
10-301/601: Introduction 
to Machine Learning
Lecture 8 – Optimization 
for Machine Learning
Henry Chai & Matt Gormley

2/5/25



Front Matter

 Announcements: 

 HW3 released 2/3, due 2/10 at 11:59 PM 

 Only two grace days allowed on HW3

 Exam 1 on 2/17 from 7 PM – 9 PM

 If you have a conflict, you must complete the 

Exam conflict form by 2/7 at 1 PM 
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https://forms.gle/XY9pYuhEeNnLRKjUA


Exam 1 
Logistics

 Location & Seats: You all will be split across multiple 

(large) rooms.

 Everyone will have an assigned seat

 Please watch Piazza carefully for more details

 If you have exam accommodations through ODR, 

they will be proctoring your exam on our behalf; 

you are responsible for submitting the exam 

proctoring request through your student portal. 
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Exam 1 
Logistics

 Format of questions:

 Multiple choice

 True / False (with justification)

 Derivations

 Short answers

 Drawing & Interpreting figures

 Implementing algorithms on paper

 No electronic devices (you won’t need them!)

 You are allowed to bring one letter-size sheet of notes; 

you can put whatever you want on both sides
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Exam 1 
Topics

 Covered material: Lectures 1 – 7

 Foundations

 Probability, Linear Algebra, Geometry, Calculus

 Optimization

 Important Concepts

 Overfitting

 Model selection / Hyperparameter optimization

 Decision Trees

 𝑘-NN

 Perceptron

 Regression

 Decision Tree and 𝑘-NN Regression

 Linear Regression
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Exam 1 
Preparation

 Attend the midterm review lecture (right now!) 

 Review the exam practice problems (to be released on 

2/7, under the Coursework tab)

 Review HWs 1 - 3

 Consider whether you have achieved the “learning 

objectives” for each lecture / section

 Write your one-page cheat sheet (back and front)
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http://www.cs.cmu.edu/~mgormley/courses/10601/coursework.html


Exam 1 
Tips

 Solve the easy problems first 

 If a problem seems extremely complicated, you might be 

missing something

 If you make an assumption, write it down

 Don’t leave any answer blank

 If you look at a question and don’t know the answer:

 just start trying things

 consider multiple approaches 

 imagine arguing for some answer and see if you like it
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Practice 
Problem 1a:
Decision Trees
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 What would be the effect of the “Weekend” attribute 

on the decision tree if we made it the root node? 

Explain your answer in terms of mutual information



Practice 
Problem 1b:
Decision Trees
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 Which attribute would we split on first if we used 

mutual information as the splitting criterion? You may 

use log2
3

4
≈ −0.4 and log2

1

4
= −2



Practice 
Problem 2:
𝑘-NN 

 Consider the dataset below: 

 What is the leave-one-out cross-validation error rate for 

a 1-NN model using the Euclidean distance?
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Practice 
Problem 3: 
Perceptron

 True or False: Consider two datasets 

𝒟1 = 𝒙1
1

, 𝑦1
1

, 𝒙1
2

, 𝑦1
2

, … , 𝒙1
𝑁1 , 𝑦1

𝑁1  and 

𝒟2 = 𝒙2
1

, 𝑦2
1

, 𝒙2
2

, 𝑦2
2

, … , 𝒙2
𝑁2 , 𝑦2

𝑁2  where 

𝒙1
𝑖

∈ ℝ𝑑1  and 𝒙2
𝑖

∈ ℝ𝑑2 . Suppose 𝑁1 > 𝑁2 and 𝑑1 > 𝑑2. 

The maximum number of mistakes the Perceptron learning 

algorithm will make on 𝒟1 is higher than the maximum 

number of mistakes it will make on 𝒟2.

2/5/25 11



Poll Question 1

 True or False: Consider two datasets 

𝒟1 = 𝒙1
1

, 𝑦1
1

, 𝒙1
2

, 𝑦1
2

, … , 𝒙1
𝑁1 , 𝑦1

𝑁1  and 

𝒟2 = 𝒙2
1

, 𝑦2
1

, 𝒙2
2

, 𝑦2
2

, … , 𝒙2
𝑁2 , 𝑦2

𝑁2  where 

𝒙1
𝑖

∈ ℝ𝑑1  and 𝒙2
𝑖

∈ ℝ𝑑2 . Suppose 𝑁1 > 𝑁2 and 𝑑1 > 𝑑2. 

The maximum number of mistakes the Perceptron learning 

algorithm will make on 𝒟1 is higher than the maximum 

number of mistakes it will make on 𝒟2.

A. True

B. False

C. True and False (TOXIC)
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Consider the dataset plotted in the figure below along with 

the line learned by linear regression. 

Now suppose we slightly alter the dataset in different ways: 

for each new dataset, select the option below that best 

approximates the new line linear regression would learn

Practice 
Problem 4a: 
Linear 
Regression
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Consider the dataset plotted in the figure below along with 

the line learned by linear regression. 

Now suppose we slightly alter the dataset in different ways: 

for each new dataset, select the option below that best 

approximates the new line linear regression would learn

Practice 
Problem 4b: 
Linear 
Regression
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Consider the dataset plotted in the figure below along with 

the line learned by linear regression. 

Now suppose we slightly alter the dataset in different ways: 

for each new dataset, select the option below that best 

approximates the new line linear regression would learn

Practice 
Problem 4c: 
Linear 
Regression

2/5/25 15



Poll Question 2 What questions do you have?
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Recall: 
Gradient 
Descent for 
Linear 
Regression

 Gradient descent for linear regression repeatedly takes 

steps opposite the gradient of the objective function

2/5/25 17



𝜃2

Recall: 
Gradient 
Descent for 
Linear 
Regression
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𝜃1

𝑥

𝑦

𝑦 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 1 )

ℎ(𝑥; 𝜽 2 )

ℎ(𝑥; 𝜽 3 )

ℎ(𝑥; 𝜽 4 )

iteration 𝑡
m

e
an

 s
q

u
ar

ed
 e

rr
o

r 
𝐽(

𝜃
1
,𝜃

2
)

𝐽 𝜃1, 𝜃2 =
1

𝑁
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝜽𝑇𝒙 𝑖 2

𝑡 𝜃1 𝜃2 𝐽(𝜃1, 𝜃2 )

1 0.01 0.02 25.2

2 0.30 0.12 8.7

3 0.51 0.30 1.5

4 0.59 0.43 0.2



𝜃2

Why
Gradient 
Descent for 
Linear 
Regression?
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𝜃1

𝑥

𝑦

𝑦 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 1 )

ℎ(𝑥; 𝜽 2 )

ℎ(𝑥; 𝜽 3 )

ℎ(𝑥; 𝜽 4 )

iteration 𝑡
m

e
an

 s
q

u
ar

ed
 e

rr
o

r 
𝐽(

𝜃
1
,𝜃

2
)

𝐽 𝜃1, 𝜃2 =
1

𝑁
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝜽𝑇𝒙 𝑖 2

𝑡 𝜃1 𝜃2 𝐽(𝜃1, 𝜃2 )

1 0.01 0.02 25.2

2 0.30 0.12 8.7

3 0.51 0.30 1.5

4 0.59 0.43 0.2



 A function 𝑓: ℝ𝐷 → ℝ is strictly convex if 

∀ 𝒙 1 ∈ ℝ𝐷 , 𝒙 2 ∈ ℝ𝐷 and 0 ≤ 𝑐 ≤ 1

𝑓 𝑐𝒙 1 + 1 − 𝑐 𝒙 2 ≤ 𝑐𝑓 𝒙 1 + 1 − 𝑐 𝑓 𝒙 2

𝑓 𝑐𝑥 1 + 1 − 𝑐 𝑥 2

Convexity
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𝑓

𝑥 1 𝑥 2𝑐𝑥 1 + 1 − 𝑐 𝑥 2

𝑐𝑓 𝑥 1 + 1 − 𝑐 𝑓 𝑥 2



 A function 𝑓: ℝ𝐷 → ℝ is strictly convex if 

∀ 𝒙 1 ∈ ℝ𝐷 , 𝒙 2 ∈ ℝ𝐷 and 0 ≤ 𝑐 ≤ 1

𝑓 𝑐𝒙 1 + 1 − 𝑐 𝒙 2 ≤ 𝑐𝑓 𝒙 1 + 1 − 𝑐 𝑓 𝒙 2

𝑓 𝑐𝑥 1 + 1 − 𝑐 𝑥 2

Convexity
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𝑓

𝑥 1 𝑥 2𝑐𝑥 1 + 1 − 𝑐 𝑥 2

𝑐𝑓 𝑥 1 + 1 − 𝑐 𝑓 𝑥 2



 A function 𝑓: ℝ𝐷 → ℝ is strictly convex if 

∀ 𝒙 1 ∈ ℝ𝐷 , 𝒙 2 ∈ ℝ𝐷 and 0 < 𝑐 < 1

𝑓 𝑐𝒙 1 + 1 − 𝑐 𝒙 2 < 𝑐𝑓 𝒙 1 + 1 − 𝑐 𝑓 𝒙 2

𝑓 𝑐𝑥 1 + 1 − 𝑐 𝑥 2

Convexity
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𝑓

𝑥 1 𝑥 2𝑐𝑥 1 + 1 − 𝑐 𝑥 2

𝑐𝑓 𝑥 1 + 1 − 𝑐 𝑓 𝑥 2



Convexity
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Convex functions

Non-convex functions



Convexity
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Given a function 𝑓: ℝ𝐷 → ℝ 

• 𝒙∗ is a global minimum iff 

𝑓 𝒙∗ ≤ 𝑓 𝒙  ∀ 𝒙 ∈ ℝ𝐷

• 𝒙∗ is a local minimum iff 

∃ 𝜖 s.t. 𝑓 𝒙∗ ≤ 𝑓 𝒙  ∀

𝒙 s.t. 𝒙 − 𝒙∗
2 < 𝜖



Convexity
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Convex functions:

Each local minimum is a 

global minimum!

Non-convex functions:

A local minimum may or may 

not be a global minimum…



Convexity
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Strictly convex functions:

There exists a unique global 

minimum!

Non-convex functions:

A local minimum may or may 

not be a global minimum…



Gradient 
Descent & 
Convexity

 Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

 Works great if the objective function is convex! 
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Gradient 
Descent & 
Convexity

 Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

 Works great if the objective function is convex! 

2/5/25 28



Gradient 
Descent & 
Convexity

 Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

 Works great if the objective function is convex! 
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Gradient 
Descent & 
Convexity

 Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

 Works great if the objective function is convex! 
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 Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

 Not ideal if the objective function is non-convex…

Gradient 
Descent & 
Convexity
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 Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

 Not ideal if the objective function is non-convex…

Gradient 
Descent & 
Convexity
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Gradient 
Descent & 
Convexity
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 Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

 Not ideal if the objective function is non-convex…



Gradient 
Descent & 
Convexity

 Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

 Not ideal if the objective function is non-convex…
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𝜃2

Why
Gradient 
Descent for 
Linear 
Regression?
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𝜃1

𝑥

𝑦

𝑦 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 1 )

ℎ(𝑥; 𝜽 2 )

ℎ(𝑥; 𝜽 3 )

ℎ(𝑥; 𝜽 4 )

iteration 𝑡
m

e
an

 s
q

u
ar

ed
 e

rr
o

r 
𝐽(

𝜃
1
,𝜃

2
)

𝐽 𝜃1, 𝜃2 =
1

𝑁
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝜽𝑇𝒙 𝑖 2

𝑡 𝜃1 𝜃2 𝐽(𝜃1, 𝜃2 )

1 0.01 0.02 25.2

2 0.30 0.12 8.7

3 0.51 0.30 1.5

4 0.59 0.43 0.2



𝜃2The mean 
squared 
error is 
convex (but 
not always 
strictly 
convex)

2/5/25 36

𝜃1

𝑥

𝑦

𝑦 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 1 )

ℎ(𝑥; 𝜽 2 )

ℎ(𝑥; 𝜽 3 )

ℎ(𝑥; 𝜽 4 )

iteration 𝑡
m

e
an

 s
q

u
ar

ed
 e

rr
o

r 
𝐽(

𝜃
1
,𝜃

2
)

𝐽 𝜃1, 𝜃2 =
1

𝑁
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝜽𝑇𝒙 𝑖 2

𝑡 𝜃1 𝜃2 𝐽(𝜃1, 𝜃2 )

1 0.01 0.02 25.2

2 0.30 0.12 8.7

3 0.51 0.30 1.5

4 0.59 0.43 0.2



𝜃2

Okay, fine 
but couldn’t 
we do 
something
simpler? 

Yes! 
(sometimes)
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𝜃1

𝑥

𝑦

𝑦 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 1 )

ℎ(𝑥; 𝜽 2 )

ℎ(𝑥; 𝜽 3 )

ℎ(𝑥; 𝜽 4 )

iteration 𝑡
m

e
an

 s
q

u
ar

ed
 e

rr
o

r 
𝐽(

𝜃
1
,𝜃

2
)

𝐽 𝜃1, 𝜃2 =
1

𝑁
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝜽𝑇𝒙 𝑖 2

𝑡 𝜃1 𝜃2 𝐽(𝜃1, 𝜃2 )

1 0.01 0.02 25.2

2 0.30 0.12 8.7

3 0.51 0.30 1.5

4 0.59 0.43 0.2



Closed Form 
Optimization

 Idea: find the critical points of the objective function, 

specifically the ones where ∇𝐽 𝜃 = 𝟎 (the vector of all 

zeros), and check if any of them are local minima

 Notation: given training data 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁

𝑋 =

1 𝒙 1 𝑇

1 𝒙 2 𝑇

⋮ ⋮

1 𝒙 𝑁 𝑇

=

1 𝑥1
1

⋯ 𝑥𝐷
1

1 𝑥1
2

⋯ 𝑥𝐷
2

⋮ ⋮ ⋱ ⋮

1 𝑥1
𝑁

⋯ 𝑥𝐷
𝑁

∈ ℝ𝑁×𝐷+1

is the design matrix

 𝒚 = 𝑦 1 , … , 𝑦 𝑁 𝑇
∈ ℝ𝑁  is the target vector

2/5/25 38



𝐽 𝜽 =
1

𝑁
෍

𝑖=1

𝑁
1

2
𝑦 𝑖 − 𝜽𝑇𝒙 𝑖 2

=
1

2𝑁
෍

𝑖=1

𝑁

𝒙 𝑖 𝑇
𝜽 − 𝑦 𝑖

2

Minimizing the 
Mean Squared 
Error

39

=
1

2𝑁
𝑋𝜃 − 𝒚 𝑇 𝑋𝜃 − 𝒚
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∇𝜽𝐽 𝜽 =
1

2𝑁
2𝑋𝑇𝑋𝜽 − 2𝑋𝑇𝒚

=
1

2𝑁
𝜽𝑇𝑋𝑇𝑋𝜽 − 2𝜽𝑇𝑋𝑇𝒚 + 𝒚𝑇𝒚

∇𝜽𝐽 ෡𝜽 =
1

2𝑁
2𝑋𝑇𝑋෡𝜽 − 2𝑋𝑇𝒚 = 0

→ 𝑋𝑇𝑋෡𝜽 = 𝑋𝑇𝒚

→ ෡𝜽 = 𝑋𝑇𝑋 −1𝑋𝑇𝒚



𝜃2

Closed Form 
Optimization
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𝜃1

𝑥

𝑦

𝑦 = 𝑐∗(𝑥) (unknown)
ℎ(𝑥; ෡𝜽)

𝑡 𝜃1 𝜃2 𝐽(𝜃1, 𝜃2 )

1 0.59 0.43 0.2

෡𝜽 = 𝑋𝑇𝑋 −1𝑋𝑇𝒚



Closed Form 
Solution

412/5/25

1. Is 𝑋𝑇𝑋 invertible?

• When 𝑁 ≫ 𝐷 + 1, 𝑋𝑇𝑋 is (almost always) full rank and 

therefore, invertible!

• If 𝑋𝑇𝑋 is not invertible (occurs when one of the 

features is a linear combination of the others) then 

there are infinitely many solutions!

2. If so, how computationally expensive is inverting 𝑋𝑇𝑋?

• 𝑋𝑇𝑋 ∈ ℝ𝐷+1×𝐷+1 so inverting 𝑋𝑇𝑋 takes 𝑂 𝐷3  time… 

• Can use gradient descent to speed things up!

෡𝜽 = 𝑋𝑇𝑋 −1𝑋𝑇𝒚



Closed Form 
Solution
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1. Is 𝑋𝑇𝑋 invertible?
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Linear 
Regression: 
Uniqueness

43

𝑦

𝑥

 Consider a 1D linear 

regression model trained 

to minimize the mean 

squared error: how many 

optimal solutions (i.e., 

sets of parameters 𝜃) are 

there for the given 

dataset?
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Linear 
Regression: 
Uniqueness

44

𝑦

𝑥

 Consider a 1D linear 

regression model trained 

to minimize the mean 

squared error: how many 

optimal solutions (i.e., 

sets of parameters 𝜃) are 

there for the given 

dataset?
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Linear 
Regression: 
Uniqueness

45

𝑦

𝑥

 Consider a 1D linear 

regression model trained 

to minimize the mean 

squared error: how many 

optimal solutions (i.e., 

sets of parameters 𝜃) are 

there for the given 

dataset?
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Poll Question 3

46

𝑦

𝑥

 Consider a 1D linear 

regression model trained 

to minimize the mean 

squared error: how many 

optimal solutions (i.e., 

sets of parameters 𝜃) are 

there for the given 

dataset?

A. -1 (TOXIC)  B. 0  C. 1  D. 2  E. ∞
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Linear 
Regression: 
Uniqueness

47

 Consider a 2D linear 

regression model trained 

to minimize the mean 

squared error: how many 

optimal solutions (i.e., 

sets of parameters 𝜃) are 

there for the given 

dataset? 

𝑦

𝑥1

𝑥2
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Linear 
Regression: 
Uniqueness

48

 Consider a 2D linear 

regression model trained 

to minimize the mean 

squared error: how many 

optimal solutions (i.e., 

sets of parameters 𝜃) are 

there for the given 

dataset? 

𝑦

𝑥1

𝑥2
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Linear 
Regression: 
Uniqueness

49

 Consider a 2D linear 

regression model trained 

to minimize the mean 

squared error: how many 

optimal solutions (i.e., 

sets of parameters 𝜃) are 

there for the given 

dataset? 

𝑦

𝑥1

𝑥2
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Closed Form 
Solution
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1. Is 𝑋𝑇𝑋 invertible?

• When 𝑁 ≫ 𝐷 + 1, 𝑋𝑇𝑋 is (almost always) full rank and 

therefore, invertible!

• If 𝑋𝑇𝑋 is not invertible (occurs when one of the 

features is a linear combination of the others) then 

there are infinitely many solutions

2. If so, how computationally expensive is inverting 𝑋𝑇𝑋?

• 𝑋𝑇𝑋 ∈ ℝ𝐷+1×𝐷+1 so inverting 𝑋𝑇𝑋 takes 𝑂 𝐷3  time…

• Computing 𝑋𝑇𝑋 takes 𝑂 𝑁𝐷2  time

• Can use gradient descent to (potentially) speed things 

up when 𝑁 and 𝐷 are large!

෡𝜽 = 𝑋𝑇𝑋 −1𝑋𝑇𝒚



Linear 
Regression 
Learning 
Objectives

You should be able to…
 Design k-NN Regression and Decision Tree Regression 
 Implement learning for Linear Regression using 

gradient descent or closed form optimization
 Choose a Linear Regression optimization technique 

that is appropriate for a particular dataset by 
analyzing the tradeoff of computational complexity 
vs. convergence speed 

 Identify situations where least squares regression has 
exactly one solution or infinitely many solutions
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