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Reminders

• Homework 3: KNN, Perceptron, Lin.Reg.
– Out: Mon, Feb. 3
– Due: Mon, Feb. 10 at 11:59pm 
– (only two grace/late days permitted)

• Practice Problems 1 
– released on course website

• Exam 1: Mon, Feb. 17
– Time: 7:00 – 9:00pm
– Location: Your room/seat assignment will be announced on Piazza

3



OPTIMIZATION METHOD #3:
STOCHASTIC GRADIENT DESCENT
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Gradient Descent
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Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

—



Stochastic Gradient Descent (SGD)
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per-example objective:

original objective:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.



Stochastic Gradient Descent (SGD)
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In practice, it is common 
to implement SGD using 

sampling without 
replacement (i.e. 

shuffle({1,2,…N}), even 
though most of the 

theory is for sampling 
with replacement (i.e. 

Uniform({1,2,…N}).

per-example objective:

original objective:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.



Why does SGD work?
Background: Expectation of a function 

of a random variable

For any discrete random variable X 

𝐸! 𝑓(𝑋) = '
"	∈	𝒳

𝑃 𝑋 = 𝑥 𝑓(𝑥)

Expectation of a Stochastic Gradient:

• If the example is sampled uniformly at random, the expected value of 
the pointwise gradient is the same as the full gradient!

𝐸 ∇𝜽𝐽 ' 𝜽 ='
'()

*

probability	of	selecting	𝒙 ' , 𝑦 ' ∇𝜽𝐽 ' 𝜽

𝐸 ∇𝜽𝐽 ' 𝜽 ='
'()

*
1
𝑁

∇𝜽𝐽 ' 𝜽

𝐸 ∇𝜽𝐽 ' 𝜽 	=
1
𝑁
'
'()

*

∇𝜽𝐽 ' 𝜽

𝐸 ∇𝜽𝐽 ' 𝜽 	= ∇𝜽𝐽 𝜽
• In practice, the data set is randomly shuffled then looped through so 

that each data point is used equally often
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Objective Function for SGD

We assume the form to be:

𝐽 𝜽 =
1
𝑁
'
'()

*

𝐽 ' 𝜽



Why does SGD work?

11



12



SGD VS. GRADIENT DESCENT
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SGD vs. Gradient Descent
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Gradient Descent Stochastic Gradient Descent



• SGD reduces MSE 
much more rapidly 
than GD

• For GD / SGD, training 
MSE is initially large 
due to uninformed 
initialization
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Gradient Descent

SGD

Closed-form 
(normal eq.s)

• Def: an epoch is a 
single pass through 
the training data

1. For GD, only one 
update per epoch

2. For SGD, N updates 
per epoch 
N = (# train examples) 
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SGD vs. Gradient Descent
• Empirical comparison:



SGD vs. Gradient Descent

• Theoretical comparison:
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Method Steps to 
Convergence

Computation 
per Step

Gradient descent 𝑂 log C1 𝜖 𝑂 𝑁𝑀

SGD 𝑂 C1 𝜖 𝑂 𝑀

(with high probability under certain assumptions)

Define convergence to be when 𝐽 𝜽 𝒕 − 𝐽 𝜽∗ < 𝜖

Main Takeaway: SGD has much slower asymptotic convergence 
(i.e. it’s slower in theory), but  is often much faster in practice.



SGD FOR
LINEAR REGRESSION
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Linear Regression as Function Approximation
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Gradient Calculation for Linear Regression
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[used by SGD]
[used by Gradient Descent]



SGD for Linear Regression
SGD applied to Linear Regression is called the “Least 
Mean Squares” algorithm
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GD for Linear Regression
Gradient Descent for Linear Regression repeatedly takes 
steps opposite the gradient of the objective function
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Algorithm 1 GD for Linear Regression

1: procedure GDLR(D, ✓(0))
2: ✓  ✓(0) . Initialize parameters
3: while not converged do
4: ; 

PN
i=1(✓

T t(i) � y(i))t(i) . Compute gradient
5: ✓  ✓ � �; . Update parameters
6: return ✓

<latexit sha1_base64="gWGdHQfN8j09yYTmSWy+s/g3Usg="></latexit>



Answer:

Solving Linear Regression
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Question:



Optimization Objectives
You should be able to…
• Apply gradient descent to optimize a function
• Apply stochastic gradient descent (SGD) to optimize a 

function
• Apply knowledge of zero derivatives to identify a closed-

form solution (if one exists) to an optimization problem
• Distinguish between convex, concave, and nonconvex 

functions
• Obtain the gradient (and Hessian) of a (twice) differentiable 

function
29



PROBABILISTIC LEARNING
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Probabilistic Learning

Function Approximation
Previously, we assumed that our output 
was generated using a deterministic 
target function:

Our goal was to learn a hypothesis h(x) 
that best approximates c*(x)

Probabilistic Learning
Today, we assume that our output is 
sampled from a conditional probability 
distribution:

Our goal is to learn a probability 
distribution p(y|x) that best 
approximates p*(y|x)
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Robotic Farming
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Deterministic Probabilistic

Classification
(binary output)

Is this a picture of 
a wheat kernel?

Is this plant 
drought resistant?

Regression
(continuous 
output)

How many wheat 
kernels are in this 
picture?

What will the yield 
of this plant be?



MAXIMUM LIKELIHOOD ESTIMATION
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Likelihood Function
Given N independent, identically distributed (iid) samples           D = 
{x(1), x(2), …, x(N)} from a discrete random variable X with probability 
mass function (pmf) p(x|θ) …

• Case 1: The likelihood function
  L(θ) = p(x(1)|θ) p(x(2)|θ) … p(x(N)|θ)

• Case 2: The log-likelihood function is
  l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)
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The likelihood tells us 
how likely one sample is 

relative to another

One R.V.



Likelihood Function
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Two R.V.s

Given N iid samples D = {(x(1), y(1)), …, (x(N), y(N))} from a pair of 
random variables X, Y where Y is discrete with probability 
mass function (pmf)  p(y | x, θ)

• Case 3: The conditional likelihood function:
  L(θ) = p(y(1) | x(1), θ) …p(y(N) | x(N), θ) 

• Case 4: The conditional log-likelihood function is
  l(θ) = log p(y(1) | x(1), θ) + … + log p(y(N) | x(N), θ) 



MLE
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Suppose we have dataD = {x(i)}N
i=1

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

�MAP = �`;K�t
�

N�

i=1

p(t(i)|�)p(�)

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood 
of the data.

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

Maximum Likelihood Estimate (MLE)

L(θ)

θMLE

θMLEθ2

θ1

L(θ1, θ2)



MLE
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Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the conditional likelihood 
of the data.

Maximum Likelihood Estimate (MLE)

L(θ)

θMLE

θMLEθ2

θ1

L(θ1, θ2)

θ
MLE = argmax

θ

N∏

i=1

p(y(i) | x(i)
,θ)

Suppose we have dataD = {(y(i), x(i))}N
i=1



MLE
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 Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the conditional log-likelihood 
of the data.

θ
MLE = argmax

θ

N∏

i=1

p(y(i) | x(i)
,θ)

= argmax
θ

N∑

i=1

log p(y(i) | x(i)
,θ)

Suppose we have dataD = {(y(i), x(i))}N
i=1



MLE
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 Principle of Maximum Likelihood Estimation:
Choose the parameters that minimize the negative conditional log-
likelihood of the data.

θ
MLE = argmax

θ

N∏

i=1

p(y(i) | x(i)
,θ)

= argmax
θ

N∑

i=1

log p(y(i) | x(i)
,θ)

= argmin
θ

−

N∑

i=1

log p(y(i) | x(i)
,θ)

Suppose we have dataD = {(y(i), x(i))}N
i=1



MLE

What does maximizing likelihood accomplish?
• There is only a finite amount of probability mass (i.e. sum-to-

one constraint)
• MLE tries to allocate as much probability mass as possible to 

the things we have observed…

…at the expense of the things we have not observed
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LOGISTIC REGRESSION
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Key idea: Try to learn 
this hyperplane directly

Linear Models for Classification

Directly modeling the 
hyperplane would use a 
decision function:

for:

h(t) = sign(�T t)

y � {�1, +1}

Recall…



Background: Hyperplanes

w

Half-spaces: 

Notation Trick: fold the 
bias b and the weights w 
into a single vector θ by 

prepending a constant to 
x and increasing 

dimensionality by one to 
get x’!

’

’ ’

1

1

Hyperplane (Definition 1): 
H = {x : wT x + b = 0}

Hyperplane (Definition 2): 

Recall…

1



Using gradient descent for linear classifiers

Key idea behind today’s lecture:
1. Define a linear classifier (logistic regression)
2. Define an objective function (likelihood)
3. Optimize it with gradient descent to learn parameters
4. Predict the class with highest probability under the model
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Logistic Regression
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We are back to 
classification.

Despite the name 
logistic regression.

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.



sign(·) vs. sigmoid(·)
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sign(u)

h(t) = sign(�T t)

-1 

1 

Suppose we wanted to learn a linear classifier, but instead of 
predicting y ∈ {-1,+1} we wanted to predict y ∈ {0,1}



sign(·) vs. sigmoid(·)
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“sign”(u)

0

1 

Suppose we wanted to learn a linear classifier, but instead of 
predicting y ∈ {-1,+1} we wanted to predict y ∈ {0,1}

Goal: Learn a linear 
classifier with 

Gradient Descent



sign(·) vs. sigmoid(·)
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Use a differentiable 
function instead!

logistic(u) ≡ 1
1+ e−u

p�(y = 1|t) =
1

1 + 2tT(��T t)

But this decision function 
isn’t differentiable…

“sign”(u)

1 

0

The logistic 
function is also 

called the 
sigmoid 

function.



Logistic Regression

53

Learning: finds the parameters that minimize some 
objective function. �� = argmin

�
J(�)

Prediction: Output is the most probable class.
ŷ = �`;K�t

y�{0,1}
p�(y|t)

Model: Logistic function applied to dot product of 
parameters with input vector.

p�(y = 1|t) =
1

1 + 2tT(��T t)

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.



Learning Logistic Regression
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Learning: Four approaches to solving 

Approach 0: Random Search
(horridly slow because it lacks gradient information)

Approach 1: Gradient Descent
(take large confident steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps roughly opposite the gradient)

Approach 3: Closed Form
(set derivatives equal to zero and solve for parameters)

�� = argmin
�

J(�)

Logistic Regression does not 
have a closed form solution 
for MLE parameters.



Logistic Regression

1. Model 2. Objective
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Logistic Regression

3A. Derivatives 3B. Gradients
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Logistic Regression

4. Optimization 5. Prediction
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