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Reminders

* Homework 3: KNN, Perceptron, Lin.Reg.
— Out: Mon, Feb. 3
— Due: Mon, Feb. 10 at 11:59pm
— (only two grace/late days permitted)

* Practice Problems 1
— released on course website
 Exam 1: Mon, Feb. 17
— Time: 7:00 — 9:00pm
— Location: Your room/seat assignment will be announced on Piazza




OPTIMIZATION METHOD #3:
STOCHASTIC GRADIENT DESCENT



Gradient Descent

Algorithm 1 Gradient Descent
. procedure GD(D, ')

x 0+ 00

3 while not converged do
4: 0<+—0—~VJo)

5 return 0

per-example objective:
J(0)
original objective:y

7(0) = % PRI



Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

i procedure SGD(D, 6'V)

x 0+ Y

3 while not converged do

4: i ~ Uniform({1,2,...,N})
5

6

0 0—~VeJ(O)
return 6

per-example objective:
J(0)
original objective:y

70) =+ > 796)



Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

1: procedure SGD(D, 0(0))

2
3
4:
p
6

0 — 0
while not converged do
fori € shuffle({1,2,...,
0 — 0 — ’YV@J 1)(0)

return 0

.,N})do

N\

per-example objective:
J(0)
orlglnal ob]ectlveN

Z J@ (o

D>

In practice, it is common to

implement SGD using sampling

without replacement (i.e.
shuffle({1,2,. B)

even though most

of the theory is for sampling with

replacement (i.e. Uniform({1,2,.

- N3).




Why does SGD work?

Background: Expectation of a function

of a random variable

For any discrete random variable X

Ex[f(0] = ) PO = 0f (@)

XEX

Objective Function for SGD

We assume the form to be:

N
1 :
1©) =) J96)

Expectation of a Stochastic Gradient:

* If the example is sampled uniformly at random, the expected value of
the pointwise gradient is the same as the full gradient!

E[Vej(i) @] = Z(probability of selecting x(, y(i)) Vo] D(0)
i=1
N

- Z (%) Var©(®)
z Vel (6)

= Va] (9)
* Inpractice, the data set is randomly shuffled then looped through so
that each data point is used equally often




Why does SGD work?
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SGD VS. GRADIENT DESCENT



SGD vs. Gradient Descent

Gradient Descent Stochastic Gradient Descent

17



* Empirical comparison:
Log-log scale plot

Mean Squared Error (Train)

A

SGD vs. Gradient Descent

ClosedXorm
(normal

Gradient Descent

Epochs

Def: an epoch is a
single pass through
the training data

For GD, only one
update per epoch

For SGD, N updates

per epoch
N = (# train examples)

SGD reduces MSE
much more rapidly
than GD

For GD /[ SGD, training
MSE is initially large
due to uninformed
initialization



SGD vs. Gradient Descent

* Theoretical comparison:

Define convergence to be when J(8®) — J(0*) < €

Method Steps to Computation
Convergence per Step

Gradient descent  O(log 1/6) O(NM)
SGD 0(1/¢) 0(M)
— _/
~—

(with high probability under certain assumptions)

19



SGD FOR
LINEAR REGRESSION



Linear Regression as Function Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {ho : ho(x) = 8Tx,0 ¢ RM}




Gradient Calculation for Linear Regression

Derivative of J()(8): Derivative of J(6):
d : N
J(Z)(g) (gT (4) _ (Z))2 d 1 d ,
dby. dH 2 —J(0) = — —J% (e
1 d 5 : do, ( ) N; 0} ( )
— (0 ("’) ("'))2 —
2 dby, T
2 2 d ) 1 = — T (Z) - (Z) (7“)
:(BTX()_y())dH T OO N;(e x() — D)z

— (0Tx(® — @) 29 2
de pa

_ (67x®) — y(@)z®)

Gradient of J(0) [used by Gradient Descent]
Gradient of J(V)(0) [used by SGD] I %J(Q) ] _% S (07x® — y @)zl
. o a7 (0) | | &% i (07x) — y @)y
r %JE’;(G) 1 (9;x<z> - y@))x%’; Ve J(0) = . = -
, < J*)(0) (OTx@D — @) s’ : =
; | a2 _ y 2 d . N
VBJ( )(9) — E = : v J(O) _% Z:ZV 1(0TX(Z) — y(z))xgw)
d i i i i N
L2 7P 0] [(07x® — @)z | A Z (0T — D))
— (6Tx® — y®)x(®) N =



SGD for Linear Regression

SGD applied to Linear Regression is called the “Least
Mean Squares” algorithm

Algorithm 1 Least Mean Squares (LMS)

procedure LMS(D, 6(9)
6 «— 6 > Initialize parameters

1.
2
3 while not converged do

4: fori € shuffle({1,2,...,N})do
5

6

7

g + (07x() — 4())x® > Compute gradient
0<+—0—n~g > Update parameters

return 6




GD for Linear Regression

Gradient Descent for Linear Regression repeatedly takes
steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression

= procedure GDLR(D, 89)

0 — 6% > Initialize parameters
while not converged do

2
3
4: g &30 (0Tx(®D —yM)x() 1 Compute gradient
5
6

00 —~g > Update parameters
return 6




Solving Linear Regression

Question:

True or False: If Mean Squared Error (i.e. & vazl(y(i) — h(x"))2)
has a unique minimizer (i.e. argmin), then Mean Absolute Error (i.e.
LSy — h(x®)]) must also have a unique minimizer.

Answer:



Optimization Objectives

You should be able to...

Apply gradient descent to optimize a function

Apply stochastic gradient descent (SGD) to optimize a
function

Apply knowledge of zero derivatives to identify a closed-
form solution (if one exists) to an optimization problem

Distinguish between convex, concave, and nonconvex
functions

Obtain the gradient (and Hessian) of a (twice) differentiable
function



PROBABILISTIC LEARNING



Probabilistic Learning

Function Approximation

Previously, we assumed that our output
was generated using a deterministic
target function:

x) ~ p*(-)
y = ¢*(x)

Our goal was to learn a hypothesis h(x)
that best approximates c*(x)

Probabilistic Learning

Today, we assume that our output is
sampled from a conditional probability
distribution:

x) ~ p*()
y ~ p* (- x?)
Our goal is to learn a probability

distribution p(y|x) that best
approximates p*(y|x)



MAXIMUM LIKELIHOOD ESTIMATION



Likelihood Function | ©OneR.V.

Given N independent, identically distributed (iid) samples D=
fx, x(), ..., x(N} from a discrete random variable X with probability
mass function (pmf) p(x|0) ...

 (Case 1: The likelihood function The likelihood tells us

how likel le i
O =PRI ) | PRt

* Case 2: The log-likelihood function is
(0) = log p(xM]B) + ... +log p(x(N)|6)



Likelihood Function | TwWoR.V.s

Given N iid samples D = {(x®, yM), ..., (xM), y(\)} from a pair of
random variables X, Y where Y is discrete with probability
mass function (pmf) p(y| x, 6)

e (Case 3: The conditional likelihood function:
L(8) = p(y"| x(, 8) ... p(y™ | x(N), ©)

* (Case 4: The conditional log-likelihood function is
«(6) = log p(yV| xv, 6) + ... +log p(y™] x™), 6)



MLE

Suppose we have data D = {2V},

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood

of the data. v .
O™ = argmax Hp(x(z) 0)
g =l

Maximum Likelihood Estimate (MLE)

A

/'\L(e)

>

MLE

Dk -



MLE
Suppose we have data D = {(y¥,x(V)} ¥,

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the conditional likelihood

of the data. v . .
oM = argmaXHp(y(Z) | x() 9)
o =1
Maximum Likelihood Estimate (MLE)

A

/'\L(e)

>

MLE

Dk -



MLE
Suppose we have data D = {(y, x(V)} ¥V




MLE
Suppose we have data D = {(y¥,x(V)} ¥,

Principle of Maximum Likelihood Estimation:
Choose the parameters that minimize the negative conditional log-

likelihood of the data.
OME — argmaXHp ) () )
0 1=1

N
— argmax log p(yV X(i),H
= ; gp(y'” | )

— argmm — Zlogp ) () )

1=1



MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability mass (i.e. sum-to-
one constraint)

* MLE tries to allocate as much probability mass as possible to
the things we have observed...

... at the expense of the things we have not observed



LOGISTIC REGRESSION



dimenzion 3

fication




Background: Hyperplanes%

Hyperplane (Definition 1):

H={x:wx+b=0}
Hyperplane (Definition 2):
H={x:0"x=0
andx; =1}
' T
S :b,wl,...,qul
X = _].,2131,. ..,$M]

Half-spaces: 1
Ht ={x:0"x>0andzy = 1}
H™ ={x:0"x< 0and zg = 1}



Using gradient descent for linear classifiers

Key idea behind today’s lecture:
1. Define a linear classifier (logistic regression)
2. Define an objective function (likelihood)
3. Optimize it with gradient descent to learn parameters
4. Predict the class with highest probability under the model



Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs
are discrete. |
D = {xW, ¢y wherex ¢ RM and y € {0,1}

We are back to
classification.

Despite the name
logistic regression.



sign(-) vs. sigmoid(-)




sign(+) vs. sigmoid(-)




sign(+) vs. sigmoid(-)




Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs
are discrete. |
D = {x9, yN wherex ¢ RM andy € {0,1}

Model: Logistic function applied to dot product of
parameters with input vector. 1

pe(y = 1|x) =

1 + exp(—6'x)
Learning: finds the parameters that minimize some

objective function. g* — argmin .J(0)
0

Prediction: Output is the most probable class.

y = argmax pg(y|x)
ye{0,1}



Learning Logistic Regression

Learning: Four approaches to solving 6" = argmin J(0)
0

Approach o: Random Search
(horridly slow because it lacks gradient information)

Approach 1: Gradient Descent
(take large confident steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps roughly opposite the gradient)

(set derivatives equal to zero and solv

54



Logistic Regression

1. Model 2. Objective



Logistic Regression

3A. Derivatives 3B. Gradients



Logistic Regression

4. Optimization 5. Prediction



