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Reminders

• Homework 3: KNN, Perceptron, Lin.Reg.
– Out: Mon, Feb. 3
– Due: Mon, Feb. 10 at 11:59pm 
– (only two grace/late days permitted)

• Practice Problems 1 
– released on course website

• Exam 1: Mon, Feb. 17
– Time: 7:00 – 9:00pm
– Location: Your room/seat assignment will be announced on Piazza

3



OPTIMIZATION METHOD #3:
STOCHASTIC GRADIENT DESCENT
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Gradient Descent
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Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

—



Stochastic Gradient Descent (SGD)

7

per-example objective:

original objective:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.



Stochastic Gradient Descent (SGD)
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In practice, it is common 
to implement SGD using 

sampling without 
replacement (i.e. 

shuffle({1,2,…N}), even 
though most of the 

theory is for sampling 
with replacement (i.e. 

Uniform({1,2,…N}).

per-example objective:

original objective:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.



Why does SGD work?
Background: Expectation of a function 

of a random variable

For any discrete random variable X 

𝐸! 𝑓(𝑋) = '
"	∈	𝒳

𝑃 𝑋 = 𝑥 𝑓(𝑥)

Expectation of a Stochastic Gradient:

• If the example is sampled uniformly at random, the expected value of 
the pointwise gradient is the same as the full gradient!

𝐸 ∇𝜽𝐽 ' 𝜽 ='
'()

*

probability	of	selecting	𝒙 ' , 𝑦 ' ∇𝜽𝐽 ' 𝜽

𝐸 ∇𝜽𝐽 ' 𝜽 ='
'()

*
1
𝑁

∇𝜽𝐽 ' 𝜽

𝐸 ∇𝜽𝐽 ' 𝜽 	=
1
𝑁
'
'()

*

∇𝜽𝐽 ' 𝜽

𝐸 ∇𝜽𝐽 ' 𝜽 	= ∇𝜽𝐽 𝜽
• In practice, the data set is randomly shuffled then looped through so 

that each data point is used equally often
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Objective Function for SGD

We assume the form to be:

𝐽 𝜽 =
1
𝑁
'
'()

*

𝐽 ' 𝜽



Why does SGD work?
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SGD VS. GRADIENT DESCENT
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SGD vs. Gradient Descent
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Gradient Descent Stochastic Gradient Descent



• SGD reduces MSE 
much more rapidly 
than GD

• For GD / SGD, training 
MSE is initially large 
due to uninformed 
initialization
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Gradient Descent

SGD

Closed-form 
(normal eq.s)

• Def: an epoch is a 
single pass through 
the training data

1. For GD, only one 
update per epoch

2. For SGD, N updates 
per epoch 
N = (# train examples) 
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Log-log scale plot

SGD vs. Gradient Descent
• Empirical comparison:



SGD vs. Gradient Descent

• Theoretical comparison:
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Method Steps to 
Convergence

Computation 
per Step

Gradient descent 𝑂 log C1 𝜖 𝑂 𝑁𝑀

SGD 𝑂 C1 𝜖 𝑂 𝑀

(with high probability under certain assumptions)

Define convergence to be when 𝐽 𝜽 𝒕 − 𝐽 𝜽∗ < 𝜖

Main Takeaway: SGD has much slower asymptotic convergence 
(i.e. it’s slower in theory), but  is often much faster in practice.



SGD FOR
LINEAR REGRESSION
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Linear Regression as Function Approximation
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Gradient Calculation for Linear Regression
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[used by SGD]
[used by Gradient Descent]



SGD for Linear Regression
SGD applied to Linear Regression is called the “Least 
Mean Squares” algorithm
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GD for Linear Regression
Gradient Descent for Linear Regression repeatedly takes 
steps opposite the gradient of the objective function
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Algorithm 1 GD for Linear Regression

1: procedure GDLR(D, ✓(0))
2: ✓  ✓(0) . Initialize parameters
3: while not converged do
4: ; 

PN
i=1(✓

T t(i) � y(i))t(i) . Compute gradient
5: ✓  ✓ � �; . Update parameters
6: return ✓

<latexit sha1_base64="gWGdHQfN8j09yYTmSWy+s/g3Usg=">AAAFIXicdVNLbxMxEN6G8FqehSOXEU2lVuojKQcQElJFy0uqUClNi5QNleOd3VjY3pXtbRtW+2v4C9z4BdwQN8SJK/wJxmlSmrb44vG8vpn5xr1cCuuazR9TtQv1i5cuX7kaXrt+4+at29N3dmxWGI5tnsnMvOsxi1JobDvhJL7LDTLVk7jb+7Dm7bv7aKzI9LYb5NhVLNUiEZw5Uu1N17bDqIep0CWTaWaE66uq87IbAkSc5d6nfLEOSWZggxCYgS1MDVqfr/JOp2IFrzqtLszCdh9BF6qHBhxKaeGgjwbBkdqXOrIJnYLtZ4WMwTpmHGWknJsm4xgXBgl6Y6sqG9E6byxAI6Jox/bfl3PN+apRwdCb/N865vDYDFGKzsKkM0RrmVKoXflKCyeYFB8RcmaYQkfTqcapdvtCYqkzBzzTNLcU47HtFFh6DGQLtVeKJ63q/WuYG8NuQ3TowcV8BYswOJLm/ylPVER3XlDO1LBYkOI/gOd1R6mjlCnF6No/kbKdxz7onAaf6XjY4+TsIoeHrpeUBl1hdHWM1gjHQceceNJRxxOUh5OaKty7PdNcag4PnBVaI2EmGJ3Nvempz1Gc8cJXzyWzttNq5q5b0k4ILpEQCos54x9Yih0SNfVlu+Vw/yuYJU08XNIk05460p6MKJmydqB65KmY69vTNq88z9YpXPKoWwrt+dH8CCgpJLgM/GeCWBjkTg5IYJx6Fxx4n4bO/czDMBpGlsttS89lReNREgfLtF5Iz8EiTX0xxoQV0tklelQU4pk4ELHrt5pcheEszD6nvtaYjikveCsIDRvE2uErByyO6U8J6ysa/ntGH3/BfzMNVCscovSej8PIoMYDTvtBmcooYUrIwQi7KiObjOWJ2fhx2hw9w5bWjmnrNeWomiHPrdOsnhV2VpZaD5ZW3qzMrD4dMX4luBfcD+aCVvAwWA1eBptBO+C1L7Vftd+1P/VP9a/1b/XvR661qVHM3WDi1H/+BdBErlY=</latexit>



Answer:

Solving Linear Regression
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Question:



Optimization Objectives
You should be able to…
• Apply gradient descent to optimize a function
• Apply stochastic gradient descent (SGD) to optimize a 

function
• Apply knowledge of zero derivatives to identify a closed-

form solution (if one exists) to an optimization problem
• Distinguish between convex, concave, and nonconvex 

functions
• Obtain the gradient (and Hessian) of a (twice) differentiable 

function
29



PROBABILISTIC LEARNING

30



Probabilistic Learning

Function Approximation
Previously, we assumed that our output 
was generated using a deterministic 
target function:

Our goal was to learn a hypothesis h(x) 
that best approximates c*(x)

Probabilistic Learning
Today, we assume that our output is 
sampled from a conditional probability 
distribution:

Our goal is to learn a probability 
distribution p(y|x) that best 
approximates p*(y|x)
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Robotic Farming
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Deterministic Probabilistic

Classification
(binary output)

Is this a picture of 
a wheat kernel?

Is this plant 
drought resistant?

Regression
(continuous 
output)

How many wheat 
kernels are in this 
picture?

What will the yield 
of this plant be?



MAXIMUM LIKELIHOOD ESTIMATION
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Likelihood Function
Given N independent, identically distributed (iid) samples           D = 
{x(1), x(2), …, x(N)} from a discrete random variable X with probability 
mass function (pmf) p(x|θ) …

• Case 1: The likelihood function
  L(θ) = p(x(1)|θ) p(x(2)|θ) … p(x(N)|θ)

• Case 2: The log-likelihood function is
  l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)

35

The likelihood tells us 
how likely one sample is 

relative to another

One R.V.



Likelihood Function
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Two R.V.s

Given N iid samples D = {(x(1), y(1)), …, (x(N), y(N))} from a pair of 
random variables X, Y where Y is discrete with probability 
mass function (pmf)  p(y | x, θ)

• Case 3: The conditional likelihood function:
  L(θ) = p(y(1) | x(1), θ) …p(y(N) | x(N), θ) 

• Case 4: The conditional log-likelihood function is
  l(θ) = log p(y(1) | x(1), θ) + … + log p(y(N) | x(N), θ) 



MLE
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Suppose we have dataD = {x(i)}N
i=1

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

�MAP = �`;K�t
�

N�

i=1

p(t(i)|�)p(�)

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood 
of the data.

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

Maximum Likelihood Estimate (MLE)

L(θ)

θMLE

θMLEθ2

θ1

L(θ1, θ2)



MLE
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Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the conditional likelihood 
of the data.

Maximum Likelihood Estimate (MLE)

L(θ)

θMLE

θMLEθ2

θ1

L(θ1, θ2)

θ
MLE = argmax

θ

N∏

i=1

p(y(i) | x(i)
,θ)

Suppose we have dataD = {(y(i), x(i))}N
i=1



MLE
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 Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the conditional log-likelihood 
of the data.

θ
MLE = argmax

θ

N∏

i=1

p(y(i) | x(i)
,θ)

= argmax
θ

N∑

i=1

log p(y(i) | x(i)
,θ)

Suppose we have dataD = {(y(i), x(i))}N
i=1



MLE
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 Principle of Maximum Likelihood Estimation:
Choose the parameters that minimize the negative conditional log-
likelihood of the data.

θ
MLE = argmax

θ

N∏

i=1

p(y(i) | x(i)
,θ)

= argmax
θ

N∑

i=1

log p(y(i) | x(i)
,θ)

= argmin
θ

−

N∑

i=1

log p(y(i) | x(i)
,θ)

Suppose we have dataD = {(y(i), x(i))}N
i=1



MLE

What does maximizing likelihood accomplish?
• There is only a finite amount of probability mass (i.e. sum-to-

one constraint)
• MLE tries to allocate as much probability mass as possible to 

the things we have observed…

…at the expense of the things we have not observed
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LOGISTIC REGRESSION
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Key idea: Try to learn 
this hyperplane directly

Linear Models for Classification

Directly modeling the 
hyperplane would use a 
decision function:

for:

h(t) = sign(�T t)

y � {�1, +1}

Recall…



Background: Hyperplanes

w

Half-spaces: 

Notation Trick: fold the 
bias b and the weights w 
into a single vector θ by 

prepending a constant to 
x and increasing 

dimensionality by one to 
get x’!

’

’ ’

1

1

Hyperplane (Definition 1): 
H = {x : wT x + b = 0}

Hyperplane (Definition 2): 

Recall…

1



Using gradient descent for linear classifiers

Key idea behind today’s lecture:
1. Define a linear classifier (logistic regression)
2. Define an objective function (likelihood)
3. Optimize it with gradient descent to learn parameters
4. Predict the class with highest probability under the model

48



Logistic Regression
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We are back to 
classification.

Despite the name 
logistic regression.

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.



sign(·) vs. sigmoid(·)
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sign(u)

h(t) = sign(�T t)

-1 

1 

Suppose we wanted to learn a linear classifier, but instead of 
predicting y ∈ {-1,+1} we wanted to predict y ∈ {0,1}



sign(·) vs. sigmoid(·)
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“sign”(u)

0

1 

Suppose we wanted to learn a linear classifier, but instead of 
predicting y ∈ {-1,+1} we wanted to predict y ∈ {0,1}

Goal: Learn a linear 
classifier with 

Gradient Descent



sign(·) vs. sigmoid(·)
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Use a differentiable 
function instead!

logistic(u) ≡ 1
1+ e−u

p�(y = 1|t) =
1

1 + 2tT(��T t)

But this decision function 
isn’t differentiable…

“sign”(u)

1 

0

The logistic 
function is also 

called the 
sigmoid 

function.



Logistic Regression
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Learning: finds the parameters that minimize some 
objective function. �� = argmin

�
J(�)

Prediction: Output is the most probable class.
ŷ = �`;K�t

y�{0,1}
p�(y|t)

Model: Logistic function applied to dot product of 
parameters with input vector.

p�(y = 1|t) =
1

1 + 2tT(��T t)

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.



Learning Logistic Regression
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Learning: Four approaches to solving 

Approach 0: Random Search
(horridly slow because it lacks gradient information)

Approach 1: Gradient Descent
(take large confident steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps roughly opposite the gradient)

Approach 3: Closed Form
(set derivatives equal to zero and solve for parameters)

�� = argmin
�

J(�)

Logistic Regression does not 
have a closed form solution 
for MLE parameters.



Logistic Regression

1. Model 2. Objective

56



Logistic Regression

3A. Derivatives 3B. Gradients
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Logistic Regression

4. Optimization 5. Prediction

58


