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Reminders

* Homework 2: Decision Trees
— Out: Wed, Jan. 22
— Due: Mon, Feb. 3 at 11:59pm

* Schedule Note:
— Fri, Jan. 31: Lecture 6: Perceptron




PROPER COLLABORATION &
CODE PLAGIARISM DETECTION



What is Moss?

* Moss (Measure Of Software Similarity): is an automatic
system for determining the similarity of programs. To date,
the main application of Moss has been in detecting
plagiarism in programming classes.

* Moss reports:

— The Andrew IDs associated with the file submissions
— The number of lines matched

— The percent lines matched
— Color coded submissions where similarities are found



What is

MossS?

At first glance, the submissions may look different

# Python program to find ordered words

import requests
s the words from the URL below and stores def

t na lis
def getWords():

# contains about 2500 words
url = "http://www.puzzlers.org/pub/wordlists/unixdict. txt"
fetchData = requests.get(url)

content of

# extracts the webpa
wordList = fetchData.content

# decodes the UTF-8 encoded text and splits the
# string to turn it into a list of words
wordList =

wordLlst.decode(”utf—S”)ispllt()

return wordList

# function to deter

def isOrdered():

whether a word is ordered

o

# fetching the wordList
collection = getWords()

def

the first

fe

# since

dictionary are numbers, 1

# numbers by slicing off the first 1
collection = collection[16:]
word =

for word in collection:
result = 'Word is ordered' .
=8 if
l = len(word) - 1

if (len(word) < 3): #
continue

# traverses
while i < L:
if (ord(word[i]) > ord(word[i+1])):
result = 'Word is not ordered'
break
else:
i+=1

through all characters of the word in pairs

# O.’Tlfy’ printing the ordered words
if (result 'Word is ordered'):
print(word,': ',result)

function

# execute isOrdered()
if _ name main
isOrdered()

import requests

Ordered() :

coll = gethWs()
coll = coll[16:]
word = "'

for word in coll:
r = 'Word is ordered'
a=0
length = len(word) - 1
if (len(word) < 3):
continue
while a < length:
if (ord(word[a]) > ord(word[a+l])):

r = 'Word is not ordered’
break
else:
a+=1
if (r == 'Word is ordered'):
print(word,': ',r)
getWs():
url = "http://www.puzzlers.org/pub/wordlists/unixdict. txt"
fetch = requests.get(url)
words = fetch.content
words = words.decode("utf-8").split()

return words

name
Ordered()

main



What is Moss?

Moss can quickly find the similarities

>>>> file: bedmunds@andrew.cmu.edu_l_handin.c
# Python program to find ordered words
import requests

# Scrapes the words from the URL below and stores
# them in a list

# function to determine whether a word is ordered or not
def isOrdered():

# fetching the wordList
collection = getWords()

# since the first few of the elements of the

# dictionary are numbers, getting rid of those

# numbers by slicing off the fi
collection = collection[16:)
word v

st 17 elements

for word in collection:
result = 'Word is ordered'
i=0
1 = len(word) - 1

if (len(word) < 3): # skips the 1 and 2 lettered
continue

# traverses through all characters of the word in pairs
while i < 1:
if (ord(word(i]) > ord(word[i+1])):
result = 'Word is not ordered
break
else:
i4=1

# only printing the ordered words
if (result 'Word is ordered')
print(word,': ',result)

# execute isOrdered() function
if _ name__ == '
isOrdered()

__main__':

>>>> file: dpbird@andrew.cmu.edu_l_handin.c

import requests

def Ordered():
coll = getWs()
coll = coll[16:]

word v

for word in coll:
r 'Word is ordered'
a 0

length = len(word) - 1
if (len(word) < 3):
continue
while a < length:
if (ord(word[a]) > ord(word[a+1l])):

r = 'Word is not ordered
break
else:
a += 1
if (r 'Word is ordered'):

print(word,': ',r)

if __name__ == ' _main__':

Ordered()




Q:

Q&A

I’m now terrified to collaborate with anyone ever
again. Can you remind me of what sort of
collaboration is allowed?

Yes!

You should collaborate as follows: (1) sketch out
pseudocode on an impermanent surface, e.g., a
whiteboard (2) erase said surface and part ways
with your collaborator and (3) implement your
own code from scratch.



« I’d prefer not to learn how to build
interesting machine learning
models, and would rather have an
interesting model do it for me. Can |
just have an LLM write my code for

DetectGPT: Zero-Shot Machine-Generated Text Detection
using Probability Curvature

me?
Eric Mitchell! Yoonho Lee' Alexander Khazatsky! Christopher D. Manning! Chelsea Finn'
° N (0) ! Abstract Candidate passage :
[ The increasing fluency and widespread usage of “Joe Biden recently made a move to the White House
- large language models (LLMs) highlight the de- that included bringing along his pet German Shepherd...”
O ne Of th e key I €arnin g O Utco mes sirability of corresponding tools aiding detection l
g g g of LLM-generated text. In this paper, we identif}
of this course is that you will be St olie mps ol e L A4l e __ DetectGPT &
bl d b b k h 0 bility function that is useful for such detection. (1).....,,,’ (Z)Sctu-n"’p(x) (3) _____ ;
abile tO e Ug roken macnine Specifically, we demonstrate that text sampled : %il\ . 1 p ”
5 from an LLM tends to occupy negative curva- : 2 _—> i>—||GPT-3 B4 ‘f" Nzl"g ('. ] Se
I ea rni ng COd e o ture regions of the model’s log probability func- x\:'x’ L i 1)(_“ ! "
tion. Leveraging this observation, we then define A =@y
) a new curvature-based criterion for judging if a
We ve found that one Of the beSt passage is generated from a given LLM. This Yos Mo

approach, which we call DetectGPT, does not re-

v v
quire training a separate classifier, collecting a @ T from GPT-3 | ) & from other source l

dataset of real or generated passages, or explic-

ways to provide you with broken

ma Ch ine I earnin g co d els tO I Et yo u itly watermarking generated text. It uses only Figure 1. We aim to determine whether a piece of text was gener-
o . log probabilities computed by the model of in- ated by a particular LLM p, such as GPT-3. To classify a candidate
erte lt yO urse If. terest and random perturbations of the passage passage z, DetectGPT first generates minor perturbations of the
passage Z; using a generic pre-trained model such as T5. Then

from another generic pre-trained language model g . R
(e.g., T5). We find DetectGPT is more discrimi- DetectGP’I'.comparcs the log probabll.lty upder p of the orlgm.al
sample = with each perturbed sample Z;. If the average log ratio

native than existing zero-shot methods for model
o is high, the sample is likely from the source model.

sample detection, notably improving detection of

1.11305v2 [cs.CL] 23 Jul 2023
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K-NEAREST NEIGHBORS



Nearest Neighbor: Algorithm

def train(D):
Store D

def h(x"):
Let x(¥) = the point in D that is nearest to x’
return y



Nearest Neighbor: Example




Nearest Neighbor: Example

* This is a Voronoi
diagram

* Each cell contain .-
one of our
training
examples

* All points within
a cell are closer
to that training
example, than
to any other
training example ;-

* Points on the
Voronoi line 03
segments are
equidistant to =
one or more
trainin
examples




Nearest Neighbor: Example




The Nearest Neighbor Model

* Requires no training!

* Always has zero training error!

— A data point is always its own nearest neighbor



k-Nearest Neighbors: Algorithm

def set_hyperparameters(k, d):
Store k
Store d(-, *)

def train(D):
Store D

def h(x"):
Let S = the set of k points in D nearest to x’
according to distance function
d(u, v)
Let v = majority vote(S)
returnv



k-Nearest Neighbors

Suppose we have the

. training dataset below. How should we label
X5 _ the new point?
_ It depends on k:
.... 3 “ Xnew
e k=1, h(Xye) = +1
+ 7 if k=3, h(Xpe) =
7'-._-: + if k=5, h(X o) = +1

19




KNN: Remarks

Distance Functions:
* KNN requires a distance function

d: RM xRM 5 R
e The most common choice is Euclidean distance

M
d(u: U) — z (um - vm)z

\
 But there are other choices (e.g. Manhattan distance)

M

AWv) = ) [y = v

m=1




KNN: Computational Efficiency

Suppose we have N training examples and
each one has M features
Computational complexity when k=1:

ok Nawe  lkdTee

Train 0(1) ~O(M N log N)

Predict O(MN) ~0O(2Mlog N) on average
(one test example)

Problem: Very fast for small M, but :
very slow for large M

In practice: use stochastic
approximations (very fast, and
empirically often as good)

26




KNN: Theoretical Guarantees

Cover & Hart (1967)

Let h(x) be a Nearest Neighbor (k=1) binary
classifier. As the number of training
examples N goes to infinity...

error,.(h) < 2 x Bayes Error Rate

“In this sense, it may be said that half the
classification information in an infinite
sample set is contained in the nearest
neighbor.”

very
informally,
Bayes Error
Rate can be
thought of as:

‘the best you
could possibly
do’




KNN: Remarks

In-Class Exercises

How can we handle ties for
even values of k?

28



KNN: Inductive Bias

In-Class Exercise What s the inductive bias of KNN?



Decision Boundary Example

Dataset: outputs {+,}; Features x, and x,

In-Class Exercise

Poll Question 1:

Poll Question 2:
A. Can a k-Nearest Neighbor classifier

, . . A. Can a Decision Tree classifier achieve
with k=1 achieve zero training error . )
on this dataset? zero training error on this dataset?
B. If ‘Yes’, draw the learned decision B. If ‘Yes’, draw the learned decision
boundary. If ‘No’, why not? boundary. If ‘No’, why not?
A A
X5 + + X5 + +
+ +
+ - + 7T + - + -+
o 5 Ty o+
> >
X1



KNN ON FISHER IRIS DATA






Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by
Anderson (1936)

Sepal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

0

0 4.9 3.6 1.4 0.1
0 5.3 3.7 1.5 0.2
1 4.9 2.4 3.3 1.0
1 5.7 2.8 4.1 1.3
1 6.3 3.3 4.7 1.6
1 6.7 3.0 5.0 1.7

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_ set
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Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by
Anderson (1936)

Sepal Sepal
il 7 7 | pereteaasrne
0 4.3 3.0 four features, so that
0 4.9 3.6 input space is 2D

0 5-3 3.7

1 4.9 2.4 @

1 5.7 2.8

1 6.3 3.3

1 6.7 3.0

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_ set
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sepal length

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15 -

1.0 -

KNN on Fisher Iris Data

y=0 .,

sepal width
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KNN on Fisher Iris Data

Special Case: Nearest Neighbor

3-Class classification (k = 1, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 2, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 3, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 4, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 5, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 10, weights = ‘uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 20, weights = ‘uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 30, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 40, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 50, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 60, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 70, weights = ‘uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 80, weights = 'uniform’)

)

o
o
()
()

000060 o
ORORONCNC )
UNC)

)

)

CRON)

(

55



KNN on Fisher Iris Data

3-Class classification (k = 90, weights = 'uniform’)
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data

3-Class classification (k = 120, weights = 'uniform')
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KNN on Fisher Iris Data

3-Class classification (k = 130, weights
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data

Special Case: Majority Vote

3-Class classification (k = 150, weights = 'uniform')
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KNN ON GAUSSIAN DATA



KNN on Gaussian Data
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KNN on Gaussian Data

- Classification with KNN (k = 1, weights = 'uniform')
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KNN on Gaussian Data

(k = 2, weights = 'uniform')

Classification with KNN
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KNN on Gaussian Data

. Classification with KNN (k = 3, weights = 'uniform')
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KNN on Gaussian Data

4, weights = 'uniform')

k.=

(

Classification with KNN
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KNN on Gaussian Data

- Classification with KNN (k = 5, weights = 'uniform')
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KNN on Gaussian Data

- Classification with KNN (k = 9, weights = 'uniform')
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KNN on Gaussian Data

 Classification with KNN (k = 16, weights = 'uniform’)
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KNN on Gaussian Data

 Classification with KNN (k = 25, weights = 'uniform’)
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KNN on Gaussian Data

 Classification with KNN (k = 36, weights = 'uniform’)
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KNN on Gaussian Data

 Classification with KNN (k = 49, weights = 'uniform’)
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KNN on Gaussian Data

 Classification with KNN (k = 64, weights = 'uniform’)
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KNN on Gaussian Data

 Classification with KNN (k = 81, weights = 'uniform’)
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KNN on Gaussian Data

Classification with KNN (k = 100, weights = 'uniform’)
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KNN on Gaussian Data

Classification with KNN (k = 121, weights = 'uniform’)
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KNN on Gaussian Data

Classification with KNN (k = 144, weights = 'uniform’)
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KNN on Gaussian Data

Classification with KNN (k = 169, weights = 'uniform’)
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KNN on Gaussian Data

Classification with KNN (k = 196, weights = 'uniform’)
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KNN on Gaussian Data

Classification with KNN (k = 225, weights = 'uniform’)
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KNN on Gaussian Data

Classification with KNN (k = 256, weights = 'uniform’)
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KNN on Gaussian Data

Classification with KNN (k = 289, weights = 'uniform’)
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KNN on Gaussian Data

Classification with KNN (k = 400, weights = 'uniform’)
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KNN on Gaussian Data

Classification with KNN (k = 529, weights = 'uniform’)
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KNN on Gaussian Data

Classification with KNN (k = 576, weights = 'uniform’)
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KNN Learning Objectives

You should be able to...

Describe a dataset as points in a high dimensional space [CIML]
mplement k-Nearest Neighbors with O(N) prediction

Describe the inductive bias of a k-NN classifier and relate it to
feature scale[a la. CIML]

Sketch the decision boundary for a learning algorithm (compare
k-NN and DT)

State Cover & Hart (1967)'s large sample analysis of a nearest
neighbor classifier

Invent "new" k-NN learning algorithms capable of dealing with
even k




MODEL SELECTION



Model Selection

WARNING:

* |n some sense, our discussion of model selection is
premature.

* The models we have considered thus far are fairly simple.

* The models and the many decisions available to the data
scientist wielding them will grow to be much more complex
than what we’ve seen so far.



Model Selection

Example: Decision Tree

model = set of all possible trees, possibly
restricted by some hyperparameters (e.g.
max depth)

parameters = structure of a specific decision
tree

learning algorithm = ID3, CART, etc.

hyperparameters = max-depth, threshold for
splitting criterion, etc.

Machine Learning

Def: (loosely) a model defines the hypothesis
space over which learning performs its
search

Def: model parameters are the numeric
values or structure selected by the learning
algorithm that give rise to a hypothesis

Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the tunable
aspects of the model, that the learning
algorithm does not select



Model Selection

Example: k-Nearest Neighbors

model = set of all possible nearest neighbors
classifiers

parameters = none
(KNN is an instance-based or non-parametric
method)

learning algorithm = for naive setting, just
storing the data

hyperparameters = k, the number of
neighbors to consider

Machine Learning

Def: (loosely) a model defines the hypothesis
space over which learning performs its
search

Def: model parameters are the numeric
values or structure selected by the learning
algorithm that give rise to a hypothesis

Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the tunable
aspects of the model, that the learning
algorithm does not select



Model Selection

Example: Perceptron

model = set of all linear separators

parameters = vector of weights (one for each
feature)

learning algorithm = mistake based updates
to the parameters

hyperparameters = none
(unless using some variant such as averaged
perceptron)

Machine Learning

Def: (loosely) a model defines the hypothesis
space over which learning performs its
search

Def: model parameters are the numeric
values or structure selected by the learning
algorithm that give rise to a hypothesis

Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the tunable
aspects of the model, that the learning
algorithm does not select



Model Selection

Statistics

Def: a model defines the data generation
process (i.e. a set or family of parametric
probability distributions)

Def: model parameters are the values that
give rise to a particular probability
distribution in the model family

Def: learning (aka. estimation) is the process
of finding the parameters that best fit the
data

Def: hyperparameters are the parameters of
a prior distribution over parameters

Machine Learning

Def: (loosely) a model defines the hypothesis
space over which learning performs its
search

Def: model parameters are the numeric
values or structure selected by the learning
algorithm that give rise to a hypothesis

Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the tunable
aspects of the model, that the learning
algorithm does not select



Model Selection

Statistics Machine Learning

* Def: a model defines the data generation * Def: (loosely) a model defines the hypothesis
process (i.e. a set or family I “Iearning” i< all about hich learning performs its
probability distributions) . .

picking the best

* Def: model parameters are| parameters how do we |parameters are the numeric
give rise to a particular prol piCk the best ructure selected by the learning
distribution in the model fa = at give rise to a hypothesis

hyperparameters:

* Def: learning (aka. estimati . ing algorithm defines the data-
of finding the paramet at best fit the driven sear&  \er the hypothesis space (i.e.
data search for go rameters)

* Def: hyperparameters are the parameters of * Def: hyperparameters are the tunable
a prior distribution over parameters aspects of the model, that the learning
algorithm does not select



Model Selection

* Two very similar definitions:
— Def: model selection is the process by which we choose the “best”

model from among a set of candidates
— Def: hyperparameter optimization is the process by which we choose
the “best” hyperparameters from among a set of candidates (could be

called a special case of model selection)

* Both assume access to a function capable of measuring the
quality of a model

* Both are typically done “outside’” the main training algorithm ---
typically training is treated as a black box



EXPERIMENTAL DESIGN



Training

Hyperparameter
Optimization

Testing

Experimental Design

training dataset * best model parameters
hyperparameters

training dataset * Dbest hyperparameters
validation dataset

test dataset * testerror
hypothesis (i.e. fixed
model parameters)

We pick the best model
parameters by learning on the
training dataset for a fixed set
of hyperparameters

We pick the best
hyperparameters by learning
on the training data and
evaluating error on the
validation error

We evaluate a hypothesis
corresponding to a decision
rule with fixed model
parameters on a test dataset
to obtain test error
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Choosing K for KNN



Cross-Validation

Cross validation is a method of estimating loss on held out data
Input: training data, learning algorithm, loss function (e.g. 0/1 error)
Output: an estimate of loss function on held-out data

Key idea: rather than just a single “validation” set, use many!
(Error is more stable. Slower computation.)

- Algorithm:

D = Fold 1 Divide data into folds (e.g. 4)
| 1. Train on folds {1,2,3} and
. predict on {4}

Fold 2 2. Train on folds {1,2,4} and
| predict on {3}
) 3. Train on folds {1,3,4} and
Fold 3 predict on {2}
) 4. Train on folds {2,3,4} and
predict on {1}
Concatenate all the predictions
] Fold 4 and evaluate loss (almost

equivalent to averaging loss

Definition:

N-fold cross validation = cross validation with N folds 102

hover the folds)




Training

Hyperparameter
Optimization

Cross-Validation

Testing

Experimental Design

training dataset
hyperparameters

training dataset
validation dataset

training dataset
validation dataset

test dataset

hypothesis (i.e. fixed

model parameters)

best model parameters

best hyperparameters

cross-validation error

test error

We pick the best model
parameters by learning on the
training dataset for a fixed set
of hyperparameters

We pick the best
hyperparameters by learning
on the training data and
evaluating error on the
validation error

We estimate the error on held
out data by repeatedly training
on N-1 folds and predicting on
the held-out fold

We evaluate a hypothesis
corresponding to a decision
rule with fixed model
parameters on a test dataset
to obtain test error
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Experimental Design

No!

A:

Let's assume that {train-original} is the original training data and {test} is the

provided test dataset.
1. Split {train-original} into {train-subset} and {validation}.
2. Pick the hyperparameters that when training on {train-subse? give the lowest
error on {validation}. Call these hyperparameters {best-hyper}.
3. Retrain a new model using {best-hyper} on {train-original} = {train-
subset} U {validation}.
4. Report test error by evaluating on {test}.

Alternatively, you could replace Steps 1-2 with the following:

1. Pick the hyperparameters that give the lowest cross-validation error on {train-
original}. Call these hyperparameters {best-hyper}.
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Classification with KNN (k = 1, weights = 'uniform') Classification with KNN (k = 144, weights = 'uniform')
- 5.0 -
(]
- . 4.5 -
-—
A [ ] 4.0 -
i 3.5 -

--------
--------

Train / Test Errors with k-NN

07- @ train
v validation

0.6 -
0.5 -

0.4 -

error

0.3 -

0.2 -

0.1-

100 10! 102

Fisher Iris Data: varying the value of k
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. Classification with KNN (k = 1, weights = 'uniform’) |

Classification with KNN (k = 225, weights = 'uniform’)

~ k-NN: Choosing k-

Train / Test Errors with k-NN
® train
0 v validation 0 2 ;
0.20 -
0.15 -
S

Y 0.10-
0.05 -
0.00 -

‘20010t

k

Gaussian Data: varying the value of k
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HYPERPARAMETER OPTIMIZATION



Model Selection

WARNING (again):
— This section is only scratching the surface!

— Lots of methods for hyperparameter optimization: (to talk about
later)
* Grid search
* Random search
* Bayesian optimization
* Graduate-student descent

Main Takeaway:

— Model selection [ hyperparameter optimization is just another
form of learning



Hyperparameter Optimization

Setting: suppose we have hyperparameters a, (3, and x and we wish to pick the “best”
values for each one

Algorithm 1: Grid Search
— Pick a set of values for each hyperparameter
a €{a, a,, ..., an}, BE{b, b, ..., b}, and x € {c,, ¢, ..., Cr}
— Run a grid search

fora €{a, a,, ..., ank:
for g € {b,, b,, ..., b}
forx € {c,y Cyy .-y i}

0= train(D’crain; a, (3; X)
error = prEdiCt(Dvalidation; e)

— return a, 3, and x with lowest validation error



Hyperparameter Optimization

Setting: suppose we have hyperparameters «, 3, and x and we wish to pick the “best”
values for each one




Hyperparameter Optimization

Poll Question 3:

True or False: given a finite amount of computation time, grid
search is more likely to find good values for hyperparameters

than random search.
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Hyperparameter Optimization for Deep Learning

Looking (way) ahead... Example of hyperparameters for

* For a deep neural network, we deep-network:
have many more hyperparameters e We chose 1, 2, or 3 layers with equal probability.

e For each layer., we chose:

L]
¢ I n t h l S S e n S e, h yp e rp a ra m ete r — anumber of hidden units (log-uniformly between 128 and 4000),

— a weight initialization heuristic that followed from a distribution (uniform or normal),

L] [ ] [ ] L]
O ptl m l Z a tl O n b e gl n S to e m e rge a S a multiplier (uniformly between 0.2 and 2), a decision to divide by the fan-out (true or

false),

L] L] L]
J U St a n Ot h e r p a rt Of t ra l n l n g — anumber of iterations of contrastive divergence to perform for pretraining (log-uniformly

from 1 to 10000),

L4 Th e d iffe re n Ce iS (u S u a I I y) j u St t h a t — whether to treat the real-valued examples used for unsupervised pretraining as Bernoulli

means (from which to draw binary-valued training samples) or as a samples themselves

m a n y Of th e h yp e rp a ra m ete rS a re (even though they are not binary),

— an initial learning rate for contrastive divergence (log-uniformly between 0.0001 and

non-differentiable, so we can’t

— a time point at which to start annealing the contrastive divergence learning rate as in

[
l ea rn t h el I l by gra d l e nt'b a S e d Equation 7 (log-uniformly from 10 to 10 000).
I I leth O d S e There was also the choice of how to preprocess the data. Either we used the raw pixels or
we removed some of the variance using a ZCA transform (in which examples are projected

onto principle components, and then multiplied by the transpose of the principle components

[ ) (We ’I I h a Ve I Ots m O re t O S a y a b O ut to place them back in the inputs space).
T T e If using ZCA preprocessing, we kept an amount of variance drawn uniformly from 0.5 to 1.0.
this in subsequent lectures) e e “

e We chose to seed our random number generator with one of 2. 3, or 4.
e We chose a learning rate for finetuning of the final classifier log-uniformly from 0.001 to 10.
e We chose an anneal start time for finetuning log-uniformly from 100 to 10000.

e We chose (> regularization of the weight matrices at each layer during finetuning to be either
0 (with probability 0.5), or log-uniformly from 107 to 10 4. 113

Example from Bergstra & Bengio (2012)



Scaled Dot-Product Attention

dg,1 42 d, 4
[ softmax / / /
\
S S4p S4,3 Sah4
IQ\\ A
[ ]
k1 2 k3 k4
L[] L1 L1 1] L[]
2 v, v; v,
L[] LIT] L[] L[]
X X5 X5 X4

/ — . .
Xy = A4,5V;

g=1

a, = softm{
T
S4.5 = kj q4
T
q; — Wq X
k; = W, x
v; = W/x

Looking (way) ahead...

For Transformer LMs we’ll
need to choose:

1.

2.

3.
4.

The dimension of the
input embeddings
The dimension of the
keys/queries/values
The number of heads
Whether LayerNorm

should come at the
beginning or the end

The dimension of the
neural network layers

How many hidden layers
they should have

How many Transformer
layers

Which loss function to
use

Which optimization
algorithm




Scaled Dot-Product Attention

/ — . .
Xy = E :a4,JVJ

j=1
/ a, = softm{

T
S4,5 = kj Q4

attention

(]j = ng
k, = W, x
\\ / v =W,x|

X, X5 X3 X,

Looking (way) ahead...

For Transformer LMs we’ll

need to choose:

1. The dimension of the
input embeddings

2. The dimension of the
keys/queries/values

3.  The number of heads

4. Whether LayerNorm

should come at the
beginning or the end

5. The dimension of the
neural network layers

6. How many hidden layers

they should have

7.  How many Transformer
layers

8.  Which loss function to
use

9.  Which optimization
algorithm




Scaled Dot-Product Attention

t
I _
X, X,’ X5’ o Xy — atJ'
j=1

a; = softma

W, T
; T
attention . —
W, [ } qj = Wg X
k;, = Wix
W, T
V; = qu X
—/x1 X5 X5 X,

Looking (way) ahead...

For Transformer LMs we’ll

need to choose:

1. The dimension of the
input embeddings

2. The dimension of the
keys/queries/values

3.  The number of heads

4. Whether LayerNorm

should come at the
beginning or the end

5. The dimension of the
neural network layers

6. How many hidden layers

they should have

7.  How many Transformer
layers

8.  Which loss function to
use

9.  Which optimization
algorithm




Multi-headed Attention

Looking (way) ahead...

For Transformer LMs we’ll

need to choose:

1. The dimension of the
input embeddings

/\ , , , , 2. The dimension of the
\ //\\ X1| — le — % X4 . Jusl keys/queries/values
i L1 [ ] L1 ] mu
Read |] 27 ] | e e e o o |3 The number of heads
LYY ‘\' T ‘J:?q \ T 11 TTT] — — co 4. Whether LayerNOrm
head T can should come at the
\ ina beginning or the end
« Eacl5- Thedimension of the
Wi B . . par neural network layers
multi-headed attention . We 6. How many hidden Iayers
h they should have
| t, €l7. How many Transformer
w, S'na layers
tim4 8.  Which loss function to
use
X X, X, X, 9.  Which optimization
/\ [(TT1] OO O O] algorithm



Transformer Layer

Looking (way) ahead... O CITO OO0 LD
For Transformer LMs we’ll 1 ) 1 ) Each layer of a Transformer LM

need to choose: consists of several sublayers:
1. The dimension of the O OO (000 [(T10 1. attention

input embeddings 2. feed-forward neural network
5. The dimension Of the [ feed forward neural network ] 3. Iayer normalization
4

residual connection (addition)

keys/queries/values

residual connections

3. The number of heads

4. Whether LayerNorm layer normalization
should come at the N 7
beginning or the end ~—TTT] COTT

5.  The dimension of the 1 1 1 1

residual connection (addition)

neural network layers
6. How many hidden layers

&y Bty terti

they should have A A A
7.  How many Transformer )

layers B8 B multi-headed attention
8.  Which loss function to X

o %4 [T 1] 11
9.  Which optimization A ) ) )

algorithm layer normalization

4
X1\?‘Hx2|||| 1T




Looking (way) ahead...

For Transformer LMs we’ll
need to choose:

1. The dimension of the
input embeddings

2. The dimension of the

keys/queries/values

The number of heads

4. Whether LayerNorm
should come at the
beginning or the end

5. The dimension of the
neural network layers

6. How many hidden layers
they should have

7.  How many Transformer

W

layers

8.  Which loss function to
use

9.  Which optimization
algorithm

Transformer Layer

IIIIIIIIIIIIIIIIIIﬂ
A A A A

] | ] |
residual connection (addition) \

[ feed forward neural network

layer normalization
y_

1 i T T

residufpl c ti {on)

1 1171 11 CEtr]
A A A A
EH

B multi-headed attention }
E

i i

layer normalization

4
X, X, X
YS—TTT] CLLI

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections



Looking (way) ahead...

For Transformer LMs we’ll

need to choose:

1. The dimension of the
input embeddings

2. The dimension of the
keys/queries/values

3. The number of heads

4. Whether LayerNorm

should come at the
beginning or the end

5. The dimension of the
neural network layers

6. How many hidden layers

they should have

7.  How many Transformer

layers

8.  Which loss function to
use

9.  Which optimization
algorithm

Transformer Layer

1 2 3 4
I ot oty it rl
)

a0

Transformer
Layer

Each layer of a Transformer LM
consists of several sublayers:

1.
2.
3.
4.

attention

feed-forward neural network
layer normalization

residual connections



Transformer Layer

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

X, x,’ x5’ x,’

T/T/T/T

Transformer layer

W.Z .L




Transformer Language Model

Looking (way) ahead...

For Transformer LMs we’ll

need to choose:

1. The dimension of the
input embeddings

2. The dimension of the
keys/queries/values

3. The number of heads

4. Whether LayerNorm

should come at the
beginning or the end

5. The dimension of the
neural network layers

6. How many hidden layers

)\

[ The

[ bat ] [ made ] [ noise ]

T

T

P(W2|h2)

>

p(wslh;)

T

T

p(w,lh,)

11

Transformer layer

%II/I I%I |

they should have T | A

7.  How many Transformer [ Transformrlayer
layers o T

8.  Which loss function to _I% )’Fﬂ %Fﬂ
use [ Transformer layer

9.  Which optimization X, 4| X,
algorithm rrr% 4 [T O

Vv

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.



Model Selection Learning Objectives

You should be able to...

Plan an experiment that uses training, validation, and test
datasets to predict the performance of a classifier on unseen
data (without cheating)

Explain the difference between (1) training error, (2) validation
error, (3) cross-validation error, (4) test error, and (5) true error

For a given learning technique, identify the model, learning
algorithm, parameters, and hyperparamters

Define "instance-based learning" or "nonparametric methods"

Select an appropriate algorithm for optimizing (aka. learning)
hyperparameters



