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Front Matter

2/5/25

* Announcements:

* HW3 released 2/3, due 2/10 at 11:59 PM
- Only two grace days allowed on HW3
* Exam 1on 2/17 from 7 PM -9 PM

* If you have a conflict, you must complete the
Exam conflict form by 2/7 at 1 PM



https://forms.gle/XY9pYuhEeNnLRKjUA

* Location & Seats: You all will be split across multiple
(large) rooms.

* Everyone will have an assigned seat

Exam 1 » Please watch Piazza carefully for more details
I-OngthS * If you have exam accommodations through ODR,

they will be proctoring your exam on our behalf;
you are responsible for submitting the exam

proctoring request through your student portal.
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* Format of questions:

* Multiple choice
* True / False (with justification)

* Derivations

Exam 1 - Short answers
Logistics - Drawing & Interpreting figures

* Implementing algorithms on paper

* No electronic devices (you won’t need them!)

* You are allowed to bring one letter-size sheet of notes;

you can put whatever you want on both sides
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* Covered material: Lectures 1 —7
* Foundations

* Probability, Linear Algebra, Geometry, Calculus
* Optimization
* Important Concepts
* Overfitting
- Model selection / Hyperparameter optimization
* Decision Trees
* k-NN
* Perceptron
* Regression
* Decision Tree and k-NN Regression

* Linear Regression
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Exam 1

Preparation
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* Attend the midterm review lecture (right now!)

* Review the exam practice problems (to be released on

2/7, under the Coursework tab)

* Review HWs 1 -3

- Consider whether you have achieved the “learning

objectives” for each lecture / section

- Write your one-page cheat sheet (back and front)


http://www.cs.cmu.edu/~mgormley/courses/10601/coursework.html

* Solve the easy problems first

* If a problem seems extremely complicated, you might be
missing something

* If you make an assumption, write it down

* Don’t leave any answer blank
* If you look at a question and don’t know the answer:
* just start trying things
- consider multiple approaches

* imagine arguing for some answer and see if you like it
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Consider the problem of predicting whether the university will be closed on a particular day. We will assume that the
factors which decide this are whether there is a snowstorm, whether it is a weekend or an official holiday. Suppose we
have the training examples described in the Table 5.2.

Snowstorm [oliday Weekend Closed
T T F F
T T F T
F T F F
T T F F
. F F F F
Practice F F F T
T F F T
F T
Problem 1a: : :

Table 1: Training examples for decision tree

- What would be the effect of the “Weekend” attribute
on the decision tree if we made it the root node?

Decision Trees

Explain your answer in terms of mutual information
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Consider the problem of predicting whether the university will be closed on a particular day. We will assume that the
factors which decide this are whether there is a snowstorm, whether it is a weekend or an official holiday. Suppose we
have the training examples described in the Table 5.2.

Snowstorm [oliday Weekend Closed
— T T F (¥)
—_— T T F T
F T F
— T T F
. F F F
Practice o F F i
— T F F T
Problem 1b: d : .
([ ]

Table 1: Training examples for decision tree

Decision Trees

* Which attribute would we split on first if we used
mutual information as the splitting criterion? You may

use log, G) ~ —0.4 and log, G) = =2
e
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Practice

Problem 2:
k-NN
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* Consider the dataset below:

A

111
()L

20

D
|

!
&,

F-2

i

* What is the leave-one-out cross-validation error rate for

a 1-NN model using the Euclidean distance?
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Practice

Problem 3:
Perceptron
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* True or False: Consider two datasets

D, = {(xgl),yl(l)) , (xgz),yfz)) e, (x&Nl),yl(Nl))} and

D, = {(xgl),yz(l)) , (xgz),yz(z)) A (ngZ),yZ(NZ))} where

xgi) € R% and xgi) € R%. Suppose N; > N, and d; > d,.
The maximum number of mistakes the Perceptron learning
algorithm will make on D, is higher than the maximum
number of mistakes it will make on D,.

11



Poll Question 1
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* True or False: Consider two datasets

Dy = {(x2,5), (x2,5@), .., (£, y ™)} ang

D, = {(xgl),yz(l)) (xgz),yz(z)) A (ngZ),yz(NZ))} where

(l) € R% and x() € R%. Suppose N; > N, and d; > d,.
The maximum number of mistakes the Perceptron learning

algorithm will make on D, is higher than the maX|mum ( )7_
number of mistakes it will make on D,. /

A. True 3
- cjefﬁ'/\ S
False ~ pedius

C. True and False (TOXIC)

4_) Y = margin
12



Practice

Problem 4a:
Linear
Regression
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Consider the dataset plotted in the figure below along with
the line learned by linear regression.

Now suppose we slightly alter the dataset in different ways:

for each new dataset, select the option below that best

approximates the new line linear regression would learn

13



Practice
Problem 4b:

Linear
Regression
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Consider the dataset plotted in the figure below along with

the line learned by linear regression.

g &

uuuuuuu

Now suppose we slightly alter the dataset in different ways:

for each new dataset, select the option below that best

apprOX|mates the new line Imear regression would learn

14



Practice

Problem 4c:
Linear
Regression
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Consider the dataset plotted in the figure below along with

the line learned by linear regression.
[ra—— ] : "

Now suppose we slightly alter the dataset in different ways:

for each new dataset, select the option below that best

approximates the new line linear regression would learn

15



Poll Question 2
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What questions do you have?

16



Recall:
Gradient

Descent for
Linear
Regression
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* Gradient descent for linear regression repeatedly takes

steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression

procedure GDLR(D, 0(0))

1:

2 0 «— 6% > Initialize parameters
3 while not converged do

4: g — SN (0Tx() — @))% () > Compute gradient
5 0 —0—~g > Update parameters
6 return 0

17
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Convexity
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- A function f: RP? - Ris convex if
Vil eRP,x2 eRPand0<c <1

flex® + (1 - 0)x@) < cf(x) + (1 - o) f(x?)

A f

cf(xV) + (1 - o) f(x@)F

flex® + (1 - )x@)

20



Convexity
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- A function f: RP? - Ris convex if
Vil eRP,x2 eRPand0<c <1

Flex® 4+ (1 - c)x(z))@f(x(l)) + (1 - o) f(x@)
! f

cf (xV) + (1 - o) f(x?)

flex® + (1 - )x@)
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Convexity
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- A function f: RP? — Ris strictly convex if
Vv eRP xP eRPand0<c< 1
flex® + (1 - 0)x@) < cf(x) + (1 - o) f(x?)

A f

cf (xV) + (1 - o) f(x?)

flex® + (1 - )x@)

22



Convexity
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_---¥  Convex functions

Non-convex functions

23



Convexity
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4"
-
-

Rrw{‘-ﬁ.

loca

>
miQ.

/.~-¥  Given afunction f: R - R

* x* is a global minimum iff
fx) < fx)Vx€eRP

* x* is a local minimum iff

Jest. f(x) < f(x)V

xs.t|lx—x"||, <e

24



Convexity
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Convex functions:
Each local minimum is a

global minimum!

Non-convex functions:
A local minimum may or may

not be a global minimum...

25



Convexity
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Strictly convex functions:
There exists a unique global

minimum!

Non-convex functions:
A local minimum may or may

not be a global minimum...

26



* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

\\

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

.

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

N\

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity

2/5/25
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

Gradient
Descent & 4 ~

Convexity

2/5/25

* Not ideal if the objective function is non-convex...
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity

2/5/25
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Closed Form

Optimization
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- Idea: find the critical points of the objective function,

specifically the ones where VJ(8) = 0 (the vector of all

zeros), and check if any of them are local minima

 Notation: given training data D = {(xm),y(n))}::l

1 T 1 xil) xl()l)_
-x =1 x@" _ |1 xfz) xl()z) c RNXD+1
. . . . %o .
1 x(N) | 1 x](-N) xl()N)_

is the design matrix

T
cy =|yW, ..., yM|" € RN is the target vector

38



Minimizing the
Mean Squared

Error




1.0 / \
/§ 0.00q "é\
> 2
PN 0.8 1
0 = (XTX@(Ty ’ |
oedl 1S 5o
B84 28y
0, |s
0.4 @,
(@]
S
0.2 - n
Closed Form \ / /
0.0 + : . . . J
"4' 0.0 0.2 0.4 0.6 0.8 1.0
0,

Optimization

0.2

1 0.59 043
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Closed Form

Solution
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1.

2.

0=X"X)"1xTy

Is XT X invertible?

If so, how computationally expensive is inverting X X?

41



Closed Form

Solution
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1.

2.

0=X"X)"1xTy

Is XT X invertible?
* When N >» D + 1, XTX is (almost always) full rank and

therefore, invertible!

If so, how computationally expensive is inverting X X?

42



Linear

Regression:
Uniqueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

Y a

£

=V

43



Linear

Regression:
Uniqueness
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* Consider a 1D linear

regression model trained

to minimize the mean

squared error: how manye_

optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

Y a

e‘,"'

=V

44



Linear

Regression:
Uniqueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

Y a

=V

45



Poll Question 3
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

A. -1 (TOXIC) B. 0

/7+L_ o

&

é_//

C.1

D. 2

=V

46



Linear

Regression:
Uniqueness
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* Consider a 2D linear yA

regression model trained
to minimize the mean .
squared error: how many ",'
: : : ',0’
optimal solutions (i.e., .-
L -
sets of parameters 0) are >
X1

there for the given

dataset? X,

47



Linear

Regression:
Uniqueness
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset? X,

48



Linear

Regression:
Uniqueness
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset? X,

49



Closed Form

Solution
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1.

2.

0=X"X)"1xTy

Is XT X invertible?
* When N >» D + 1, XTX is (almost always) full rank and

therefore, invertible!

If so, how computationally expensive is inverting X X?

50



Linear
Regression

Learning
Objectives
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You should be able to...

* Design k-NN Regression and Decision Tree Regression

* Implement learning for Linear Regression using
gradient descent or closed form optimization

* Choose a Linear Regression optimization technique
that is appropriate for a particular dataset by
analyzing the tradeoff of computational complexity
VS. convergence speed

* Identify situations where least squares regression has
exactly one solution or infinitely many solutions

51
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