
k-Nearest Neighbors
+

Model Selection

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley & Henry Chai
Lecture 5

Jan. 29, 2025

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 2: Decision Trees
– Out: Wed, Jan. 22
– Due: Mon, Feb. 3 at 11:59pm

• Schedule Note:
– Fri, Jan. 31: Lecture 6: Perceptron

4

PROPER COLLABORATION &
CODE PLAGIARISM DETECTION

5

What is Moss?

• Moss (Measure Of Software Similarity): is an automatic
system for determining the similarity of programs. To date,
the main application of Moss has been in detecting
plagiarism in programming classes.

• Moss reports:
– The Andrew IDs associated with the file submissions
– The number of lines matched
– The percent lines matched
– Color coded submissions where similarities are found

What is Moss?

At first glance, the submissions may look different

What is Moss?
Moss can quickly find the similarities

Q&A

9

Q: I’m now terrified to collaborate with anyone ever
again. Can you remind me of what sort of
collaboration is allowed?

A: Yes!
You should collaborate as follows: (1) sketch out
pseudocode on an impermanent surface, e.g., a
whiteboard (2) erase said surface and part ways
with your collaborator and (3) implement your
own code from scratch.

10

Q: I’d prefer not to learn how to build
interesting machine learning
models, and would rather have an
interesting model do it for me. Can I
just have an LLM write my code for
me?

A: No!
One of the key learning outcomes
of this course is that you will be
able to debug broken machine
learning code.
We’ve found that one of the best
ways to provide you with broken
machine learning code is to let you
write it yourself.

K-NEAREST NEIGHBORS

11

Nearest Neighbor: Algorithm

def train(𝒟):
 Store 𝒟

def h(𝒙′):
 Let 𝒙 ! 	= the point in 𝒟 that is nearest to 𝒙′
 return 𝑦 !

12

Recall…

Nearest Neighbor: Example

13

Recall…

Nearest Neighbor: Example

14

• This is a Voronoi
diagram

• Each cell contain
one of our
training
examples

• All points within
a cell are closer
to that training
example, than
to any other
training example

• Points on the
Voronoi line
segments are
equidistant to
one or more
training
examples

Recall…

Nearest Neighbor: Example

15

Recall…

The Nearest Neighbor Model

• Requires no training!

• Always has zero training error!
– A data point is always its own nearest neighbor

16

Recall…

k-Nearest Neighbors: Algorithm
def set_hyperparameters(k, d):
 Store k
 Store d(·, ·)

def train(𝒟):
 Store 𝒟

def h(𝒙′):
 Let S = the set of k points in 𝒟 nearest to 𝒙′
 according to distance function
 d(u, v)
 Let v = majority_vote(S)
 return v

17

Recall…

k-Nearest Neighbors

19

3
4

2
8

7
7

xnew

x1

x2

How should we label
the new point?

It depends on k:
if k=1, h(xnew) = +1
if k=3, h(xnew) = -1
if k=5, h(xnew) = +1

Suppose we have the
training dataset below.

Recall…

KNN: Remarks
Distance Functions:
• KNN requires a distance function

• The most common choice is Euclidean distance

• But there are other choices (e.g. Manhattan distance)

25

𝑑 ∶ 	ℝ! 	×	ℝ! → ℝ

𝑑 𝒖, 𝒗 = +
"#$

!

𝑢" − 𝑣" %

𝑑 𝒖, 𝒗 = +
"#$

!

𝑢" − 𝑣"

Recall…

KNN: Computational Efficiency

• Suppose we have N training examples and
each one has M features

• Computational complexity when k=1:

26

Task Naive k-d Tree

Train O(1) ~ O(M N log N)

Predict
(one test example)

O(MN) ~ O(2M log N) on average

Problem: Very fast for small M, but
very slow for large M

In practice: use stochastic
approximations (very fast, and
empirically often as good)

Recall…

KNN: Theoretical Guarantees

27

Cover & Hart (1967)

Let h(x) be a Nearest Neighbor (k=1) binary
classifier. As the number of training
examples N goes to infinity…

errortrue(h) < 2 x Bayes Error Rate

“In this sense, it may be said that half the
classification information in an infinite
sample set is contained in the nearest
neighbor.”

very
informally,
Bayes Error
Rate can be
thought of as:
‘the best you
could possibly
do’

Recall…

KNN: Remarks

28

In-Class Exercises
How can we handle ties for
even values of k?

Answer(s) Here:

– Consider another point
– Remove farthest of k

points
– Weight votes by

distance
– Consider another

distance metric

KNN: Inductive Bias

1. Similar points should have similar labels
2. All dimensions are created equally!

30

Example: two features for KNN

se
pa

l l
en

gt
h

(c
m

)

sepal width (cm)

big problem:
feature scale

can
dramatically

influence
classification

results!

se
pa

l l
en

gt
h

(c
m

)
sepal width (m)

In-Class Exercise What is the inductive bias of KNN?

Decision Boundary Example

32

In-Class Exercise

Dataset: Outputs {+,-}; Features x1 and x2

Poll Question 1:
A. Can a k-Nearest Neighbor classifier

with k=1 achieve zero training error
on this dataset?

B. If ‘Yes’, draw the learned decision
boundary. If ‘No’, why not?

Poll Question 2:
A. Can a Decision Tree classifier achieve

zero training error on this dataset?
B. If ‘Yes’, draw the learned decision

boundary. If ‘No’, why not?

x1

x2

x1

x2

KNN ON FISHER IRIS DATA

34

petal

sepal

petal

sepal

Fisher Iris Dataset
Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by
Anderson (1936)

36
Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal
Length

Sepal
Width

Petal
Length

Petal
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7

Fisher Iris Dataset
Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by
Anderson (1936)

37
Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal
Length

Sepal
Width

0 4.3 3.0

0 4.9 3.6

0 5.3 3.7

1 4.9 2.4

1 5.7 2.8

1 6.3 3.3

1 6.7 3.0

Deleted two of the
four features, so that

input space is 2D

KNN on Fisher Iris Data

39

sepal width

se
pa

l l
en

gt
h y=0

y=1

y=2

KNN on Fisher Iris Data

43

Special Case: Nearest Neighbor

KNN on Fisher Iris Data

44

KNN on Fisher Iris Data

45

KNN on Fisher Iris Data

46

KNN on Fisher Iris Data

47

KNN on Fisher Iris Data

48

KNN on Fisher Iris Data

49

KNN on Fisher Iris Data

50

KNN on Fisher Iris Data

51

KNN on Fisher Iris Data

52

KNN on Fisher Iris Data

53

KNN on Fisher Iris Data

54

KNN on Fisher Iris Data

55

KNN on Fisher Iris Data

56

KNN on Fisher Iris Data

57

KNN on Fisher Iris Data

58

KNN on Fisher Iris Data

59

KNN on Fisher Iris Data

60

KNN on Fisher Iris Data

61

KNN on Fisher Iris Data

62

Special Case: Majority Vote

KNN ON GAUSSIAN DATA

63

KNN on Gaussian Data

64

KNN on Gaussian Data

65

KNN on Gaussian Data

66

KNN on Gaussian Data

67

KNN on Gaussian Data

68

KNN on Gaussian Data

69

KNN on Gaussian Data

70

KNN on Gaussian Data

71

KNN on Gaussian Data

72

KNN on Gaussian Data

73

KNN on Gaussian Data

74

KNN on Gaussian Data

75

KNN on Gaussian Data

76

KNN on Gaussian Data

77

KNN on Gaussian Data

78

KNN on Gaussian Data

79

KNN on Gaussian Data

80

KNN on Gaussian Data

81

KNN on Gaussian Data

82

KNN on Gaussian Data

83

KNN on Gaussian Data

84

KNN on Gaussian Data

85

KNN on Gaussian Data

86

KNN on Gaussian Data

87

KNN Learning Objectives
You should be able to…
• Describe a dataset as points in a high dimensional space [CIML]
• Implement k-Nearest Neighbors with O(N) prediction
• Describe the inductive bias of a k-NN classifier and relate it to

feature scale [a la. CIML]
• Sketch the decision boundary for a learning algorithm (compare

k-NN and DT)
• State Cover & Hart (1967)'s large sample analysis of a nearest

neighbor classifier
• Invent "new" k-NN learning algorithms capable of dealing with

even k

89

MODEL SELECTION

90

Model Selection

WARNING:
• In some sense, our discussion of model selection is

premature.
• The models we have considered thus far are fairly simple.
• The models and the many decisions available to the data

scientist wielding them will grow to be much more complex
than what we’ve seen so far.

91

Model Selection

Machine Learning
• Def: (loosely) a model defines the hypothesis

space over which learning performs its
search

• Def: model parameters are the numeric
values or structure selected by the learning
algorithm that give rise to a hypothesis

• Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

• Def: hyperparameters are the tunable
aspects of the model, that the learning
algorithm does not select

92

• model = set of all possible trees, possibly
restricted by some hyperparameters (e.g.
max depth)

• parameters = structure of a specific decision
tree

• learning algorithm = ID3, CART, etc.

• hyperparameters = max-depth, threshold for
splitting criterion, etc.

Example: Decision Tree

Model Selection

Machine Learning
• Def: (loosely) a model defines the hypothesis

space over which learning performs its
search

• Def: model parameters are the numeric
values or structure selected by the learning
algorithm that give rise to a hypothesis

• Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

• Def: hyperparameters are the tunable
aspects of the model, that the learning
algorithm does not select

93

• model = set of all possible nearest neighbors
classifiers

• parameters = none
(KNN is an instance-based or non-parametric
method)

• learning algorithm = for naïve setting, just
storing the data

• hyperparameters = k, the number of
neighbors to consider

Example: k-Nearest Neighbors

Model Selection

Machine Learning
• Def: (loosely) a model defines the hypothesis

space over which learning performs its
search

• Def: model parameters are the numeric
values or structure selected by the learning
algorithm that give rise to a hypothesis

• Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

• Def: hyperparameters are the tunable
aspects of the model, that the learning
algorithm does not select

94

• model = set of all linear separators

• parameters = vector of weights (one for each
feature)

• learning algorithm = mistake based updates
to the parameters

• hyperparameters = none
(unless using some variant such as averaged
perceptron)

Example: Perceptron

Model Selection

Statistics
• Def: a model defines the data generation

process (i.e. a set or family of parametric
probability distributions)

• Def: model parameters are the values that
give rise to a particular probability
distribution in the model family

• Def: learning (aka. estimation) is the process
of finding the parameters that best fit the
data

• Def: hyperparameters are the parameters of
a prior distribution over parameters

Machine Learning
• Def: (loosely) a model defines the hypothesis

space over which learning performs its
search

• Def: model parameters are the numeric
values or structure selected by the learning
algorithm that give rise to a hypothesis

• Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

• Def: hyperparameters are the tunable
aspects of the model, that the learning
algorithm does not select

95

Model Selection

Statistics
• Def: a model defines the data generation

process (i.e. a set or family of parametric
probability distributions)

• Def: model parameters are the values that
give rise to a particular probability
distribution in the model family

• Def: learning (aka. estimation) is the process
of finding the parameters that best fit the
data

• Def: hyperparameters are the parameters of
a prior distribution over parameters

Machine Learning
• Def: (loosely) a model defines the hypothesis

space over which learning performs its
search

• Def: model parameters are the numeric
values or structure selected by the learning
algorithm that give rise to a hypothesis

• Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

• Def: hyperparameters are the tunable
aspects of the model, that the learning
algorithm does not select

96

If “learning” is all about
picking the best

parameters how do we
pick the best

hyperparameters?

Model Selection
• Two very similar definitions:
– Def: model selection is the process by which we choose the “best”

model from among a set of candidates
– Def: hyperparameter optimization is the process by which we choose

the “best” hyperparameters from among a set of candidates (could be
called a special case of model selection)

• Both assume access to a function capable of measuring the
quality of a model

• Both are typically done “outside” the main training algorithm ---
typically training is treated as a black box

97

EXPERIMENTAL DESIGN

98

Experimental Design

99

Input Output Notes
Training • training dataset

• hyperparameters
• best model parameters We pick the best model

parameters by learning on the
training dataset for a fixed set
of hyperparameters

Hyperparameter
Optimization

• training dataset
• validation dataset

• best hyperparameters We pick the best
hyperparameters by learning
on the training data and
evaluating error on the
validation error

Cross-Validation • training dataset
• validation dataset

• cross-validation error We estimate the error on held
out data by repeatedly training
on N-1 folds and predicting on
the held-out fold

Testing • test dataset
• hypothesis (i.e. fixed

model parameters)

• test error We evaluate a hypothesis
corresponding to a decision
rule with fixed model
parameters on a test dataset
to obtain test error

Choosing K for KNN

100

Cross-Validation
Cross validation is a method of estimating loss on held out data
 Input: training data, learning algorithm, loss function (e.g. 0/1 error)
 Output: an estimate of loss function on held-out data
Key idea: rather than just a single “validation” set, use many!
(Error is more stable. Slower computation.)

102

D = y(1)
y(2)

y(N)

x(1)
x(2)

x(N)

Fold 1

Fold 2

Fold 3

Fold 4

Algorithm:
Divide data into folds (e.g. 4)
1. Train on folds {1,2,3} and

predict on {4}
2. Train on folds {1,2,4} and

predict on {3}
3. Train on folds {1,3,4} and

predict on {2}
4. Train on folds {2,3,4} and

predict on {1}
Concatenate all the predictions
and evaluate loss (almost
equivalent to averaging loss
over the folds)Definition:

N-fold cross validation = cross validation with N folds

Experimental Design

103

Input Output Notes
Training • training dataset

• hyperparameters
• best model parameters We pick the best model

parameters by learning on the
training dataset for a fixed set
of hyperparameters

Hyperparameter
Optimization

• training dataset
• validation dataset

• best hyperparameters We pick the best
hyperparameters by learning
on the training data and
evaluating error on the
validation error

Cross-Validation • training dataset
• validation dataset

• cross-validation error We estimate the error on held
out data by repeatedly training
on N-1 folds and predicting on
the held-out fold

Testing • test dataset
• hypothesis (i.e. fixed

model parameters)

• test error We evaluate a hypothesis
corresponding to a decision
rule with fixed model
parameters on a test dataset
to obtain test error

Experimental Design

104

Q: We pick the best hyperparameters by learning on the training data and
evaluating error on the validation data. For our final model, should we also
learn from just the training data?

A: No!

Let's assume that {train-original} is the original training data and {test} is the
provided test dataset.

1. Split {train-original} into {train-subset} and {validation}.
2. Pick the hyperparameters that when training on {train-subset} give the lowest

error on {validation}. Call these hyperparameters {best-hyper}.
3. Retrain a new model using {best-hyper} on {train-original} = {train-

subset} ∪ {validation}.
4. Report test error by evaluating on {test}.

Alternatively, you could replace Steps 1-2 with the following:
1. Pick the hyperparameters that give the lowest cross-validation error on {train-

original}. Call these hyperparameters {best-hyper}.

k-NN: Choosing k

Fisher Iris Data: varying the value of k
105

Gaussian Data: varying the value of k
106

k-NN: Choosing k

HYPERPARAMETER OPTIMIZATION

107

Model Selection
WARNING (again):
– This section is only scratching the surface!
– Lots of methods for hyperparameter optimization: (to talk about

later)
• Grid search
• Random search
• Bayesian optimization
• Graduate-student descent
• …

Main Takeaway:
– Model selection / hyperparameter optimization is just another

form of learning

108

Hyperparameter Optimization
Setting: suppose we have hyperparameters 𝛼, β, and χ and we wish to pick the “best”
values for each one

Algorithm 1: Grid Search
– Pick a set of values for each hyperparameter
𝛼 ∈ {a1, a2, …, an}, β ∈ {b1, b2, …, bn}, and χ ∈ {c1, c2, …, cn}

– Run a grid search

for 𝛼 ∈ {a1, a2, …, an}:
 for β ∈ {b1, b2, …, bn}:
 for χ ∈ {c1, c2, …, cn}:
 θ = train(Dtrain; 𝛼, β, χ)
 error = predict(Dvalidation; θ)

– return 𝛼, β, and χ with lowest validation error
109

Hyperparameter Optimization
Setting: suppose we have hyperparameters 𝛼, β, and χ and we wish to pick the “best”
values for each one

Algorithm 2: Random Search
– Pick a range of values for each parameter
𝛼 ∈ {a1, a2, …, an}, β ∈ {b1, b2, …, bn}, and χ ∈ {c1, c2, …, cn}

– Run a random search

for t = 1, 2, …, T:
 sample 𝛼 uniformly from {a1, a2, …, an}
 sample β uniformly from {b1, b2, …, bn}
 sample χ uniformly from {c1, c2, …, cn}
 θ = train(Dtrain; 𝛼, β, χ)
 error = predict(Dvalidation; θ)

– return 𝛼, β, and χ with lowest validation error 110

Hyperparameter Optimization
Poll Question 3:
True or False: given a finite amount of computation time, grid
search is more likely to find good values for hyperparameters
than random search.

111

Answer:

BERGSTRA AND BENGIO

Grid Layout Random Layout

U
n
im

p
or

ta
n
t

p
ar

am
et

er

Important parameter

U
n
im

p
or

ta
n
t

p
ar

am
et

er

Important parameter

Figure 1: Grid and random search of nine trials for optimizing a function f (x,y) = g(x)+ h(y) ≈
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square h(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.

given learning algorithm, looking at several relatively similar data sets (from different distributions)
reveals that on different data sets, different subspaces are important, and to different degrees. A grid
with sufficient granularity to optimizing hyper-parameters for all data sets must consequently be
inefficient for each individual data set because of the curse of dimensionality: the number of wasted
grid search trials is exponential in the number of search dimensions that turn out to be irrelevant for
a particular data set. In contrast, random search thrives on low effective dimensionality. Random
search has the same efficiency in the relevant subspace as if it had been used to search only the
relevant dimensions.

This paper is organized as follows. Section 2 looks at the efficiency of random search in practice
vs. grid search as a method for optimizing neural network hyper-parameters. We take the grid search
experiments of Larochelle et al. (2007) as a point of comparison, and repeat similar experiments
using random search. Section 3 uses Gaussian process regression (GPR) to analyze the results of
the neural network trials. The GPR lets us characterize what Ψ looks like for various data sets,
and establish an empirical link between the low effective dimensionality of Ψ and the efficiency
of random search. Section 4 compares random search and grid search with more sophisticated
point sets developed for Quasi Monte-Carlo numerical integration, and argues that in the regime of
interest for hyper-parameter selection grid search is inappropriate and more sophisticated methods
bring little advantage over random search. Section 5 compares random search with the expert-
guided manual sequential optimization employed in Larochelle et al. (2007) to optimize Deep Belief
Networks. Section 6 comments on the role of global optimization algorithms in future work. We
conclude in Section 7 that random search is generally superior to grid search for optimizing hyper-
parameters.

284

Figure from Bergstra & Bengio (2012)

Hyperparameter Optimization for Deep Learning
Looking (way) ahead…
• For a deep neural network, we

have many more hyperparameters
• In this sense, hyperparameter

optimization begins to emerge as
just another part of training

• The difference is (usually) just that
many of the hyperparameters are
non-differentiable, so we can’t
learn them by gradient-based
methods

• (We’ll have lots more to say about
this in subsequent lectures)

Example of hyperparameters for
deep-network:

113
Example from Bergstra & Bengio (2012)

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention

114

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Looking (way) ahead…
For Transformer LMs we’ll
need to choose:
1. The dimension of the

input embeddings
2. The dimension of the

keys/queries/values
3. The number of heads
4. Whether LayerNorm

should come at the
beginning or the end

5. The dimension of the
neural network layers

6. How many hidden layers
they should have

7. How many Transformer
layers

8. Which loss function to
use

9. Which optimization
algorithm

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention

115

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

attention

Looking (way) ahead…
For Transformer LMs we’ll
need to choose:
1. The dimension of the

input embeddings
2. The dimension of the

keys/queries/values
3. The number of heads
4. Whether LayerNorm

should come at the
beginning or the end

5. The dimension of the
neural network layers

6. How many hidden layers
they should have

7. How many Transformer
layers

8. Which loss function to
use

9. Which optimization
algorithm

qj = WT
q xj

Scaled Dot-Product Attention

116

x′

t =

t∑

j=1

at,jvj

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

st,j = kT
j qt/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsat = softmax(st)

attention

x1’ x2’ x3’ x4’
Looking (way) ahead…
For Transformer LMs we’ll
need to choose:
1. The dimension of the

input embeddings
2. The dimension of the

keys/queries/values
3. The number of heads
4. Whether LayerNorm

should come at the
beginning or the end

5. The dimension of the
neural network layers

6. How many hidden layers
they should have

7. How many Transformer
layers

8. Which loss function to
use

9. Which optimization
algorithm

Multi-headed Attention

117

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer

• Each head gets its own
parameters

• We can concatenate all
the outputs to get a
single vector for each
time step

1st
head 2nd

head 3rd
head

Looking (way) ahead…
For Transformer LMs we’ll
need to choose:
1. The dimension of the

input embeddings
2. The dimension of the

keys/queries/values
3. The number of heads
4. Whether LayerNorm

should come at the
beginning or the end

5. The dimension of the
neural network layers

6. How many hidden layers
they should have

7. How many Transformer
layers

8. Which loss function to
use

9. Which optimization
algorithm

Transformer Layer

118

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

feed forward neural network

layer normalization

layer normalization

residual connection (addition)

residual connection (addition)

Looking (way) ahead…
For Transformer LMs we’ll
need to choose:
1. The dimension of the

input embeddings
2. The dimension of the

keys/queries/values
3. The number of heads
4. Whether LayerNorm

should come at the
beginning or the end

5. The dimension of the
neural network layers

6. How many hidden layers
they should have

7. How many Transformer
layers

8. Which loss function to
use

9. Which optimization
algorithm

Transformer Layer

119

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

feed forward neural network

layer normalization

layer normalization

residual connection (addition)

residual connection (addition)

Transformer
Layer

Looking (way) ahead…
For Transformer LMs we’ll
need to choose:
1. The dimension of the

input embeddings
2. The dimension of the

keys/queries/values
3. The number of heads
4. Whether LayerNorm

should come at the
beginning or the end

5. The dimension of the
neural network layers

6. How many hidden layers
they should have

7. How many Transformer
layers

8. Which loss function to
use

9. Which optimization
algorithm

Transformer Layer

120

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

residual connections

layer normalization

feed forward neural network

residual connections

layer normalization

Transformer
Layer

Looking (way) ahead…
For Transformer LMs we’ll
need to choose:
1. The dimension of the

input embeddings
2. The dimension of the

keys/queries/values
3. The number of heads
4. Whether LayerNorm

should come at the
beginning or the end

5. The dimension of the
neural network layers

6. How many hidden layers
they should have

7. How many Transformer
layers

8. Which loss function to
use

9. Which optimization
algorithm

Transformer Layer

121

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

x1’ x2’ x3’ x4’

Transformer layer

Looking (way) ahead…
For Transformer LMs we’ll
need to choose:
1. The dimension of the

input embeddings
2. The dimension of the

keys/queries/values
3. The number of heads
4. Whether LayerNorm

should come at the
beginning or the end

5. The dimension of the
neural network layers

6. How many hidden layers
they should have

7. How many Transformer
layers

8. Which loss function to
use

9. Which optimization
algorithm

Transformer Language Model

122

x1 x2 x3 x4

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

The bat made noise

…

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.

Transformer layer

Transformer layer

Transformer layer

Looking (way) ahead…
For Transformer LMs we’ll
need to choose:
1. The dimension of the

input embeddings
2. The dimension of the

keys/queries/values
3. The number of heads
4. Whether LayerNorm

should come at the
beginning or the end

5. The dimension of the
neural network layers

6. How many hidden layers
they should have

7. How many Transformer
layers

8. Which loss function to
use

9. Which optimization
algorithm

Model Selection Learning Objectives
You should be able to…
• Plan an experiment that uses training, validation, and test

datasets to predict the performance of a classifier on unseen
data (without cheating)

• Explain the difference between (1) training error, (2) validation
error, (3) cross-validation error, (4) test error, and (5) true error

• For a given learning technique, identify the model, learning
algorithm, parameters, and hyperparamters

• Define "instance-based learning" or "nonparametric methods"
• Select an appropriate algorithm for optimizing (aka. learning)

hyperparameters

123

