2P024?usp=sharing

10-301/10-601: Recitation 2 Page 5 of 14 01/24/2025

1

2

4 5

3

First identify which traversal function is pre-order, in-order, or post-order DFS:

• traversal1() is

• traversal2() is

Fill-in-the-Blanks: Next, fill in the code for traversal2.

Code Output:

traversal1 of the binary tree is:

traversal2 of the binary tree is:

Identifying traversals:

• traversal1() is Pre-Order.

• traversal2() is In-Order.

def traversal2(root , depth):
if root is not None:

First recurse on left child
traversal2(root.left , depth+1)
then print the data of node
print(f’({root.val}, { depth })’)
now recurse on right child
traversal2(root.right , depth+1)

traversal1 of the binary tree is:
1 2 4 5 3

traversal2 of the binary tree is:
(4, 2)
(2, 1)
(5, 2)
(1, 0)
(3, 1)

10-301/10-601: Recitation 2 Page 6 of 14 01/24/2025

2 The Need For Speed: Vectorization and Numpy

Performing mathematical operations on vectors and matrices is ubiquitous in most machine
learning algorithms. Whether it’s a simple similarity measure that works by calculating the
dot product between two vectors, or deep neural networks, they all involve repeated matrix
operations. This makes it imperative that our underlying code design to perform matrix
operations is efficient.

2.1 The Perils of Python

While Python is widely the language of choice for machine learning researchers across the
globe (thanks to the speed of development and code readability it offers and the support
it enjoys from the open-source community), Python as a high-level language on average is
much slower than a lower level language like C++. To combat this, libraries like numpy and
scipy implement most of the back-end operations they perform in C/C++, while providing
wrappers in Python to be able to call underlying C code seamlessly from a Python script.

2.2 Speed Comparison: Numpy and Python

We highly recommend you to use numpy extensively in this course, it will be difficult to pass
the programming portion of Homework 4 without writing most of your matrix operations in
numpy. In this section, we’ll see why.

Consider you have two vectors a, b ∈ Rn. To see how similar they are, as measured by the
cosine angle between them, you want to compute their dot product. This translates to the
following operation:

a · b = a1b1 + a2b2 + ...+ anbn

When translated to code, notice how the dot product in NumPy is a whopping 100x faster
than the native Python!

from timeit import timeit
import numpy as np
import array

VECTOR_SIZE = int(1e8)

NumPy arrays
a = np.random.rand(VECTOR_SIZE)
b = np.random.rand(VECTOR_SIZE)

Python arrays
aArr = array.array(’d’, a)
bArr = array.array(’d’, b)

10-301/10-601: Recitation 2 Page 7 of 14 01/24/2025

def test_np ():
return np.dot(a, b)

faster than multiprocessing , python lists , or numpy arrays with
python loops

faster than using a range and indexing
def test_py_arr ():

return sum(x * y for x, y in zip(aArr , bArr))

def time_dot_product(f):
return timeit(f, setup=f, number =5) / 5

if __name__ == "__main__":
print(f"NumPy = {time_dot_product(test_np):.2f}") # 0.05s
print(f"Python on an array = {time_dot_product(test_py_arr):.2f}")

5.45s

2.3 Useful Numpy Operations

Some operations in numpy that you will find really useful in your assignments are:

• np.matmul: Matrix multiplication of two matrices

• np.unique: Returns unique elements along an axis.

• np.hstack: Stack two arrays horizontally (column-wise)

• np.expand dims: Convert a row vector of size n into a matrix of size n ∗ 1 or 1 ∗ n

• np.log, np.sum, np.exp, @, .T, and so on...

You can read C vs. Python for more details, and you can also read these two tutori-
als (beginner, intermediate) from the official numpy website. For instance, understanding
broadcasting is recommended. It will help you debug the shape errors you might face in all
future homeworks.

https://numpy.org/doc/stable/reference/generated/numpy.matmul.html
https://numpy.org/doc/stable/reference/generated/numpy.unique.html
https://numpy.org/doc/stable/reference/generated/numpy.hstack.html
https://numpy.org/doc/stable/reference/generated/numpy.expand_dims.html
https://towardsdatascience.com/how-fast-is-c-compared-to-python-978f18f474c7
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/basics.html

10-301/10-601: Recitation 2 Page 8 of 14 01/24/2025

3 ML Concepts: Construction of Decision Trees

In this section, we will go over how to construct our decision tree learner on a high level.
The following questions will help guide the discussion:

1. What exactly are the tasks we are tackling?
The task: Given a set of train data, test data, and max depth of a tree, we want to do
the following:

1. Use the train data to learn a decision tree classifier.

2. Use our trained classifier to predict the labels of both the train and the test data

3. Calculate the error rates for our classifier on the train and test data

2. What are the inputs and outputs at training time? At testing time?
For training inputs:

• The max-depth of the tree

• The training data

For training outputs:

• A fully trained decision tree

For testing inputs:

• A new dataset in the same format as the training data

For testing outputs:

• A prediction for every input row of the dataset given

3. At each node of the tree, what do we need to store?
Some of the most basic things we want to store:

• The attribute to split at the node

• The subset of data at a given node

• The left and right child nodes

• Node depth

Note that this list (and the list on the next question) is not exhaustive. One might want
to store other items that can aid the implementation.

4. What do we need to do at training time?

• Check ”stopping criteria” (e.g. if max depth has been reached, or if the node is
pure). If either are true, run majority vote at the node.

• Calculate entropy and mutual information for the non-used attributes and select
the best attribute to split

10-301/10-601: Recitation 2 Page 9 of 14 01/24/2025

• Split the data based on the selected attributes

5. What do we need to do at testing time?

• Use the classifier trained using the training data. Do NOT train on test data.

• Predict labels on the train data and test data using the trained classifer.

• Write predictions and metrics to output files as necessary

6. What happens if max depth is 0?

Majority Vote

7. What happens if max depth is greater than the number of attributes?

Stop growing the tree when all attributes are used.

10-301/10-601: Recitation 2 Page 10 of 14 01/24/2025

4 ML Concepts: Mutual Information

Information Theory Definitions:

• H(Y) = −
∑

y∈values(Y) P (Y = y) log2 P (Y = y)

• H(Y | X = x) = −
∑

y∈values(Y) P (Y = y|X = x) log2 P (Y = y|X = x)

• H(Y | X) =
∑

x∈values(X) P (X = x)H(Y | X = x)

• I(Y ;X) = H(Y)−H(Y | X) = H(X)−H(X | Y)

Exercises

1. Calculate the entropy of tossing a fair coin.
This is the average surprisal from each flip.

H(X) = −p(heads) log2(p(heads))− p(tails) log2(p(tails))
= −1

2
log2(

1
2
)− 1

2
log2(

1
2
) = 1

2. Calculate the entropy of tossing a coin that lands only on tails. Note: 0 · log2(0) = 0.
H(X) = −p(heads) log2(p(heads))− p(tails) log2(p(tails))

= −0 ∗ log2(0)− 1 log2(1) = 0
In other words we are never surprised by any flip. It’s always tails.

3. Calculate the entropy of a fair dice roll.
H(X) = −

∑6
x=1(

1
6
) log2(

1
6
) = log2(6)

4. When is the mutual information I(Y ;X) = 0?

10-301/10-601: Recitation 2 Page 11 of 14 01/24/2025

I(Y ;X) = H(Y)−H(Y | X) = H(X)−H(X | Y)

I(Y ;X) is 0 if and only if X and Y are independent.
Mathematically, H(Y | X) = H(Y) making I(Y ;X) go to 0.
Intuitively, this is because if X and Y are independent, knowing one tells you nothing
about the other and vice versa, so their mutual information is 0.

10-301/10-601: Recitation 2 Page 12 of 14 01/24/2025

Used in Decision Trees:

Outlook (X1) Temperature (X2) Humidity (X3) Play Tennis? (Y)
sunny hot high no
overcast hot high yes
rain mild high yes
rain cool normal yes
sunny mild high no
sunny mild normal yes
rain mild normal yes

overcast hot normal yes

1. Using the dataset above, calculate the mutual information for each feature (X1, X2, X3)
to determine the root node for a Decision Tree trained on the above data.

• What is I(Y ;X1)?

• What is I(Y ;X2)?

• What is I(Y ;X3)?

• What feature should be split on at the root node?

H(Y) = -6
8
∗ log2(68)−

2
8
∗ log2(28) ≈ 0.811

• I(Y ;X1) = 0.467

For attribute X1,

– H(Y | X1 = sunny) = −[1
3
∗ log2(13) +

2
3
∗ log2(23)] ≈ 0.918

– H(Y | X1 = rain) = 0

– H(Y | X1 = overcast) = 0

=⇒ H(Y | X1) = [3
8
∗ 0.918 + 3

8
∗ 0 + 2

8
∗ 0] ≈ 0.344

=⇒ I(Y ;X1) ≈ 0.811− 0.344 = 0.467

• I(Y ;X2) = 0.061

For attribute X2,

– H(Y | X2 = hot) = −[1
3
∗ log2(13) +

2
3
∗ log2(23)] ≈ 0.918

– H(Y | X2 = cool) = 0

– H(Y | X2 = mild) = −[3
4
∗ log2(34) +

1
4
∗ log2(14)] ≈ 0.811

=⇒ H(Y | X2) = [3
8
∗ 0.918 + 1

8
∗ 0 + 4

8
∗ 0.811] ≈ 0.75

=⇒ I(Y ;X2) ≈ 0.811− 0.75 = 0.061

10-301/10-601: Recitation 2 Page 13 of 14 01/24/2025

• I(Y ;X3) = 0.311

For attribute X3,

– H(Y | X3 = high) = −[1
2
∗ log2(12) +

1
2
∗ log2(12)] = 1

– H(Y | X2 = normal) = 0

=⇒ H(Y | X3) = [4
8
∗ 1.0 + 4

8
∗ 0] = 0.5

=⇒ I(Y ;X3) ≈ 0.811− 0.5 = 0.311

• Split on X1 at the root node

Since splitting on attribute X1 gives the highest mutual information, the root node
is X1.

2. Calculate what the next split should be.
From the above part, as we can see that the sub-datasets D(X1=rain) and D(X1=overcast)

are pure, there will be no further splitting on those and we will place a leaf node with
label assignment decided by majority vote classifier. So, we need to split only on the
sub-dataset D(X1=sunny). Now, we will use only D(X1=sunny) to estimate the probabilities
for the next split.

H(Y) = −1
3
∗ log2(13)−

2
3
∗ log2(23) ≈ 0.918

For attribute X2,

• H(Y | X2 = hot) = 0

• H(Y | X2 = cool) = 0

• H(Y | X2 = mild) = −[1
2
∗ log2(12) +

1
2
∗ log2(12)] = 1

=⇒ H(Y | X2) = [2
3
∗ 1.0 + 1

3
∗ 0] ≈ 0.67

=⇒ I(Y ;X2) ≈ 0.918− 0.67 ≈ 0.25

For attribute X3,

• H(Y | X3 = high) = 0

• H(Y | X3 = normal) = 0

=⇒ H(Y | X3) = [2
3
∗ 0 + 1

3
∗ 0] = 0

=⇒ I(Y ;X3) ≈ 0.918

10-301/10-601: Recitation 2 Page 14 of 14 01/24/2025

We split using attribute X3 as it gives the highest mutual information.

3. Draw the resulting tree.

X1

X3

no yes

yes yes

su
nn
y

hi
gh

norm
al

rain
overcast

	Programming: Tree Structures and Algorithms
	The Need For Speed: Vectorization and Numpy
	The Perils of Python
	Speed Comparison: Numpy and Python
	Useful Numpy Operations

	ML Concepts: Construction of Decision Trees
	ML Concepts: Mutual Information

