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Front Matter
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* Announcements:

* HW3 released 2/3, due 2/10 at 11:59 PM
- Only two grace days allowed on HW3
* Exam 1on 2/17 from 7 PM -9 PM

* If you have a conflict, you must complete the
Exam conflict form by 2/7 at 1 PM



https://forms.gle/XY9pYuhEeNnLRKjUA

* Location & Seats: You all will be split across multiple
(large) rooms.

* Everyone will have an assigned seat

Exam 1 » Please watch Piazza carefully for more details
I-OngthS * If you have exam accommodations through ODR,

they will be proctoring your exam on our behalf;
you are responsible for submitting the exam

proctoring request through your student portal.
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* Format of questions:

* Multiple choice
* True / False (with justification)

* Derivations

Exam 1 - Short answers
Logistics - Drawing & Interpreting figures

* Implementing algorithms on paper

* No electronic devices (you won’t need them!)

* You are allowed to bring one letter-size sheet of notes;

you can put whatever you want on both sides
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* Covered material: Lectures 1 —7
* Foundations

* Probability, Linear Algebra, Geometry, Calculus
* Optimization
* Important Concepts
* Overfitting
- Model selection / Hyperparameter optimization
* Decision Trees
* k-NN
* Perceptron
* Regression
* Decision Tree and k-NN Regression

* Linear Regression
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Exam 1

Preparation
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* Attend the midterm review lecture (right now!)

* Review the exam practice problems (to be released on

2/7, under the Coursework tab)

* Review HWs 1 -3

- Consider whether you have achieved the “learning

objectives” for each lecture / section

- Write your one-page cheat sheet (back and front)


http://www.cs.cmu.edu/~mgormley/courses/10601/coursework.html

* Solve the easy problems first

* If a problem seems extremely complicated, you might be
missing something

* If you make an assumption, write it down

* Don’t leave any answer blank
* If you look at a question and don’t know the answer:
* just start trying things
- consider multiple approaches

* imagine arguing for some answer and see if you like it
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Consider the problem of predicting whether the university will be closed on a particular day. We will assume that the
factors which decide this are whether there is a snowstorm, whether it is a weekend or an official holiday. Suppose we
have the training examples described in the Table 5.2.

Snowstorm [oliday Weekend Closed
T T F F
T T F T
F T F F
T T F F
. F F F F
Practice F F F T
T F F T
F T
Problem 1a: : :

Table 1: Training examples for decision tree

- What would be the effect of the “Weekend” attribute
on the decision tree if we made it the root node?

Decision Trees

Explain your answer in terms of mutual information
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Consider the problem of predicting whether the university will be closed on a particular day. We will assume that the
factors which decide this are whether there is a snowstorm, whether it is a weekend or an official holiday. Suppose we
have the training examples described in the Table 5.2.

Snowstorm [oliday Weekend Closed

T T F F

T T F T

F T F F

T T F F

. F F F F
Practice F F F T
T F F T

Problem 1b: d ‘ F T

[}

Table 1: Training examples for decision tree

Decision Trees

* Which attribute would we split on first if we used

mutual information as the splitting criterion? You may

use log, G) ~ —0.4 and log, G) = =2
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* Consider the dataset below:

A

111
()L

20

2

Practice

J=

Problem 2:
k-NN

F-2

i

* What is the leave-one-out cross-validation error rate for

a 1-NN model using the Euclidean distance?
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Practice

Problem 3:
Perceptron
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* True or False: Consider two datasets

D, = {(xgl),yl(l)) , (xgz),yfz)) e, (x&Nl),yl(Nl))} and

D, = {(xgl),yz(l)) , (xgz),yz(z)) A (ngZ),yZ(NZ))} where

xgi) € R% and xgi) € R%. Suppose N; > N, and d; > d,.
The maximum number of mistakes the Perceptron learning
algorithm will make on D, is higher than the maximum
number of mistakes it will make on D,.

11



Poll Question 1
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* True or False: Consider two datasets

D, = {(xgl),yl(l)) , (xgz),yfz)) e, (x&Nl),yl(Nl))} and

D, = {(xgl),yz(l)) , (xgz),yz(z)) A (ngZ),yZ(NZ))} where

xgi) € R% and xgi) € R%. Suppose N; > N, and d; > d,.
The maximum number of mistakes the Perceptron learning

algorithm will make on D, is higher than the maximum
number of mistakes it will make on D,.

A. True
B. False

C. True and False (TOXIC)

12



Practice

Problem 4a:
Linear
Regression
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Consider the dataset plotted in the figure below along with
the line learned by linear regression.

Now suppose we slightly alter the dataset in different ways:

for each new dataset, select the option below that best

approximates the new line linear regression would learn

13



Practice
Problem 4b:

Linear
Regression
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Consider the dataset plotted in the figure below along with

the line learned by linear regression.

g &

uuuuuuu

Now suppose we slightly alter the dataset in different ways:

for each new dataset, select the option below that best

apprOX|mates the new line Imear regression would learn

14



Practice

Problem 4c:
Linear
Regression
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Consider the dataset plotted in the figure below along with

the line learned by linear regression.

e A

Now suppose we slightly alter the dataset in different ways:

for each new dataset, select the option below that best

apprOX|mates the new line Imear regression would learn

15



Poll Question 2
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What questions do you have?

16



Recall:
Gradient

Descent for
Linear
Regression
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* Gradient descent for linear regression repeatedly takes

steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression

procedure GDLR(D, 0(0))

1:

2 0 «— 6% > Initialize parameters
3 while not converged do

4: g — SN (0Tx() — @))% () > Compute gradient
5 0 —0—~g > Update parameters
6 return 0

17
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Convexity
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- A function f: RP? - Ris convex if
Vil eRP,x2 eRPand0<c <1

flex® + (1 - 0)x@) < cf(x) + (1 - o) f(x?)

A f

cf (xV) + (1 - o) f(x?)

flex® + (1 - )x@)

20



Convexity
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- A function f: RP? - Ris convex if
Vil eRP,x2 eRPand0<c <1

flex® + (1 - 0)x@) < cf(x) + (1 - o) f(x?)

A f

cf (xV) + (1 - o) f(x?)

flex® + (1 - )x@)
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Convexity
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- A function f: RP? — Ris strictly convex if
Vv eRP xP eRPand0<c< 1
flex® + (1 - 0)x@) < cf(x) + (1 - o) f(x?)

A f

cf (xV) + (1 - o) f(x?)

flex® + (1 - )x@)

22



Convexity
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_---¥  Convex functions

Non-convex functions

23



Convexity
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4"
-
-

/.~-¥  Given afunction f: R - R

* x* is a global minimum iff
fx) < fx)Vx€eRP

* x* is a local minimum iff

Jest. f(x) < f(x)V

xs.t|lx—x"||, <e

24



Convexity
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Convex functions:
Each local minimum is a

global minimum!

Non-convex functions:
A local minimum may or may

not be a global minimum...
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Convexity
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Strictly convex functions:
There exists a unique global

minimum!

Non-convex functions:
A local minimum may or may

not be a global minimum...

26



* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

\\

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

.

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

N\

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity

2/5/25
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity
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N
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Closed Form

Optimization
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- Idea: find the critical points of the objective function,

specifically the ones where VJ(8) = 0 (the vector of all

zeros), and check if any of them are local minima

 Notation: given training data D = {(xm),y(n))}::l

1 T 1 xil) xl()l)_
-x =1 x@" _ |1 xfz) xl()z) c RNXD+1
. . . . %o .
1 x(N) | 1 x](-N) xl()N)_

is the design matrix

T
cy =|yW, ..., yM|" € RN is the target vector

38



Minimizing the

Mean Squared
Error
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o

N
1~1, .
](g)zﬁz:z(ym_mx(of_ 2 meg ym
=1

1
= ﬁ(XH -'X0 —y)
1 TyT TyT T
1 T T
_ 1 .
Vel (0) = v (2XTX0 —2XTy) = 0

- XTX0 =X"y

-0 =X"X)"XxTy

39



Closed Form

Optimization
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0=xXTX)"1xTy

“
0.0 . f
.6 0.8

000'0¢

I

0.0 0.2 0.4

0.2

1 0.59 043

1.0 77 :
/QQ 0.00q %\
< o
> 2
0.8 \
S %
061 o S RN
P S~ 2 33
hn © d
NN q
0.4 - O
S
S
0.2\ //
L
0
0,

1.0



Closed Form

Solution
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1.

2.

0=X"X)"1xTy

Is XT X invertible?

If so, how computationally expensive is inverting X X?

41



Closed Form

Solution
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0=X"X)"1xTy

Is XT X invertible?

* When N >» D + 1, XTX is (almost always) full rank and
therefore, invertible!

* If XT X is not invertible (occurs when one of the
features is a linear combination of the others) then

there are either 0 or infinitely many solutions!

If so, how computationally expensive is inverting X X?

42



Linear

Regression:
Uniqueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

Y a

=V

43



Linear

Regression:
Uniqueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

Y a

=V
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Linear

Regression:
Uniqueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

Y a

=V

45



Poll Question 3
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

A. -1 (TOXIC) B. 0

Y a

C.1

D. 2

=V

46



Linear

Regression:
Uniqueness
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* Consider a 2D linear yA

regression model trained
to minimize the mean .
squared error: how many ",'
: : : ',0’
optimal solutions (i.e., .-
L -
sets of parameters 0) are >
X1

there for the given

dataset? X,
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Linear

Regression:
Uniqueness
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset? X,
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Linear

Regression:
Uniqueness
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset? X,

49



Closed Form

Solution

2/5/25

0=X"X)"1xTy

Is XT X invertible?

* When N >» D + 1, XTX is (almost always) full rank and
therefore, invertible!

* If XT X is not invertible (occurs when one of the
features is a linear combination of the others) then

there are either 0 or infinitely many solutions

If so, how computationally expensive is inverting X X?

« XTX € RPH1XP+1 o inverting X7 X takes O(D3) time...

» Computing XT X takes O(ND?) time
* Can use gradient descent to (potentially) speed things

up when N and D are large!
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Linear
Regression

Learning
Objectives
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You should be able to...

* Design k-NN Regression and Decision Tree Regression

* Implement learning for Linear Regression using
gradient descent or closed form optimization

* Choose a Linear Regression optimization technique
that is appropriate for a particular dataset by
analyzing the tradeoff of computational complexity
VS. convergence speed

* Identify situations where least squares regression has
exactly one solution or infinitely many solutions

52
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