M 10-301/10-601 Introduction to Machine Learning

Machine Learning Department

| —] School of Computer Science

MACHINE LEARNING : o
EEEEEEEEEE Carnegie Mellon University

%

Stochastic Gradient Descent
+

Binary Logistic Regression

Matt Gormley
Lecture 9
Feb. 10, 2025

Reminders

* Homework 3: KNN, Perceptron, Lin.Reg.
— Out: Mon, Feb. 3
— Due: Mon, Feb. 10 at 11:59pm
— (only two grace/late days permitted)

* Practice Problems 1
— released on course website
 Exam 1: Mon, Feb. 17
— Time: 7:00 — 9:00pm
— Location: Your room/seat assignment will be announced on Piazza

OPTIMIZATION METHOD #3:
STOCHASTIC GRADIENT DESCENT

Gradient Descent

Algorithm 1 Gradient Descent
. procedure GD(D, ')

x 0+ 00

3 while not converged do
4: 0<+—0—~VJo)

5 return 0

per-example objective:
J(0)
original objective:y

7(0) = % PRI

Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

i procedure SGD(D, 6'V)

x 0+ Y

3 while not converged do

4: i ~ Uniform({1,2,...,N})
5

6

0 0—~VeJ(O)
return 6

per-example objective:
J(0)
original objective:y

70) =+ > 796)

Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

1: procedure SGD(D, 0(0))

2
3
4:
p
6

0 — 0
while not converged do
fori € shuffle({1,2,...,
0 — 0 — ’YV@J 1)(0)

return 0

.,N})do

N\

per-example objective:
J(0)
orlglnal ob]ectlveN

Z J@ (o

D>

In practice, it is common to

implement SGD using sampling

without replacement (i.e.
shuffle({1,2,. B)

even though most

of the theory is for sampling with

replacement (i.e. Uniform({1,2,.

- N3).

Why does SGD work?

Background: Expectation of a function

of a random variable

For any discrete random variable X

Ex[f(0] =) PO = 0f (@)

XEX

Objective Function for SGD

We assume the form to be:

N
1 :
1©) =) J96)

Expectation of a Stochastic Gradient:

* If the example is sampled uniformly at random, the expected value of
the pointwise gradient is the same as the full gradient!

E[Vej(i) @] = Z(probability of selecting x(, y(i)) Vo] D(0)
i=1
N

- Z (%) Var©(®)
z Vel (6)

= Va] (9)
* Inpractice, the data set is randomly shuffled then looped through so
that each data point is used equally often

Why does SGD work?

Back of Room

Back of Room
Right Aisle Right Aisle
(Stairs) (Stairs)
Cen;er Aisle Center Aisle
Gl G2 [G3 G4 G5 G6 |G7 GB G G10 (GLL [G12 (Stairs) G13 (614 615 © ® G16 [G17 |G18 Gl G2 63 |64 |65 G6 |67 |68 69 (610 611|612 |(Stairs) 613 [G14 [615 @ ® G16 617 G18
El |[E2 |E3 |E4 |[E5 |E6 [E7 |E8 |E9 |EL0-L E11 |E12 |E13 |E14 |[E15 |E16 [E17 |E18 |E19 [E20 |E21-L E1 |E2 |E3 IE4 |ES |E6 IE7 E8 E9 IEL0-L E11 [E12 [E13 |E14 |E15 |E16 |E17 IE18 |E19 |E20 |E21-L
D1 |D2 |D3 |D4 D5 |D6 |D7 |D8 |D9-L D10 D11 D12 |D13 D14 |D15 D16 |D17 |D18 D19 |D20-L DL ID2 D3 D4 ID5 D6 D7 D8 ID9-L D10 D11 D12 ID13 D14 ID15 ID16 ID17 D18 D19 ID20-L
Bl [B2 B3 |B4 |B5 |B6 |B7 [B8 B9 |B10 |B1l B12 [B13 |B14 |B15 |B16 |B17 [B18 |B19 [B20 B21 |B22-L B1 IB2 B3 1B4 IBS IB6 1B7 B8 B9 |B10 BIL B12 IB13 |B14 B15 |B16 |B17 |B18 |B19 |B20 1B2L 1B22-L
Lectern Table Lectemn Table
Front of Room Front Door Front of Room Front Door
Back of Room Back of Room
Right Aisle Right Aisle
(Stairs) (Stairs)
Center Aisle Center Aisle
Gl G2 |G3 G4 G5 |G6 |G7 [G8 |G9 |G10 |G11 [G12 |(Stairs) G13 |G14 G15 @ ® G16 [G17 [G18 Gl G2 |G3 G4 G5 |G6 |G7 [G8 |G9 |G10 |G11 [G12 |(Stairs) G13 |G14 G15 @ @ G16 [G17 [G18
FL |[F2 |F3 |F4 |F5 |F6 |F7 |F8 |[F9 |F10 |F11-L F12 |F13 |F14 |F15 [F16 |F17 |F18 |[F19 |F20 |F21-L FL |[F2 |F3 |F4 |F5 |F6 |F7 |F8 |[F9 |F10 |F11-L F12 |F13 |F14 |F15 [F16 |F17 |F18 |[F19 |F20 |F21-L
El |[E2 |E3 |E4 |[E5 |E6 [E7 |E8 |E9 |EL0-L E11 |[E12 |E13 [E14 |[E15 |[E16 |E17 |[E18 |E19 [E20 |E21-L El |[E2 |E3 |E4 |[E5 |E6 [E7 [E8 |E9 |EL0-L E11 |[E12 |E13 [E14 |[E15 |E16 |E17 |[E18 |E19 [E20 |E21-L
D1 D2 D3 D4 D5 D6 D7 D8 |D9-L D10 D11 |D12 |D13 D14 D15 D16 D17 D18 |D19 |D20-L D1 D2 D3 D4 D5 D6 D7 D8 |D9-L D10 D11 |D12 |D13 D14 D15 D16 D17 D18 |D19 |D20-L
C1 |C2 |C3 |C4 |C5 |C6 |C7 [C8 |C9 |C10 |C11-L C12 |C13 |C14 |C15 |C16 |C17 |C18 |C19 |C20 C21 |C22-L C1 |C2 |C3 |C4 |C5 |C6 |C7 [C8 |C9 |C10 |C11-L C12 |C13 |C14 |C15 |C16 |C17 |C18 |C19 |C20 C21 |C22-L
B1 [B2 B3 |B4 |B5 |B6 [B7 [B8 B9 |B10 |B1l B12 |B13 |B14 |B15 |B16 |B17 |B18 |B19 |B20 |B21 |B22-L B1 [B2 B3 |B4 |B5 |B6 [B7 [B8 |B9 |B10 |B11 B12 |B13 |B14 |B15 |B16 |B17 |B18 |B19 |B20 |B21 |B22-L
® AL |A2 |A3 |A4 |A5 |A6 |A7 |AB |A9 AL10 |ALL |A12 |A13 |©® ® Al4 |A15 |A16-L ® AL |A2 |A3 |A4 |A5 |A6 |A7 |AB |A9 AL0 |ALL |A12 |A13 (@ ® Al4 AL5 |AL6-L
Lectern Table Lectern Table
Front of Room Front Door Front of Room Front Door

12

SGD VS. GRADIENT DESCENT

SGD vs. Gradient Descent

Gradient Descent Stochastic Gradient Descent

17

* Empirical comparison:
Log-log scale plot

Mean Squared Error (Train)

A

SGD vs. Gradient Descent

ClosedXorm
(normal

Gradient Descent

Epochs

Def: an epoch is a
single pass through
the training data

For GD, only one
update per epoch

For SGD, N updates

per epoch
N = (# train examples)

SGD reduces MSE
much more rapidly
than GD

For GD /[SGD, training
MSE is initially large
due to uninformed
initialization

SGD vs. Gradient Descent

* Theoretical comparison:

Define convergence to be when J(8®) — J(0*) < €

Method Steps to Computation
Convergence per Step

Gradient descent O(log 1/6) O(NM)
SGD 0(1/¢) 0(M)
— _/
~—

(with high probability under certain assumptions)

19

SGD FOR
LINEAR REGRESSION

Linear Regression as Function Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {ho : ho(x) = 8Tx,0 ¢ RM}

Gradient Calculation for Linear Regression

Derivative of J()(8): Derivative of J(6):
d : N
J(Z)(g) (gT (4) _ (Z))2 d 1 d ,
dby. dH 2 —J(0) = — —J% (e
1 d 5 : do, () N; 0} ()
— (0 ("’) ("'))2 —
2 dby, T
2 2 d) 1 = — T (Z) - (Z) (7“)
:(BTX()_y())dH T OO N;(e x() — D)z

— (0Tx(® — @) 29 2
de pa

_ (67x®) — y(@)z®)

Gradient of J(0) [used by Gradient Descent]
Gradient of J(V)(0) [used by SGD] I %J(Q)] _% S (07x® — y @)zl
. o a7 (0) | | &% i (07x) — y @)y
r %JE’;(G) 1 (9;x<z> - y@))x%’; Ve J(0) = . = -
, < J*)(0) (OTx@D — @) s’ : =
; | a2 _ y 2 d . N
VBJ()(9) — E = : v J(O) _% Z:ZV 1(0TX(Z) — y(z))xgw)
d i i i i N
L2 7P 0] [(07x® — @)z | A Z (0T — D))
— (6Tx® — y®)x(®) N =

SGD for Linear Regression

SGD applied to Linear Regression is called the “Least
Mean Squares” algorithm

Algorithm 1 Least Mean Squares (LMS)

procedure LMS(D, 6(9)
6 «— 6 > Initialize parameters

1.
2
3 while not converged do

4: fori € shuffle({1,2,...,N})do
5

6

7

g + (07x() — 4())x® > Compute gradient
0<+—0—n~g > Update parameters

return 6

GD for Linear Regression

Gradient Descent for Linear Regression repeatedly takes
steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression

= procedure GDLR(D, 89)

0 — 6% > Initialize parameters
while not converged do

2
3
4: g &30 (0Tx(®D —yM)x() 1 Compute gradient
5
6

00 —~g > Update parameters
return 6

Solving Linear Regression

Question:

True or False: If Mean Squared Error (i.e. & vazl(y(i) — h(x"))2)
has a unique minimizer (i.e. argmin), then Mean Absolute Error (i.e.
LSy — h(x®)]) must also have a unique minimizer.

Answer:

Optimization Objectives

You should be able to...

Apply gradient descent to optimize a function

Apply stochastic gradient descent (SGD) to optimize a
function

Apply knowledge of zero derivatives to identify a closed-
form solution (if one exists) to an optimization problem

Distinguish between convex, concave, and nonconvex
functions

Obtain the gradient (and Hessian) of a (twice) differentiable
function

PROBABILISTIC LEARNING

Probabilistic Learning

Function Approximation

Previously, we assumed that our output
was generated using a deterministic
target function:

x) ~ p*(-)
y = ¢*(x)

Our goal was to learn a hypothesis h(x)
that best approximates c*(x)

Probabilistic Learning

Today, we assume that our output is
sampled from a conditional probability
distribution:

x) ~ p*()
y ~ p* (- x?)
Our goal is to learn a probability

distribution p(y|x) that best
approximates p*(y|x)

MAXIMUM LIKELIHOOD ESTIMATION

Likelihood Function | ©OneR.V.

Given N independent, identically distributed (iid) samples D=
fx, x(), ..., x(N} from a discrete random variable X with probability
mass function (pmf) p(x|0) ...

 (Case 1: The likelihood function The likelihood tells us

how likel le i
O =PRI) | PRt

* Case 2: The log-likelihood function is
(0) = log p(xM]B) + ... +log p(x(N)|6)

Likelihood Function | TwWoR.V.s

Given N iid samples D = {(x®, yM), ..., (xM), y(\)} from a pair of
random variables X, Y where Y is discrete with probability
mass function (pmf) p(y| x, 6)

e (Case 3: The conditional likelihood function:
L(8) = p(y"| x(, 8) ... p(y™ | x(N), ©)

* (Case 4: The conditional log-likelihood function is
«(6) = log p(yV| xv, 6) + ... +log p(y™] x™), 6)

MLE

Suppose we have data D = {2V},

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood

of the data. v .
O™ = argmax Hp(x(z) 0)
g =l

Maximum Likelihood Estimate (MLE)

A

/'\L(e)

>

MLE

Dk -

MLE
Suppose we have data D = {(y¥,x(V)} ¥,

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the conditional likelihood

of the data. v . .
oM = argmaXHp(y(Z) | x() 9)
o =1
Maximum Likelihood Estimate (MLE)

A

/'\L(e)

>

MLE

Dk -

MLE
Suppose we have data D = {(y, x(V)} ¥V

MLE
Suppose we have data D = {(y¥,x(V)} ¥,

Principle of Maximum Likelihood Estimation:
Choose the parameters that minimize the negative conditional log-

likelihood of the data.
OME — argmaXHp) ())
0 1=1

N
— argmax log p(yV X(i),H
= ; gp(y'” |)

— argmm — Zlogp) ())

1=1

MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability mass (i.e. sum-to-
one constraint)

* MLE tries to allocate as much probability mass as possible to
the things we have observed...

... at the expense of the things we have not observed

LOGISTIC REGRESSION

dimenzion 3

fication

Background: Hyperplanes%

Hyperplane (Definition 1):

H={x:wx+b=0}
Hyperplane (Definition 2):
H={x:0"x=0
andx; =1}
' T
S :b,wl,...,qul
X = _].,2131,. ..,$M]

Half-spaces: 1
Ht ={x:0"x>0andzy = 1}
H™ ={x:0"x< 0and zg = 1}

Using gradient descent for linear classifiers

Key idea behind today’s lecture:
1. Define a linear classifier (logistic regression)
2. Define an objective function (likelihood)
3. Optimize it with gradient descent to learn parameters
4. Predict the class with highest probability under the model

Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs
are discrete. |
D = {xW, ¢y wherex ¢ RM and y € {0,1}

We are back to
classification.

Despite the name
logistic regression.

sign(-) vs. sigmoid(-)

sign(+) vs. sigmoid(-)

sign(+) vs. sigmoid(-)

Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs
are discrete. |
D = {x9, yN wherex ¢ RM andy € {0,1}

Model: Logistic function applied to dot product of
parameters with input vector. 1

pe(y = 1|x) =

1 + exp(—6'x)
Learning: finds the parameters that minimize some

objective function. g* — argmin .J(0)
0

Prediction: Output is the most probable class.

y = argmax pg(y|x)
ye{0,1}

Learning Logistic Regression

Learning: Four approaches to solving 6" = argmin J(0)
0

Approach o: Random Search
(horridly slow because it lacks gradient information)

Approach 1: Gradient Descent
(take large confident steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps roughly opposite the gradient)

(set derivatives equal to zero and solv

54

Logistic Regression

1. Model 2. Objective

Logistic Regression

3A. Derivatives 3B. Gradients

Logistic Regression

4. Optimization 5. Prediction

