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Instructions for Specific Problem Types

For “Select One” questions, please fill in the appropriate bubble completely:

Select One: Who taught this course?

 Matt Gormley

# Marie Curie

# Noam Chomsky

If you need to change your answer, you may cross out the previous answer and bubble in
the new answer:

Select One: Who taught this course?

 Henry Chai

# Marie Curie

��@@ Noam Chomsky

For “Select all that apply” questions, please fill in all appropriate squares completely:

Select all that apply: Which are instructors for this course?

■ Matt Gormley

■ Henry Chai

□ I don’t know

Again, if you need to change your answer, you may cross out the previous answer(s) and
bubble in the new answer(s):

Select all that apply: Which are the instructors for this course?

■ Matt Gormley

■ Henry Chai

��@@■ I don’t know

For questions where you must fill in a blank, please make sure your final answer is fully
included in the given space. You may cross out answers or parts of answers, but the final
answer must still be within the given space.

Fill in the blank: What is the course number?

10-601 10-��SS6301
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1 Optimization (0 points)

1.1. (a) Select all that apply: Determine if the following 1-D functions are convex.
Assume that the domain of each function is R. The definition of a convex
function is as follows:

f(x) is convex ⇐⇒ f(αx+(1−α)z) ≤ αf(x)+(1−α)f(z),∀α ∈ [0, 1] and ∀x, z.

2 f(x) = x+ b for any b ∈ R

2 f(x) = c2x for any c ∈ R

2 f(x) = ax2 + b for any a ∈ R and any b ∈ R

2 f(x) = 0

2 None of the above

A, B, D

C is nonconvex for a < 0

(b) Select all that apply: Suppose we are trying to minimize the convex function
f(z) = z2 using gradient descent. Let α be the learning rate and assume that
we use an inital value of z(0) = 1.

For which values of α will graident descent converge to the optimal value,
x∗ = 0?

2 α = 0

2 α = 1
2

2 α = 1

2 α = 2

2 None of the above

α = 1
2

α = 1 causes gradient descent to bounce between 1 and −1 while α = 2 causes
gradient descent to diverge.

1.2. Fill in the Blanks: Complete the following sentence by circling the best option
in each square (options are separated by “/”s):

The mean squared error objective function for linear regression is

non-convex / convex / strictly convex which means that gradient descent will con-

verge to a global minimum / local minimum which might not be a global minimum if it

converges; however, a global minimum does not / does always exist.
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The mean squared error objective function for linear regression is convex which
means that gradient descent will converge to a global minimum; however, a global
minimum does always exist.

1.3. Select all that apply: Which of the following statements about gradient descent
(GD) and stochastic gradient descent (SGD) are correct?

2 Each update step in SGD pushes the parameter vector closer to the pa-
rameter vector that minimizes the objective function.

2 The gradient computed in SGD is, in expectation, equal to the gradient
computed in GD.

2 The gradient computed in GD has a higher variance than that computed
in SGD, which is why in practice SGD converges faster in time than GD.

2 Both SGD and GD are guaranteed to converge if and only if the objective
function is strictly convex.

2 None of the above.

B.

A is incorrect, SGD updates are high in variance and may not go in the direction
of the true gradient. C is incorrect, for the same reason. D is incorrect because GD
can converge if the function is convex but not strictly convex.

1.4. True or False: For a given dataset and objective function, one epoch of stochastic
gradient descent will always have the same big-O computational cost as one iteration
of gradient descent.

⃝ True

⃝ False

True
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2 Logistic Regression and Regularization (0 points)

2.1. Math: A generalization of logistic regression to a multiclass settings involves ex-
pressing the per-class probabilities P (y = c | x) as the softmax function

exp(wT
c x)∑

d∈C exp(wT
d x)

,

where c is some class from the set of all classes C.

Consider a 2-class problem with labels 0 or 1. Rewrite the above expression for this
situation to derive the expressions for P (Y = 1|x) and P (Y = 0|x) that we have
already seen in class for binary logistic regression.

P (y = 1|x) = exp(wT
1 x)

exp(wT
0 x)+exp(wT

1 x)
= exp((w1−w0)

T x)
1+exp((w1−w0)T x)

= exp(wT x)
1+exp(wT x)

= p

Therefore, 1− p = 1
1+exp(wT x)

2.2. Short answer: Given 3 data points (1, 1), (1, 0), (0, 0) with labels 0, 1, 0 respec-
tively, consider 2 models that define p(y = 1 | x):

Model 1: σ(w1x1 + w2x2)

Model 2: σ(w0 + w1x1 + w2x2)

As usual, σ(z) is the sigmoid function 1
1+e−z . Using the given dataset, suppose

we learn parameters for both models, ŵ1 and ŵ2, by maximizing the conditional
log-likelihood.

If we switched (0, 0) to label 1 instead of label 0, would the parameters we learn for
Model 1 change? What about Model 2?
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The parameters for Model 1 wouldn’t change because w1x1 + w2x2 = 0 for (0, 0).
Hence p = 0.5 irrespective of the labels or the values of w.

Model 2 has a bias term which remains non-zero for (0, 0), and can thus change the
model depending on the label assigned.

2.3. Given a training dataset D = {(x(1), y(1)), . . . , (x(N), y(N))} where x(i) ∈ Rd is a
feature vector and yi ∈ {0, 1} is a binary label, we want to find the parameters ŵ
that maximize the likelihood of the training dataset, assuming a parametric model
of the form

p(y = 1 | x;w) =
1

1 + exp(−wTx)
.

The conditional log likelihood of D is

ℓ(w) =
n∑

i=1

yi log p(yi | xi;w) + (1− yi) log(1− p(yi | xi;w)),

and the gradient is

∇ℓ(w) =
N∑
i=1

(yi − p(yi | xi;w))xi.

(a) Short answer: Is it possible to solve for the optimal parameters ŵ in closed
form? If yes, explain how and if no, describe how you would compute ŵ in
practice?

There is no closed form expression for maximizing the conditional log likelihood.
One has to consider iterative optimization methods, such as gradient descent,
to compute ŵ.

(b) Math: For a binary logistic regression model, we predict y = 1 when p(y =
1 | x) ≥ 0.5. Show that this is a linear classifier in x.
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Using the parametric form for p(y = 1 | x):

p(y = 1 | x) ≥ 1

2
=⇒ 1

1 + exp(−wTx)
≥ 1

2

=⇒ 1 + exp(−wTx) ≤ 2

=⇒ exp(−wTx) ≤ 1

=⇒ −wTx ≤ 0

=⇒ wTx ≥ 0,

so we predict ŷ = 1 if wTx ≥ 0, which precisely defines a linear function of x.

(c) Consider the case where all features are binary, i.e, x ∈ {0, 1}d. Furthermore,
suppose feature x1 is rare and just happens to take on value 1 in the training
set only when the label is also 1.

What is ŵ1 i.e. the optimal weight on the first feature? Is the gradient ever
zero for any finite value of w1?
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If a binary feature fired for only label 1 in the training set then, by maximizing
the conditional log likelihood, we will make the weight associated to that feature
be infinite; this implies that the gradient will never be zero: we can always
improve the solution by increasing the weight. This is because, when this
feature is observed in the training set, we will want to predict 1 irrespective
of everything else. This is an undesired behavior from the point of view of
generalization performance, as most likely we do not believe this rare feature
to have that much information about class 1. Most likely, it is a spurious
co-occurrence. Controlling the norm of the weight vector will prevent these
pathological cases.

2.4. Math: Given the following dataset, D, and a fixed parameter vector, w, write an
expression for the conditional likelihood of a binary logistic regression model on this
dataset.

D = {(x(1), y(1) = 0), (x(2), y(2) = 0), (x(3), y(3) = 1), (x(4), y(4) = 1)}

• Write your answer in terms of w, x(1), x(2), x(3), and x(4).

• Do not include y(1), y(2), y(3), or y(4) in your answer.

• Do not try to simplify your expression.

(
1− 1

1+e−wT x1

)(
1− 1

1+e−wT x2

)
1

1+e−wT x3
1

1+e−wT x4

2.5. Suppose we apply feature engineering to a two-dimensional input, x1 ∈ R and

x2 ∈ R, mapping it to a new input vector: x =

 1
x1

2

x2
2


(a) Write an expression for the decision boundary of binary logistic regression with

this feature vector x and the corresponding parameter vector θ = [b, w1, w2]
T .

Assume that the decision boundary occurs when P (Y = 1 | x,θ) = P (Y = 0 |
x,θ). Write your answer in terms of x1, x2, b, w1, and w2.

Decision boundary expression:

0 = b+ w1x
2
1 + w2x

2
2.

(b) Assume that w1 > 0, w2 > 0, and b < 0. What is the geometric shape defined
by this equation?
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An ellipse

(c) If we add an L2 regularization term when learning [w1, w2]
T , what happens to

the parameters as we increase the λ that scales this regularization term?

The magnitude of the parameters will decrease.

(d) If we add an L2 regularization term when learning [w1, w2]
T , what happens to

the decision boundary shape as we increase the λ that scales this regular-
ization term?

The parameters shrink, so the ellipse will get bigger.
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3 Feature Engineering and Regularization (0 points)

3.1. Suppose you have D-dimensional data points x = [x1, x2, . . . , xD]
T and you want

to apply a 2-dimensional polynomial feature expansion to them, ϕ2. This feature
expansion contains all first-order terms as well as all possible second-order terms,
including combinations of features i.e.

{x4, x
2
1, x2x3} ⊂ ϕ2(x)

(a) Math: What is the dimensionality of ϕ2(x)? Express you answer in terms of
D, the dimensionality of x.

D first order terms + D squared terms +
(
D
2

)
combination terms = D(D+3)

2

(b) Math: Given a dataset consisting of N data points, suppose a unique closed-
form solution exists for linear regression using the ϕ2-transformation. What
is the big-O computational cost of computing (ΦTΦ)−1, where Φ is the design
matrix of the transformed data points i.e.,

Φ =


1 ϕ2(x

(1))
1 ϕ2(x

(2))
...

...
1 ϕ2(x

(N))


Express you answer in terms N and D.

Hint: don’t forget about the computational costs associated with the bias or
intercept parameters.
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O

(
N

(
D(D+3)

2
+ 1

)2

+
(

D(D+3)
2

+ 1
)3

)
= O(ND4 +D6)

3.2. Model Complexity: In this question we will consider the effect of increasing
the model complexity, while keeping the size of the training dataset fixed. To
be concrete, consider a classification task on the real line R with some unknown
distribution over data points D and unknown target function c∗ : R→ {±1}.

Suppose we have a randomly sampled dataset S of size N , drawn i.i.d. from D. For
each degree d, let ϕd be the feature map given by ϕd(x) = (1, x, x2, . . . , xd) that
maps points on the real line to (d+ 1)-dimensional space.

Now consider the learning algorithm that first applies the feature map ϕd to all the
training data points and then runs logistic regression. A new example is classified
by first applying the feature map ϕd and then using the learned classifier.

(a) For a given dataset S, is it possible for the training error to increase when we
increase the degree d of the feature map? Briefly justify your answer in 1 to 2
sentences.

No. Every linear separator using the feature map ϕd can also be expressed
using the feature map ϕd+1, since we are only adding new features. It follows
that the training error will not increase for any given sample S.

(b) Suppose we plot the true error of our algorithm as a function of d: we observe
that it initially decreases and then increases as we increase the degree d. Briefly
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explain this trend in 2 to 3 sentences.

When the dimension d is small, the true error is high because the target function
is not well approximated by any linear separator in the ϕd feature space. As
we increase d, our ability to approximate c∗ improves, so the true error drops.
But, as we continue to increase d, we begin to overfit the data and the true
error increases again.

3.3. Short Answer: Your friend is training a logistic regression model with ridge reg-
ularization, where λ is the regularization constant. They run cross-validation for
λ = [0.01, 0.1, 1, 10] and compare train, validation and test errors. They choose
λ = 0.01 because that had the lowest test error.

However, you observe that the test error linearly increases from λ = 0.01 to 10 and
thus, there exists a value of λ < 0.01 that gives a lower test error. You tell your
friend that they should run the cross-validation for λ = [0.0001, 0.001, 0.01] to get
the optimal model.

Do you think you did the right thing by giving your friend this suggestion? Briefly
justify your answer in 1 to 2 concise sentences.

No. because we should not be using test error at all in making any model selection
decisions.

3.4. Select all that apply: Suppose you fit a linear regression model with regulariza-
tion to some high-dimensional dataset using gradient descent. You observe that it
is overfitting to the training dataset (as measured by its test error rate on some
held out test data). Which of the following actions would probably decrease the test
error rate?

2 Increase the amount of training data used to train your model
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2 Increase the regularization coefficient in the objective function

2 Increase the number of iterations that you run gradient descent for

2 Increase the dimensionality of your data by using a polynomial feature
transformation

2 None of the above

A, B
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4 Neural Networks (0 points)

4.1. Matching: Match the corresponding neural network component to its role in the
neural network.

(a) Cross-Entropy

(b) Identity

(c) Mean Absolute Error

(d) Mean Squared Error

(e) ReLU

(f) Sigmoid

(g) Softmax

(h) Stochastic Gradient Descent

(i) Tanh

Activation Function

Loss Function

Optimizer

Activation function: Identity, ReLU, Sigmoid, Tanh, Softmax; Loss function: Cross-
entropy, Mean Absolute Error, Mean Squared Error; Optimizer: Stochastic Gradi-
ent Descent

4.2. Consider the neural network architecture shown above for a binary classification
problem. The values for the weights are shown in the figure. We define:

a1 = w11x1 + b11

a2 = w12x1 + b12

a3 = w21z1 + w22z2 + b21
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Figure 1: Neural Network

z1 = ReLU(a1)

z2 = ReLU(a2)

z3 = σ(a3), σ(x) =
1

1+e−x

where ReLU(x) = max(0, x).

(a) Math: For x1 = 0.3, compute z3 in terms of e.

z3 =
1

1+e−0.15

(b) Select one: Which class does the network predict for the data point x1 = 0.3,
assuming that ŷ = 1 if z3 >

1
2
and otherwise, ŷ = 0.

⃝ 1

⃝ 0

ŷ(x1 = 0.3) = 1

(c) Math: Perform backpropagation on the bias term b21 by deriving the expres-
sion for the gradient of the loss function L(y, z3) with respect to the bias term
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b21,
∂L
∂b21

.

Express your answer in terms of partial derivatives of the form ∂α
∂β
, where α

and β can be any of L, zi, ai, bij, wij, x1 for all valid values of i, j. Your back-
propagation algorithm should be as explicit as possible — that is, make sure
each partial derivative ∂α

∂β
cannot be decomposed further into simpler partial

derivatives. Do not evaluate the partial derivatives.

∂L
∂b21

= ∂L
∂z3

∂z3
∂a3

∂a3
∂b21

(d) Math: Perform backpropagation on the bias term b12 by deriving the expres-
sion for the gradient of the loss function L(y, z3) with respect to the bias term
b12,

∂L
∂b12

.

Express your answer in terms of partial derivatives of the form ∂α
∂β
, where α

and β can be any of L, zi, ai, bij, wij, x1 for all valid values of i, j. Your back-
propagation algorithm should be as explicit as possible — that is, make sure
each partial derivative ∂α

∂β
cannot be decomposed further into simpler partial

derivatives. Do not evaluate the partial derivatives.

∂L
∂b12

= ∂L
∂z3

∂z3
∂a3

∂a3
∂z2

∂z2
∂a2

∂a2
∂b12

4.3. In this problem we will use a neural network to distinguish the crosses (×) from the
circles (◦) in the simple data set shown in Figure 2a. Even though the crosses and
circles are not linearly separable, we can break the examples into three groups, S1,
S2, and S3 (shown in Figure 2a) so that S1 is linearly separable from S2 and S2 is
linearly separable from S3. We will exploit this fact to design weights for the neural
network shown in Figure 2b in order to correctly classify this training dataset. For
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all nodes, we will use the threshold activation function

ϕ(z) =

{
1 z > 0
0 z ≤ 0.

0 1 2 3 4 50

1

2

3

4

5

x1

x2
S1

S2

S3

(a) The data set with groups S1, S2, and S3.

y

h1 h2

x1 x2

w11 w21
w12 w22

w31
w32

(b) The neural network architecture

Figure 2
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(a) Set S2 and S3
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(b) Set S1 and S2
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(c) Set S1, S2 and S3

Figure 3: NN classification.

(a) First we will set the parameters w11, w12 and b1 of the neuron labeled h1 so that
its output h1(x) = ϕ(w11x1 + w12x2 + b1) forms a linear separator between the
sets S2 and S3.

i. On Fig 3a, draw a linear decision boundary that separates S2 and S3.

ii. Write down a possible setting of the weights w11, w12, and b1 such that
h1(x) = 0 for all points in S3 and h1(x) = 1 for all points in S2.
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0 1 2 3 4 5
0

1

2

3

4

5

x1

x
2

w11 = −1, w12 = 0, b1 = 3

(b) Next we will set the parameters w21, w22 and b2 of the neuron labeled h2 so that
its output h2(x) = ϕ(w21x1 + w22x2 + b2) forms a linear separator between the
sets S1 and S2.

i. On Fig 3b, draw a linear decision boundary that separates S1 and S2.

0 1 2 3 4 5
0

1

2

3

4

5

x1

x
2

i

ii. Write down a possible setting of the weights w21, w22, and b2 such that
h2(x) = 0 for all points in S1 and h2(x) = 1 for all points in S2.

w21 = 3, w22 = 1, b2 = −7

(c) Now we have two classifiers h1 (to classify S2 from S3) and h2 (to classify S1

from S2). We will set the weights of the final neuron of the neural network
based on the results from h1 and h2 to classify the crosses from the circles. Let
h3(x) = ϕ

(
w31h1(x) + w32h2(x) + b3

)
.

i. Write down a possible setting of the weights w31, w32, b3 such that h3(x)
correctly classifies the entire data set.
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w31 = 1, w32 = 1, b3 = −1.5

ii. Draw your decision boundary in Fig 3c.
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4.4. Consider the following neural network for a 2-D input, x1 ∈ R and x2 ∈ R where:

Figure 7: Neural Network

• All occurrences of the function g are the same arbitrary non-linear activation
function with no parameters

• ℓ(y, ŷ) is an arbitrary loss function with no parameters, and:

z1 = wAx1 + wBx2, a1 = g(z1)

z2 = wCa1, a2 = g(z2)

z3 = wDa1, a3 = g(z3)

z4 = wEa2 + wFa3, ŷ = g(z4)

Note: There are no bias terms in this network.

(a) What is the chain of partial derivatives needed to calculate the derivative ℓ
wE

?

Your answer should be in the form: ℓ
wE

= ?
?
?
?
. . . Make sure each partial deriva-

tive ?
?
in your answer cannot be decomposed further into simpler partial deriva-

tives. Do not evaluate the derivatives. Be sure to specify the correct
subscripts in your answer.

ℓ
wE

=



10-601 Machine Learning Practice Problems - Page 20 of 36 -

ℓ
wE

= ℓ
ŷ

ŷ
z4

z4
wE

(b) The network diagram from above is repeated here for convenience: What is the

Figure 8: Neural Network

chain of partial deriviatives needed to calculate the derivative ℓ
wC

?
Your answer should be in the form:

ℓ

wC

=
?

?

?

?
...

Make sure each partial derivative ?
?
in your answer cannot be decomposed fur-

ther into simpler partial derivatives. Do not evaluate the derivatives. Be
sure to specify the correct superscripts in your answer.

ℓ
wC

=

ℓ
wC

= ℓ
ŷ

ŷ
z4

z4
a2

a2
z2

z2
wC

(c) We want to modify our neural network objective function to add an L2 regu-
larization term on the weights. The new objective is:

ℓ(y, ŷ) + λ
1

2
∥w∥22

where λ (lambda) is the regularization hyperparamter andw is all of the weights
in the neural network stacked into a single vector,w = [wA, wB, wC , wD, wE, wF ]

T .

Write the right-hand side of the new gradient descent update step for weight
wC given this new objective function. You may use ℓ

wC
in your answer.

Update: wC ← ...
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Update for wC : wC ← wC − α
(

ℓ
wC

+ λwC

)
4.5. Backpropagation in neural networks can lead to slow or unstable learning because of

the vanishing or exploding gradients problem. Understandably, Neural the Narwhal
does not believe this. To convince Neural, Lamar Jackson uses the example of an
N layer neural network that takes in a scalar input x, and where each layer consists
of a single neuron. More formally, x = o0, and for each layer i ∈ {1, 2, ..., N}, we
have

si = wioi−1 + bi

oi = σ(si)

where σ is the sigmoid activation function. Note that wi, bi, oi, si are all scalars.

(a) Give an expression for ∂oN
∂w1

. Your expression should be in terms of the si’s, the
wi’s, N , xi, and σ′(·), the derivative of the sigmoid function.

∂oN
∂w1

=
∂oN
∂oN−1

∂oN−1

∂oN−2

· · · ∂o1
∂w1

=
∂o1
∂w1

N∏
i=2

∂oi
∂oi−1

= σ′(s1)x
N∏
i=2

σ′(si)wi

(b) Knowing that σ′(·) is at most 1
4
and supposing that all the weights are 1 (i.e.

wi = 1 for all i), give an upper bound for ∂oN
∂w1

. Your answer should be in terms
of x and N .
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∂oN
∂w1
≤ x

(
1
4

)N
4.6. Define a function floor : Rn → Rn such that

floor(z) =
[
⌊zi⌋ for 0 ≤ i ≤ D

]T
or essentially, a function that produces an output vector by applying ⌊·⌋ element-
wise to the input vector.

Neural wants to use this function as an activation function to train his neural
network. Is this possible? Explain why or why not.

Yes, it is possible. Since the function is piecewise, we will not be able to use auto-
matic differentiation to solve the gradients, but we can still use the finite difference
method to approximate the gradient and train the model.
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5 Algorithmic Bias (0 points)

5.1. Numerical answer: Suppose you have binary classification dataset where 20% of
the data points have label +1 and the remaining 80% have label −1. What are the
positive predictive value (a.k.a. precision) and true positive rate (a.k.a. recall) of a
classifier that always predicts +1?

precision = 0.2, true positive rate = 1

5.2. Select all that apply: Suppose you have a classifier h that is 100% accurate at
some binary classification task. Furthermore, suppose that there is some protected
attribute, A, and the percentage of positive labels is constant across different values
of A. In this setting, which of the following definitions of algorithmic fairness is
satisfied by h?

2 Independence

2 Separation

2 Sufficiency

2 None of the above.

A, B and C: A is correct because the distribution of labels is the same across
different values of A and h will predict exactly that distribution. Similarly, B is
correct because conditioned on the label, the distribution of h’s prediction is the
same across different values of A. Finally, C is also true because h is always correct
so the conditional distribution of the label is pure across all different values of A.

5.3. Select all that apply: Suppose you have a classifier h that simply returns a
random label for some binary classification task. Furthermore, suppose that there
is some protected attribute, A, and the percentage of positive labels varies across
different values of A. In this setting, which of the following definitions of algorithmic
fairness is satisfied by h?

2 Independence

2 Separation

2 Sufficiency

2 None of the above.

A and B: because the classifier’s predictions do not depend on any feature or the
label, it will always be independent of A. However, the true label and A may not
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be independent (as the base rates vary across different values of A) so sufficiency
may not be satisfied.

5.4. True or False: Given a binary classification task with a binary protected attribute,
A, it is never possible for a classifier to satisfy both separation and sufficiency with
respect to A. Briefly justify your answer in 1-2 concise sentences.

False: if the baseline rates of the label across both values of A are equal, then
separation and sufficiency can be achieved simultaneously.
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6 Learning Theory (0 points)

6.1. Consider a classification problem with an unknown distribution over data points D
and an unknown target function c∗ : Rd 7→ ±1. For any sample of points S drawn
from D, answer whether the following statements are true or false, along with a
brief explanation.

(a) True or False: For a given hypothesis space H, it is always possible to define
a sufficient number of examples in S such that the true error is within a margin
of ϵ of the sample error for all hypotheses h ∈ H with a given probability.

False. If V C(H) = ∞, then there is no (finite) number of examples sufficient
to satisfy the PAC bound.

(b) True or False: The true error of any hypothesis h is an upper bound on its
training error on the sample S.

False. We said true error is close to training error, but it might be smaller than
training error, so it is not an upper bound.

6.2. Short answer: Briefly describe the difference between the realizable case and
agnostic case of PAC learning?

Realizable- the true classifier c∗ is in H.

Agnostic- we don’t know whether c∗ is in H. It may or may not be.

6.3. True or False: Consider two finite hypothesis sets H1 and H2 such that H1 ⊂ H2.
Let h1 = argminh∈H1 errS (h) and h2 = argminh∈H2 errS (h).
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Because |H2| ≥ |H1|, errD (h2) ≥ errD (h1). Briefly justify your answer

False. Since there are more hypotheses in H2 there might be one that better fits
the data than those in H1.

6.4. Fill in the Blanks: Complete the following sentence by circling one option in each
square (options are separated by “/”s):

In order to prove that the VC-dimension of a hypothesis set H is D, you

must show thatH can / cannot shatter any set / some set / multiple sets

ofD data points and can / cannot shatter any set / some set / multiple sets

of D + 1 data points.

In order to prove that the VC-dimension of a hypothesis set H is D, you must show
that H can shatter some set of D data points and cannot shatter any set of D + 1
data points.

6.5. Consider the hypothesis set H consisting of all positive intervals in R, i.e. all

hypotheses of the form h(x; a, b) =

{
+1 if x ∈ [a, b]

−1 if x ̸∈ [a, b]

(a) Short Answer: In 1-2 sentences, briefly justify why the VC dimension of H
is less than 3.

We only need to show any 3 points cannot be shattered. Consider the case
where the two outer points have label +1 and the middle point has label -1.

(b) Select one: What is the VC dimension of H?

⃝ 0
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⃝ 1

⃝ 2

C

(c) Numerical Answer: Now, consider hypothesis sets Hk indexed by k, such
that Hk consists of all hypotheses formed by k non-overlapping positive in-
tervals in R. Give an expression for the VC dimension of Hk in terms of k.

Hint: Think about how to repeatedly apply the result you found in Part (b).

2k

6.6. Your friend, who is taking an introductory ML course, is preparing to train a model
for binary classification. Having just learned about PAC Learning, she informs you
that for her given model choice, H, she is in the finite, agnostic case.

Now she wants to know how changing certain values will change the sample com-
plexity i.e., the number of labeled training data points required to satisfy the PAC
criterion:

P
(
|R(h)− R̂(h)| ≤ ϵ

)
≥ 1− δ ∀ h ∈ H

where R(h) and R̂(h) are the expected and empirical risks respectively.

For each of the following changes, determine whether the sample complexity will
increase, decrease, or stay the same.

(a) Select one: Using a simpler model (decreasing |H|)

⃝ Sample complexity will increase

⃝ Sample complexity will decrease

⃝ Sample complexity will stay the same

B

(b) Select one: Choosing a new hypothesis set H∗, such that |H∗| = |H|

⃝ Sample complexity will increase

⃝ Sample complexity will decrease

⃝ Sample complexity will stay the same

C

(c) Select one: Decreasing δ

⃝ Sample complexity will increase

⃝ Sample complexity will decrease
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⃝ Sample complexity will stay the same

A

(d) Select one: Decreasing ϵ

⃝ Sample complexity will increase

⃝ Sample complexity will decrease

⃝ Sample complexity will stay the same

A
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7 MLE/MAP (0 points)

7.1. Magnetic Resonance Imaging (MRI) scans are commonly used to generate detailed
images of patients’ internal anatomy at hospitals. The scanner returns an image
with N pixels. For each pixel, we extract the noise from that pixel to obtain a
vector of noise terms x ∈ RN s.t. ∀ i ∈ {1...N}, xi ≥ 0 and xi is independent and
identically distributed and follows a Rayleigh distribution. The probability density
function of a Rayleigh distribution is given by:

f(x | σ) = x

σ2
exp

(
−x2

2σ2

)
for scale parameter σ ≥ 0 and x ≥ 0.

(a) Math: Write the log-likelihood ℓ(σ) of a noise vector x obtained from one
image. Report your answer in terms of the variables xi, i, N, σ, the function
exp(·), and any constants you may need. For full credit you must push the log
through to remove as many multiplications/divisions as possible.

ℓ(σ) =
N∑
i=1

[
log xi − 2 log σ − x2

i

2σ2

]

(b) Math: Report the maximum likelihood estimator of the scale parameter, σ,
for a single image’s noise vector x.
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0 =
∂

∂σ

N∑
i=1

log p(xi | σ) =
N∑
i=1

−2
σ

+
x2
i

σ3

=⇒ σ̂ =

[
1

2N

N∑
i=1

x2
i

] 1
2

7.2. Suppose a random variable k follows a Poisson distribution with unknown rate
parameter λ:

p(k | λ) = λke−λ

k!
k = 1, 2, . . .

The Poisson distribution is used for modeling the number of times an event oc-
curs within a fixed time interval given a mean occurrence rate assuming that the
occurrences are independent.

A conjugate prior for the rate parameter in a Poisson likelihood is a gamma dis-
tribution with shape parameter α and rate parameter β:

f(λ | α, β) = βα

Γ(α)
λα−1e−βλ λ > 0

where Γ is some normalizing constant that does not depend on λ.

(a) Math: Suppose we receive a set of N observations of k: D = {k1, k2, . . . , kN};
assume the observations are independent and identically distributed. Using
the Poisson distribution and gamma prior with parameters α and β, derive an
expression for the unnormalized log posterior of λ i.e. the sum of the log prior
and the log likelihood of D.

Express your answer in terms of α, β, λ, k1, k2, . . . , kN , N and Γ; simplify your
answer as much as possible.
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log p(λ | α, β) + log
N∏
i=1

P (ki | λ) = log

(
βα

Γ(α)
λα−1e−βλ

)
+

N∑
i=1

log

(
λkie−λ

ki!

)

= α log β + (α− 1) log λ− βλ− log Γ(α)−Nλ+
N∑
i=1

ki log λ− log(ki!)

(b) Math: Take the partial derivative of the expression you derived in the previous
part with respect to λ.

Express your answer in terms of α, β, λ, k1, k2, . . . , kN , and N ; simplify your
answer as much as possible.

α− 1

λ
− β −N +

N∑
i=1

ki
λ

(c) Math: Finally, compute the MAP estimate of λ given D by setting the partial
derivative you computed in the previous part equal to 0 and solving for λ.

Express your answer in terms of α, β, k1, k2, . . . , kN , and N ; simplify your
answer as much as possible.
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α− 1

λ̂
− β −N +

N∑
i=1

ki

λ̂
= 0

→ α− 1 +
N∑
i=1

ki = (β +N)λ̂

→ λ̂ =
α− 1 +

∑N
i=1 ki

β +N

Intuitively, the MLE estimate for λ is the empirical mean of D. The β and
α parameters of the gamma distribution can be interpreted as the number of
“pseudo-samples” previously observed and the total number of “hits” observed
in those pseudo-samples respectively.

7.3. True or False: A random variable x follows a probability distribution with a single,
real-valued parameter, θ. In the limit of infinitely many samples of x, the MAP
estimate of θ will always approach the MLE estimate, regardless of your choice of
prior on θ. Briefly justify your answer in 1-2 sentences.

False: if the prior does not have support over the entire domain (e.g., a uniform
prior over just the range [0,1]) and the MLE estimate falls outside the prior, then
the MAP estimate will approach the boundary nearest to the MLE, not the MLE
estimate itself.



10-601 Machine Learning Practice Problems - Page 33 of 36 -

Do not remove this page! Use this page for scratch work.



10-601 Machine Learning Practice Problems - Page 34 of 36 -

Do not remove this page! Use this page for scratch work.



10-601 Machine Learning Practice Problems - Page 35 of 36 -

Do not remove this page! Use this page for scratch work.



10-601 Machine Learning Practice Problems - Page 36 of 36 -

Do not remove this page! Use this page for scratch work.


	Optimization
	Logistic Regression and Regularization
	Feature Engineering and Regularization
	Neural Networks
	Algorithmic Bias
	Learning Theory
	MLE/MAP

