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Reminders

* Homework 2: Decision Trees
— Out: Wed, Jan. 22
— Due: Mon, Feb. 3 at 11:59pm
* Homework 3: KNN, Perceptron, Lin.Reg.
— Out: Mon, Feb. 3
— Due: Mon, Feb. 10 at 11:59pm
— (only two grace/late days permitted)

e Exam conflicts form




Q&A

. How can | get more one-on-one interaction with the
course staff?

Q

Attend office hours as soon after the homework release

* as possible!
OH Traffic for HW2

401

24-Jan 27-Jan 28-Jan 29-Jan 30-Jan 31-Jan 3-Feb 4-Feb 5-Feb 6-Feb
Date

Attendance




Q&A

Q: | just asked a question in OH and now my
TA is crying quietly -- what did | do wrong?

A You've just committed the worst of crimes: asking a
" question that was directly answered in a recitation.

The TA you asked spent hours carefully writing
careful recitation notes and solutions, practicing
their recitation, responding to criticism / changes
from me, etc.

To increase OH efficiency, please review the HW
recitation before asking HW questions in OHs.



Q:

Q&A

| have a medical emergency or family emergency or disability or
other compelling reason and am unable to attend office hours
in-person this week. Can an exception be made so | can attend

office hours remotely?

Yes. Please email the Education Associate(s) and request a
period of remote office hours. We will reply with instructions on
how to utilize them during the approved time period.



REGRESSION



Regression

National will Forecast

Goal:

— Given a training dataset of . y
pairs (x,y) where :

Weaghted %ILI

This is what * Xis avector —_—
differentiates |y is a scalar AR
regression from — Learna function (aka. curve
classification or line) y’ = h(x) that best fits

the training data

Example Applications:
— Stock price prediction
— Forecasting epidemics
— Speech synthesis

— Generation of images (e.g.
Deep Dream)




— QX

Regression

Example: Dataset with only
one feature x and one ar

Q: What is the function that
best fits these points?

L\
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K-NEAREST NEIGHBOR REGRESSION



K-NN Regression

Example: Dataset with only
one feature x and one scalar Algorithm 1: k=1 Nearest
output y Neighbor Regression

 Train: store all (x, y) pairs

* Predict: pick the nearest x
PY in training data and return
itsy

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
o ® Regression

 Train: store all (x, y) pairs

* Predict: pick the nearest
two instances x(™ and x(")
in training data and return

g the weighted average of

their y values



K-NN Regression

Example: Dataset with only
one feature x and one scalar Algorithm 1: k=1 Nearest
output y Neighbor Regression

 Train: store all (x, y) pairs

* Predict: pick the nearest x
PY in training data and return
itsy

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
o ® Regression

 Train: store all (x, y) pairs

* Predict: pick the nearest
two instances x(™ and x(")
in training data and return

g the weighted average of

their y values



K-NN Regression

Example: Dataset with only
one feature x and one scalar Algorithm 1: k=1 Nearest
output y Neighbor Regression

 Train: store all (x, y) pairs
* Predict: pick the nearest x

* Predict: pick the nearest
two instances x(™ and x(")
in training data and return
the weighted average of
their y values

® in training data and return
itsy
y (ML e ' ‘
L ! Algorithm 2: k=2 Nearest
Y | Neighbors Distance Weighted
y () ==mmmes =9 i Regression
o i  Train: store all (x, y) pairs

—_—
—
—
e
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K-NN Regression

Example: Dataset with only

i one feature x and one scalar Algorithm 1: k=1 Nearest
The distance output y Neighbor Regression
weighted  Train: store all (x, y) pairs
average of x("™) * Predict: pick the nearest x
and x(?) ® in training data and return
itsy
y(m) __________________ ,__,' .
. ! Algorithm 2: k=2 Nearest
Y | Neighbors Distance Weighted
- H ! — 9 | Regression
IS tends : I . .
e e ® | i  Train: store all (x, y) pairs
average | i * Predict: pick the nearest
height of ! | two instances x(™ and x(")
the i) - in training data and return
leftmost XM ) x(2) the weighted average of
two points their y values

This region is closer to
the two points to the left



DECISION TREE REGRESSION



Decision Tree Regression

Decision Tree for Classification Decision Tree for Regression
B B
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A A A A
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Decision Tree Regression

Dataset for Regression Decision Tree for Regression
{4)1)3)7)57678’9}
4 1 0 0 B
0 1
1 1 0 1 {4,1,3,7} /\;{5,6,8,9}
3 1 0 o . A
7 0 © ! {7} {4)173} {6} {578)91
5 1 1 0 / 2.7 6 C
7\
D I R {58}/ \{9]
8 1 1 0 65 9
9 1 1 1 During learning, choose the attribute that

minimizes an appropriate splitting
criterion (e.g. mean squared error, mean
absolute error)



LINEAR FUNCTIONS, RESIDUALS, AND MEAN
SQUARED ERROR



Linear Functions

Def: Regression is predicting real-valued outputs

D = {(x®,y®)}"  withx® € RM,y® € R

Y1 y=wx+b

L




Linear Functions

Def: Regression is predicting real-valued outputs

D = {(x®,yO)"  withx® e R, y® e R

Y1 = = "Z
y =wiX, +wyx, + b W = W)/---‘/VJA/T&

* Ageneral linear functionis
y=wix+b

* Ageneral linear decision boundary is
y = sign(w'x + b)
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Key Idea of Linear Regression

Residuals Key Idea of Linear Regression
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OPTIMIZATION FOR ML



min vs

.argmin

v¥* = min, f(x)

x* = argmin, f(x)

27



Unconstrained Optimization

* Def: In unconstrained optimization, we try minimize (or
maximize) a function with no constraints on the inputs to the
function

Given a function J(H), J RM —S R
Our goal is to find 0 = argmin J(0)
O cRM
For ML, these are For ML, this is the

the parameters objective function



Optimization for ML

Not quite the same setting as other fields...

— Function we are optimizing might not be the true goal
(e.g. likelihood vs generalization error)

— Precision might not matter
(e.g. data is noisy, so optimal up to 1e-16 might not help)

— Stopping early can help generalization error
(i.e. “early stopping” is a technique for regularization — discussed
more next time)

30



OPTIMIZATION METHOD #o:
RANDOM GUESSING



Notation Trick:
Folding in the Intercept Term

/ T

X
‘ 6
hwo(X) =W x+b

ho(x') = 01 %’

1,21, 72,..., 2]
]T

b, wi,..., Wy

This convenience trick allows us to more compactly talk
about linear functions as a simple dot product (without
explicitly writing out the intercept term every time). 55
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Linear Regression as Function Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {ho : ho(x) = 8Tx,0 ¢ RM}




Contour Plots

Contour Plots

1. Each level curve labeled
with value

g g 1.0
2. Value label indicates the J . N
value of the function for S 000 %
. o QS @)
all points lying on that o5 ; i
level curve '
3. Justlike a topographical
. N
map, but for a function 064 | S GC«D 2
D O 1y o O
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J(0)=J(8,,6,) = (10(6, - 0.5))* + (6(6, - 0.4))>
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Optimization by Random Guessing -

Optimization Method #o: J(6)=1(6,,8,) = (10(6, - 0.5))* + (6(6; - 0.4))

Random Guessing 0 0.000
1.  Pickarandom 6
2. Evaluate J(0) %
3. Repeat steps1and 2 many
O
Oj6

times 06 2
4. Return 0 that gives 0, | |
smallest J(0)

UUU
20.000

© (=)
1 o
~ o

ann'C7

=J

0.4

S
S
S

0.2

0.0 Y T f
0.0 0.2 0.4 0.8 1.0
0,

t] 6, | 6, | J6,6,)
1] 0.2 | 0.2 10.4
2] 03] 07 7.2
3| 0.6 | 0.4 1.0 |9 —
4097 07 ] 162 38




Optimization by Random Guessing

Optimization Method #o:
Random Guessing

1.  Pickarandom ©
2.  Evaluate J(0)

3. Repeat steps1and 2 many
times

4. Return O that gives
smallest J(0)

For Linear Regression:

* objective function is Mean
Squared Error (MSE)

* MSE =J(w,b) & .

= J(ev 0,)=n Zl (y(i) ; oTx(i)))

* contour plot: each line labeled with
MSE - lower means a better fit

* minimum corresponds to
parameters (w,b) = (6,, 6,) that
best fit some training dataset

J(8)= (8, 8,) =

N <
=1

1 3 <y(i) _ ng<z'>))2

1.0
0.000
0.8 A
"EES 38}
b S 3
N N q
0.4 1 @)
S
S
0.2 1 M
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1
6,
t| 6, 0, J(6,,8,)
1| 0.2 | 0.2 10.4
2 | 0.3 | 0.7 7.2
3| 0.6 | 04 1.0
4 | 0.9 | 0.7 16.2

.0



Linear Regression:
Running Example






Counting Butterflies

y = h*(x)
A (unknown)
wn h(x; 63))
L
v
|-
©
-
S
S
Y
’
2l
#* )
>/
>

X, # of mountains
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e e e B O E CCRTTIOVVSIVV R ETit et as icetagelenacdsand

MIGRATIQN_ ROUTES OF MONARCH BUTTERFLIES

@ Summer breeding area
@ Spring breeding area
@ Wintering area

Corn Belt region
—— Spring migration route
< Fall migration route

This map shows migration routes of fall and spring migrations, both east
and west of the Rocky Mountains.

the cold and glaciers

retreated, milkweed may

have gradually spread
northward, and monarchs

may have followed. But the
monarch butterfly remained

a tropical creature, unable to
survive the severe northern
winters. So every year as
winter approached, monarchs
left their summer fields of
milkweed and flew south again.
To this day, every spring and
summer, monarchs travel
north to their breeding grounds
across the eastern United
States and Canada. Every
winter, they return to Mexico.
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3
A
4
1
a

R st T T e TR

i -~ Tr=diabout the eastern monarchs?
Researchers began taking Measurements |

N 1993. The highest year on record

that represented, but

LOCATION OF MONARCH BUTTERFLY COLONIES one estimate is that there

. WINTERING IN MEXICO
AR were one billion monarchs in

the colonies that winter.

But as researchers
measured the colonies year
after year, they noticed
that the colonies were
shrinking. By 2014 the
colonies measured just
1.7 acres (0.7 ha), or less
than one and a half football

fields. That year there

% Capital
* City
@ Town

The eastern monarchs migrate to just twelve mountaintops, all located in
central Mexico.

45



worried. The population of
Trees that appear orange are covered with butterflies tern monarchs had d
and roughly mark the border of this colony. easte el ad droppeq

more than 20 percent in just
seventeen years.

At the same time, scientists
in California reported that the
number of western monarchs
was dropping as well. From
1997 to 2014, the number of
monarchs overwintering along
the California coast had fallen
by 74 percent.

Populations of overwintering
monarchs were falling fast. By
2014 their numbers had fallen

so far that people wondered
whether the monarch butterfly should be listed as an endangered species—a species
in danger of becoming extinct, or disappearing forever.

R ay Losing monarchs could be bad for our world because monarchs play an important
P part in the food web. Despite the milkweed toxins in their bodies, they are food for
songbirds, spiders, and insects. Monarchs visit many f| owers and act as pollinators.
LUy i A 7% i

t

A Wi R I Y L A S N TS e s 0

>




Counting Butterflies

y = h*(x)
A (unknown)
wn h(x; 63))
L
v
|-
©
-
S
S
Y
’
2l
#* )
>/
>

X, # of mountains
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Linear Regression in High Dimensions

* Inourdiscussions of linear regression, we
will always assume there is just one output,

y
* But our inputs will usually have many
features:
— T
X = [ X4y Xogeer yXpm]
* For example:

— suppose we had a drone take pictures of
each section of forest

— each feature could correspond to a pixel in
this image such that x,,, = 1if the pixel is
orange and x,, = 0 otherwise

— the output y would be the number of
butterflies in each picture

Q: How would you obtain ground truth
° data?

48



1.
P

3.

Linear Regression by Rand. Guessing

Optimization Method #o:
Random Guessing

Pick a random 6
Evaluate J(0)

Repeat steps 1 and 2 many
times

Return O that gives
smallest J(0)

y=h*(x) g
(unknown)
7 .
pr<d
o ~@ .
2
7 .

For Linear Regression:

target function h*(x) is unknown
only have access to h*(x) through
training examples (x(,y()

want h(x; W) that best
approximates h*(x)

enable generalization w/inductive
bias that restricts hypothesis class
to linear functions



Linear Regression by Rand. Guessing

J(O)=J(6,6,) =~ (@) _ gy
Optimization Method #o: (0)=1(6,6.)= 5 §(y )

Random Guessing H0

1 Pick arandom ©

2. Evaluate J(0) o8

3. Repeat steps1and 2 many !

times 0.6
4. Return O that gives 0, |

' G B
6h o S A
o 28!
0.4 1 @)
h(x; 64) y= h*(X) S
R (x; 69) (unknown) | “
h(x; 8%) -
h(x’ 6(3))
0j6

smallest J(0)
0.0

Uy
20.000
ann'C7

=7

0.0 0.2 0.8 1.0

0i4
w b O
t | 6 e, | J©,6,)
/' - 1| 0.2 | 0.2 10.4
h(x; 6M) 2| 0.3 | 0.7 7.2
o 3| 0.6 | 04 1.0
X > 4 |1 0.9 | 0.7 16.2




OPTIMIZATION METHOD #1:
GRADIENT DESCENT



Derivatives

1. Derivative as a Slope 2. Derivative as a Limit 3. Derivative as a Tangent Plane
A

N

slope = ag_(f)
oy 0J(0) _ . J(O+e)—J(O)
— = = |l1m _ .
_l'G\V\ u—\&‘ 80 e—0 € 3J(91,92)
| ) 001
QW\/Q— The limit of the secants 0.J(01,02)
is the tangent L 002 52




Gradient

Def: The gradient of J : RM — Ris

(E0
SiGE o
vie 1) |VIE)

L 00 4

Each entry is a first-order partial derivative

1Bl-M
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Franconia Ridge day hike
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Gradients
~ )(®)=1®,6,)
L

0.8}
0.6 |-

0.4}

0.2 \ A y
/
0

0.2 0.4 0.6 0.8 1.0

o©
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0.8

0.6

0.4

0.2

J(8)=J(6,,6,)

Gradients
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These are the gradients that
Gradient Ascent would follow.




~J(0)=1(8,6)

0.8

0.6

0.4

0.2

Gradients

k \
07«00

In this picture, each arrow is a 2D
vector consisting of two partial
derivatives.

VJ(01,02) =
9oJ
L 005 -

The vector is evaluated at the
point [0,, 6,]" and plotted with its
origin there as well.

o©

These are the gradients that
Gradient Ascent would follow.

1.0



gatlve) Gradients

)(8) = J(91, 0
0

0.8} In this picture, each arrow is a 2D
vector consisting of two partial
derivatives.

__ﬂ_

0.6} 001

—VJ(01,05) =
_90J
L 003

041 The vector is evaluated at the
point [0,, 6,]" and plotted with its
origin there as well.

0.2}

N
NG

OO \ ] ] ] /

0.0 0.2 0.4 0.6 0.8 1.0
O,

These are the negative gradients that
Gradient Descent would follow.
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These are the negative gradients that
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ative) Gradient Paths

(Neg

, 6)
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Shown are the paths that Gradient Descent
would follow if it were making infinitesimally

small steps.



Gradient Descent

Gradient Descent Algorithm

O Chosse  an_indl_point B
@ RQYCC_JV F=12,..., T
a> Cou«?uxﬁ (jmlle/?r '5: W@\)
L) Selec: s\eg size ),
Q) D?éa\\f poms _é"“ @“&3

-

@Re}ﬂ-’“’\ o w\"'“\ S‘\*og?lvy Cr\l‘-)er‘)o'q Ce ghed

Remarks

—_ é l‘omé.ovv\\\/
- @-—6 m,\ zZens
é"ﬂf Size

- 5\(xeé Veloe Y'—‘D./
'*Se‘\' a SQLIQAUIQ
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Shgping Gl
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where ¢ = \O-’y
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Gradient Descent: Step Size

Poll Qu%:
In gradient descent, what could go wrong if

we always use the same step size (or step size
schedule) for every problem we encounter?

Answer:



Gradient Descent

Algorithm 1 Gradient Descent

procedure GD(D, H(O))

1:

2 6 — 60V

% while not converged do
4 0 < 60— "7VeJ(O)

5 return 6

In order to apply GD to Linear
Regression all we need is the
gradient of the objective
function (i.e. vector of partial
derivatives).

VoJ(0) =




Gradient Descent

Algorithm 1 Gradient Descent

1. procedure GD(D, ')

2. 0+ 09

% while not converged do
4.

5)

0« 60— YVeJ(0)

return 0

There are many possible ways to detect convergence.
For example, we could check whether the L2 norm of
the gradient is below some small tolerance.

Ve J(0)]]2 < €

Alternatively we could check that the reduction in the
objective function from one iteration to the next is small.



GRADIENT DESCENT FOR
LINEAR REGRESSION



Linear Regression as Function Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {ho : ho(x) = 8Tx,0 ¢ RM}




Linear Regression by Gradient Desc.
J()=1(8,,8,) = 13 (40— o7x)’

Optimization Method #1:
Gradient Descent

1.
P

Pick a random 6

Repeat:
a. Evaluate gradient VJ(0)
b. Step opposite gradient

Return O that gives
smallest J(0)

i=1

1.0

1.0
0.000
0.8 A
0.6 S o=
"EES 38}
b S 3
N N q
Q
S
d s
0.2 1 M
@,
0.0 T T T T
0.0 0.2 0.4 0.6 0.8
6,
t | 6, 0, J(6,, 6,)
1 | 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
3 | 0.51 | 0.30 1.5
4 | 0.59 | 0.43 0.2
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Linear Regression by Gradient Desc.

Optimization Method #1:
Gradient Descent

1. Pick a random 6

2. Repeat:
a. Evaluate gradient VJ(0)
b. Step opposite gradient

3.  Return O that gives
smallest J(0)

y =h*(x)
A (unljnown)
//
Y 4
;’&/’
&
/

-, ! t| 6 6, | J6,6,)
/' “*-g 1 | 0.01 | 0.02 25.2
‘ 2 | 0.30 | 0.12 8.7

3 | 0.51 | 0.30 1.5
N > 4 | 0.59 | 0.43 0.2




Linear Regression by Gradient Desc.

Optimization Method #1:
Gradient Descent

1.
P

Pick a random 6
Repeat:

J(8)=1(6,8,)=+>

1.0

0.8

a. Evaluate gradient VJ(0)

b. Step opposite gradient

Return O that gives
smallest J(0)

0.0
h(x; 63))

—= h(x; 0()

h(x; 80))

>

1=

@) _ gTx®))"
1(y 0" x ))

i

0.000

\

o
woo
o O
o O
o O

| d 3
O
0.0 0i2 0i4 0j6 018
0,
t | O, 0, J(6,, 6,)
1 | 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
3 | 0.51 | 0.30 1.5
4 | 0.59 | 0.43 0.2

1.0
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Linear Regression by Gradient Desc.

o~ A
o
-
v
o 3
Yo
T =
o2
vy M
-
(4o}
)
E —
, , >
Iteration, t
y = h*(x)
A (unknown)
’
Ve
- 003
. h(x; 63))
’
¥ — h(x; 6®)
’
— h(x; 61)
>

t | 6, 0, J(6,, 6,)
1 | 0.01 | 0.02 25.2

2 | 0.30 | 0.12 8.7

3 | 0.51 | 0.30 1.5

4 | 0.59 | 0.43 0.2
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Linear Regression by Gradient Desc.

o~ A
O
5 A
o 2
YV oo
5 g
T= A
-
@ A
= A
0,
, , >
Iteration, t
y = h*(x)
A (unknown)
’
/
- 003
o h(x; 63))
’
¥ — h(x; 60)
/
— h(x; 6)
>

J(8)= (8, 8,) =

1
N

1=

1 @ _ gTx )’
$5 4007

1.0
0.000
0.8 A
0.6 4 S o=
£S5 23"
b S 3
N N q
Q
S
d s
0.2 1 M
@,
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
O,
t | 6, 0, J(6,, 6,)
1 | 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
3 | 0.51 | 0.30 1.5
4 | 0.59 | 0.43 0.2
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Gradient Calculation for Linear Regression

MSE
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Gradient Calculation for Linear Regression

Derivative of J()(8):

d d 1 .

4 16)g 9T (D) _ ()2

deJ (0) = d0k2( y)
_ld o7 oGy e
=240, (0" x —y')

~ood
_ (9T _ @) L (9T () _

(0" x" —y'*)—— s (

j=1

— (QTX(Z') _ y(i))ml(:')

(i))

Derivative of J(0):
N
d 1 d
—JO) == —J90
1« (4)
_ T (1) (¢)
Gradient of J(0) [used by Gradient Descent]
/0] [FZL =) -y 8
2 7(0 LSV @7 x(D — @Dl
VeJ(0) = d%.( M )i e
d J(B) 1 N TN() (i) Y.(%)
La0, Y\ 5 207X —y )y,
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GD for Linear Regression

Gradient Descent for Linear Regression repeatedly takes
steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression

= procedure GDLR(D, 89)

0 — 6% > Initialize parameters
while not converged do

2
3
4: g &30 (0Tx(®D —yM)x() 1 Compute gradient
5
6

00 —~g > Update parameters
return 6




