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Reminders

• Homework 2: Decision Trees
– Out: Wed, Jan. 22
– Due: Mon, Feb. 3 at 11:59pm

• Schedule Note:
– Fri, Jan. 31: Lecture 6: Perceptron
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PROPER COLLABORATION &
CODE PLAGIARISM DETECTION
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What is Moss?

• Moss (Measure Of Software Similarity): is an automatic 
system for determining the similarity of programs.  To date, 
the main application of Moss has been in detecting 
plagiarism in programming classes.

• Moss reports:
– The Andrew IDs associated with the file submissions
– The number of lines matched
– The percent lines matched
– Color coded submissions where similarities are found



What is Moss?

At first glance, the submissions may look different



What is Moss?
Moss can quickly find the similarities



Q&A
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Q: I’m now terrified to collaborate with anyone ever 
again. Can you remind me of what sort of 
collaboration is allowed?

A: Yes!
You should collaborate as follows: (1) sketch out 
pseudocode on an impermanent surface, e.g., a 
whiteboard (2) erase said surface and part ways 
with your collaborator and (3) implement your 
own code from scratch.
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Q: I’d prefer not to learn how to build 
interesting machine learning 
models, and would rather have an 
interesting model do it for me. Can I 
just have an LLM write my code for 
me?

A: No!
One of the key learning outcomes 
of this course is that you will be 
able to debug broken machine 
learning code.
We’ve found that one of the best 
ways to provide you with broken 
machine learning code is to let you 
write it yourself.



K-NEAREST NEIGHBORS
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Nearest Neighbor: Algorithm

def train(𝒟):
 Store 𝒟

def h(𝒙′):
 Let 𝒙 ! 	= the point in 𝒟 that is nearest to 𝒙′ 
 return 𝑦 !
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Recall…



Nearest Neighbor: Example
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Recall…



Nearest Neighbor: Example
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• This is a Voronoi 
diagram

• Each cell contain 
one of our 
training 
examples

• All points within 
a cell are closer 
to that training 
example, than 
to any other 
training example

• Points on the 
Voronoi line 
segments are 
equidistant to 
one or more 
training 
examples

Recall…



Nearest Neighbor: Example
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Recall…



The Nearest Neighbor Model

• Requires no training!

• Always has zero training error! 
– A data point is always its own nearest neighbor
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Recall…



k-Nearest Neighbors: Algorithm
def set_hyperparameters(k, d):
 Store k
 Store d(·, ·)

def train(𝒟):
 Store 𝒟

def h(𝒙′):
 Let S = the set of k points in 𝒟 nearest to 𝒙′
      according to distance function 
      d(u, v)
 Let v = majority_vote(S)
 return v
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Recall…



k-Nearest Neighbors
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3
4

2
8

7
7

xnew

x1

x2

How should we label 
the new point?

It depends on k:
if k=1, h(xnew) = +1
if k=3, h(xnew) = -1
if k=5, h(xnew) = +1

Suppose we have the 
training dataset below.

Recall…



KNN: Remarks
Distance Functions:
• KNN requires a distance function

• The most common choice is Euclidean distance

• But there are other choices (e.g. Manhattan distance)
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𝑑 ∶ 	ℝ! 	×	ℝ! → ℝ

𝑑 𝒖, 𝒗 = +
"#$

!

𝑢" − 𝑣" %

𝑑 𝒖, 𝒗 = +
"#$

!

𝑢" − 𝑣"

Recall…



KNN: Computational Efficiency

• Suppose we have N training examples and 
each one has M features

• Computational complexity when k=1:
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Task Naive k-d Tree

Train O(1) ~ O(M N log N)

Predict 
(one test example)

O(MN) ~ O(2M log N) on average

Problem: Very fast for small M, but 
very slow for large M

In practice: use stochastic 
approximations (very fast, and 
empirically often as good)

Recall…



KNN: Theoretical Guarantees
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Cover & Hart (1967)

Let h(x) be a Nearest Neighbor (k=1) binary 
classifier. As the number of training 
examples N goes to infinity…

errortrue(h) < 2 x Bayes Error Rate

“In this sense, it may be said that half the 
classification information in an infinite 
sample set is contained in the nearest 
neighbor.”

very 
informally, 
Bayes Error 
Rate can be 
thought of as:
‘the best you 
could possibly 
do’

Recall…



KNN: Remarks
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In-Class Exercises
How can we handle ties for 
even values of k?

Answer(s) Here:

– Consider another point
– Remove farthest of k 

points
– Weight votes by 

distance
– Consider another 

distance metric



KNN: Inductive Bias

1. Similar points should have similar labels
2. All dimensions are created equally!
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Example: two features for KNN

se
pa

l l
en

gt
h 

(c
m

)

sepal width (cm)

big problem: 
feature scale 

can 
dramatically 

influence 
classification 

results!

se
pa

l l
en

gt
h 

(c
m

)
sepal width (m)

In-Class Exercise     What is the inductive bias of KNN?



Decision Boundary Example
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In-Class Exercise

Dataset: Outputs {+,-}; Features x1 and x2

Poll Question 1:
A. Can a k-Nearest Neighbor classifier 

with k=1 achieve zero training error 
on this dataset?

B. If ‘Yes’, draw the learned decision 
boundary. If ‘No’, why not?

Poll Question 2:
A. Can a Decision Tree classifier achieve 

zero training error on this dataset?
B. If ‘Yes’, draw the learned decision 

boundary. If ‘No’, why not?

x1

x2

x1

x2



KNN ON FISHER IRIS DATA
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petal

sepal

petal

sepal



Fisher Iris Dataset
Fisher (1936) used 150 measurements of flowers 
from 3 different species: Iris setosa (0), Iris 
virginica (1), Iris versicolor (2) collected by 
Anderson (1936)

36
Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal 
Length

Sepal 
Width

Petal 
Length

Petal 
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7



Fisher Iris Dataset
Fisher (1936) used 150 measurements of flowers 
from 3 different species: Iris setosa (0), Iris 
virginica (1), Iris versicolor (2) collected by 
Anderson (1936)

37
Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal 
Length

Sepal 
Width

0 4.3 3.0

0 4.9 3.6

0 5.3 3.7

1 4.9 2.4

1 5.7 2.8

1 6.3 3.3

1 6.7 3.0

Deleted two of the 
four features, so that 

input space is 2D



KNN on Fisher Iris Data
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sepal width
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KNN on Fisher Iris Data
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Special Case: Nearest Neighbor



KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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Special Case: Majority Vote



KNN ON GAUSSIAN DATA
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data

86



KNN on Gaussian Data
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KNN Learning Objectives
You should be able to…
• Describe a dataset as points in a high dimensional space [CIML]
• Implement k-Nearest Neighbors with O(N) prediction
• Describe the inductive bias of a k-NN classifier and relate it to 

feature scale [a la. CIML]
• Sketch the decision boundary for a learning algorithm (compare 

k-NN and DT)
• State Cover & Hart (1967)'s large sample analysis of a nearest 

neighbor classifier
• Invent "new" k-NN learning algorithms capable of dealing with 

even k

89



MODEL SELECTION
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Model Selection

WARNING: 
• In some sense, our discussion of model selection is 

premature. 
• The models we have considered thus far are fairly simple.
• The models and the many decisions available to the data 

scientist wielding them will grow to be much more complex 
than what we’ve seen so far.
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Model Selection

Machine Learning
• Def: (loosely) a model defines the hypothesis 

space over which learning performs its 
search

• Def: model parameters are the numeric 
values or structure selected by the learning 
algorithm that give rise to a hypothesis

• Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e. 
search for good parameters)

• Def: hyperparameters are the tunable 
aspects of the model, that the learning 
algorithm does not select
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• model = set of all possible trees, possibly 
restricted by some hyperparameters (e.g. 
max depth)

• parameters = structure of a specific decision 
tree

• learning algorithm = ID3, CART, etc.

• hyperparameters = max-depth, threshold for 
splitting criterion, etc.

Example: Decision Tree



Model Selection

Machine Learning
• Def: (loosely) a model defines the hypothesis 

space over which learning performs its 
search

• Def: model parameters are the numeric 
values or structure selected by the learning 
algorithm that give rise to a hypothesis

• Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e. 
search for good parameters)

• Def: hyperparameters are the tunable 
aspects of the model, that the learning 
algorithm does not select
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• model = set of all possible nearest neighbors 
classifiers

• parameters = none 
(KNN is an instance-based or non-parametric 
method)

• learning algorithm = for naïve setting, just 
storing the data

• hyperparameters = k, the number of 
neighbors to consider

Example: k-Nearest Neighbors



Model Selection

Machine Learning
• Def: (loosely) a model defines the hypothesis 

space over which learning performs its 
search

• Def: model parameters are the numeric 
values or structure selected by the learning 
algorithm that give rise to a hypothesis

• Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e. 
search for good parameters)

• Def: hyperparameters are the tunable 
aspects of the model, that the learning 
algorithm does not select
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• model = set of all linear separators

• parameters = vector of weights (one for each 
feature)

• learning algorithm = mistake based updates 
to the parameters

• hyperparameters = none 
(unless using some variant such as averaged 
perceptron)

Example: Perceptron



Model Selection

Statistics
• Def: a model defines the data generation 

process (i.e. a set or family of parametric 
probability distributions)

• Def: model parameters are the values that 
give rise to a particular probability 
distribution in the model family

• Def: learning (aka. estimation) is the process 
of finding the parameters that best fit the 
data

• Def: hyperparameters are the parameters of 
a prior distribution over parameters

Machine Learning
• Def: (loosely) a model defines the hypothesis 

space over which learning performs its 
search

• Def: model parameters are the numeric 
values or structure selected by the learning 
algorithm that give rise to a hypothesis

• Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e. 
search for good parameters)

• Def: hyperparameters are the tunable 
aspects of the model, that the learning 
algorithm does not select
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Model Selection

Statistics
• Def: a model defines the data generation 

process (i.e. a set or family of parametric 
probability distributions)

• Def: model parameters are the values that 
give rise to a particular probability 
distribution in the model family

• Def: learning (aka. estimation) is the process 
of finding the parameters that best fit the 
data

• Def: hyperparameters are the parameters of 
a prior distribution over parameters

Machine Learning
• Def: (loosely) a model defines the hypothesis 

space over which learning performs its 
search

• Def: model parameters are the numeric 
values or structure selected by the learning 
algorithm that give rise to a hypothesis

• Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e. 
search for good parameters)

• Def: hyperparameters are the tunable 
aspects of the model, that the learning 
algorithm does not select

96

If “learning” is all about 
picking the best 

parameters how do we 
pick the best 

hyperparameters?



Model Selection
• Two very similar definitions:
– Def: model selection is the process by which we choose the “best” 

model from among a set of candidates
– Def: hyperparameter optimization is the process by which we choose 

the “best” hyperparameters from among a set of candidates (could be 
called a special case of model selection) 

• Both assume access to a function capable of measuring the 
quality of a model

• Both are typically done “outside” the main training algorithm --- 
typically training is treated as a black box

97



EXPERIMENTAL DESIGN
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Experimental Design

99

Input Output Notes
Training • training dataset 

• hyperparameters
• best model parameters We pick the best model 

parameters by learning on the 
training dataset for a fixed set 
of hyperparameters

Hyperparameter 
Optimization

• training dataset 
• validation dataset

• best hyperparameters We pick the best 
hyperparameters by learning 
on the training data and 
evaluating error on the 
validation error

Cross-Validation • training dataset
• validation dataset

• cross-validation error We estimate the error on held 
out data by repeatedly training 
on N-1 folds and predicting on 
the held-out fold

Testing • test dataset
• hypothesis (i.e. fixed 

model parameters)

• test error We evaluate a hypothesis 
corresponding to a decision 
rule with fixed model 
parameters on a test dataset 
to obtain test error



Choosing K for KNN
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Cross-Validation
Cross validation is a method of estimating loss on held out data
 Input: training data, learning algorithm, loss function (e.g. 0/1 error)
 Output: an estimate of loss function on held-out data
Key idea: rather than just a single “validation” set, use many! 
(Error is more stable. Slower computation.)

102

D = y(1) 
y(2) 

y(N) 

x(1) 
x(2) 

x(N) 

Fold 1

Fold 2

Fold 3

Fold 4

Algorithm: 
Divide data into folds (e.g. 4)
1. Train on folds {1,2,3} and 

predict on {4}
2. Train on folds {1,2,4} and 

predict on {3}
3. Train on folds {1,3,4} and 

predict on {2}
4. Train on folds {2,3,4} and 

predict on {1}
Concatenate all the predictions 
and evaluate loss (almost 
equivalent to averaging loss 
over the folds)Definition: 

N-fold cross validation = cross validation with N folds



Experimental Design
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Input Output Notes
Training • training dataset 

• hyperparameters
• best model parameters We pick the best model 

parameters by learning on the 
training dataset for a fixed set 
of hyperparameters

Hyperparameter 
Optimization

• training dataset 
• validation dataset

• best hyperparameters We pick the best 
hyperparameters by learning 
on the training data and 
evaluating error on the 
validation error

Cross-Validation • training dataset
• validation dataset

• cross-validation error We estimate the error on held 
out data by repeatedly training 
on N-1 folds and predicting on 
the held-out fold

Testing • test dataset
• hypothesis (i.e. fixed 

model parameters)

• test error We evaluate a hypothesis 
corresponding to a decision 
rule with fixed model 
parameters on a test dataset 
to obtain test error



Experimental Design
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Q: We pick the best hyperparameters by learning on the training data and 
evaluating error on the validation data. For our final model, should we also 
learn from just the training data?

A: No!

Let's assume that {train-original} is the original training data and {test} is the 
provided test dataset.

1. Split {train-original} into {train-subset} and {validation}.
2. Pick the hyperparameters that when training on {train-subset} give the lowest 

error on {validation}. Call these hyperparameters {best-hyper}.
3. Retrain a new model using {best-hyper} on {train-original} = {train-

subset} ∪ {validation}.
4. Report test error by evaluating on {test}.

Alternatively, you could replace Steps 1-2 with the following:
1. Pick the hyperparameters that give the lowest cross-validation error on {train-

original}. Call these hyperparameters {best-hyper}.



k-NN:  Choosing k

Fisher Iris Data: varying the value of k
105



Gaussian Data: varying the value of k
106

k-NN:  Choosing k



HYPERPARAMETER OPTIMIZATION
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Model Selection
WARNING (again):
– This section is only scratching the surface!
– Lots of methods for hyperparameter optimization: (to talk about 

later)
• Grid search
• Random search
• Bayesian optimization
• Graduate-student descent
• …

Main Takeaway: 
– Model selection / hyperparameter optimization is just another 

form of learning

108



Hyperparameter Optimization
Setting: suppose we have hyperparameters 𝛼, β, and χ and we wish to pick the “best” 
values for each one

Algorithm 1: Grid Search
– Pick a set of values for each hyperparameter
𝛼 ∈ {a1, a2, …, an}, β ∈ {b1, b2, …, bn}, and χ ∈ {c1, c2, …, cn} 

– Run a grid search

for 𝛼 ∈ {a1, a2, …, an}:
    for β ∈ {b1, b2, …, bn}:
        for χ ∈ {c1, c2, …, cn}:
            θ = train(Dtrain; 𝛼, β, χ)
             error = predict(Dvalidation; θ)

– return 𝛼, β, and χ with lowest validation error
109



Hyperparameter Optimization
Setting: suppose we have hyperparameters 𝛼, β, and χ and we wish to pick the “best” 
values for each one

Algorithm 2: Random Search
– Pick a range of values for each parameter
𝛼 ∈ {a1, a2, …, an}, β ∈ {b1, b2, …, bn}, and χ ∈ {c1, c2, …, cn} 

– Run a random search

for t = 1, 2, …, T:
    sample 𝛼 uniformly from {a1, a2, …, an}
    sample β uniformly from {b1, b2, …, bn}
    sample χ uniformly from {c1, c2, …, cn}
    θ = train(Dtrain; 𝛼, β, χ)
    error = predict(Dvalidation; θ)

– return 𝛼, β, and χ with lowest validation error 110



Hyperparameter Optimization
Poll Question 3:
True or False: given a finite amount of computation time, grid 
search is more likely to find good values for hyperparameters 
than random search.
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Answer:

BERGSTRA AND BENGIO

Grid Layout Random Layout
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Figure 1: Grid and random search of nine trials for optimizing a function f (x,y) = g(x)+ h(y) ≈
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square h(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.

given learning algorithm, looking at several relatively similar data sets (from different distributions)
reveals that on different data sets, different subspaces are important, and to different degrees. A grid
with sufficient granularity to optimizing hyper-parameters for all data sets must consequently be
inefficient for each individual data set because of the curse of dimensionality: the number of wasted
grid search trials is exponential in the number of search dimensions that turn out to be irrelevant for
a particular data set. In contrast, random search thrives on low effective dimensionality. Random
search has the same efficiency in the relevant subspace as if it had been used to search only the
relevant dimensions.

This paper is organized as follows. Section 2 looks at the efficiency of random search in practice
vs. grid search as a method for optimizing neural network hyper-parameters. We take the grid search
experiments of Larochelle et al. (2007) as a point of comparison, and repeat similar experiments
using random search. Section 3 uses Gaussian process regression (GPR) to analyze the results of
the neural network trials. The GPR lets us characterize what Ψ looks like for various data sets,
and establish an empirical link between the low effective dimensionality of Ψ and the efficiency
of random search. Section 4 compares random search and grid search with more sophisticated
point sets developed for Quasi Monte-Carlo numerical integration, and argues that in the regime of
interest for hyper-parameter selection grid search is inappropriate and more sophisticated methods
bring little advantage over random search. Section 5 compares random search with the expert-
guided manual sequential optimization employed in Larochelle et al. (2007) to optimize Deep Belief
Networks. Section 6 comments on the role of global optimization algorithms in future work. We
conclude in Section 7 that random search is generally superior to grid search for optimizing hyper-
parameters.

284

Figure from Bergstra & Bengio (2012)



Hyperparameter Optimization for Deep Learning
Looking (way) ahead…
• For a deep neural network, we 

have many more hyperparameters
• In this sense, hyperparameter 

optimization begins to emerge as 
just another part of training

• The difference is (usually) just that 
many of the hyperparameters are 
non-differentiable, so we can’t 
learn them by gradient-based 
methods 

• (We’ll have lots more to say about 
this in subsequent lectures)

Example of hyperparameters for 
deep-network:

113
Example from Bergstra & Bengio (2012)
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Scaled Dot-Product Attention
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x1 x2 x3 x4
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Looking (way) ahead…
For Transformer LMs we’ll 
need to choose:
1. The dimension of the 

input embeddings
2. The dimension of the 

keys/queries/values
3. The number of heads
4. Whether LayerNorm 

should come at the 
beginning or the end

5. The dimension of the 
neural network layers

6. How many hidden layers 
they should have

7. How many Transformer 
layers

8. Which loss function to 
use

9. Which optimization 
algorithm



q1 q2 q3 q4 qj = WT
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Scaled Dot-Product Attention
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x1 x2 x3 x4

Wk

Wq

vj = WT
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attention weightsa4 = softmax(s4)
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j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4
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attention

Looking (way) ahead…
For Transformer LMs we’ll 
need to choose:
1. The dimension of the 

input embeddings
2. The dimension of the 

keys/queries/values
3. The number of heads
4. Whether LayerNorm 

should come at the 
beginning or the end

5. The dimension of the 
neural network layers

6. How many hidden layers 
they should have

7. How many Transformer 
layers

8. Which loss function to 
use

9. Which optimization 
algorithm
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attention

x1’ x2’ x3’ x4’
Looking (way) ahead…
For Transformer LMs we’ll 
need to choose:
1. The dimension of the 

input embeddings
2. The dimension of the 

keys/queries/values
3. The number of heads
4. Whether LayerNorm 

should come at the 
beginning or the end

5. The dimension of the 
neural network layers

6. How many hidden layers 
they should have

7. How many Transformer 
layers

8. Which loss function to 
use

9. Which optimization 
algorithm



Multi-headed Attention
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x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have 
multiple channels in a 
convolution layer, we 
can use multiple heads 
in an attention layer 

• Each head gets its own 
parameters

• We can concatenate all 
the outputs to get a 
single vector for each 
time step

1st 
head 2nd 

head 3rd 
head

Looking (way) ahead…
For Transformer LMs we’ll 
need to choose:
1. The dimension of the 

input embeddings
2. The dimension of the 

keys/queries/values
3. The number of heads
4. Whether LayerNorm 

should come at the 
beginning or the end

5. The dimension of the 
neural network layers

6. How many hidden layers 
they should have

7. How many Transformer 
layers

8. Which loss function to 
use

9. Which optimization 
algorithm



Transformer Layer
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Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

feed forward neural network

layer normalization

layer normalization

residual connection (addition)

residual connection (addition)

Looking (way) ahead…
For Transformer LMs we’ll 
need to choose:
1. The dimension of the 

input embeddings
2. The dimension of the 

keys/queries/values
3. The number of heads
4. Whether LayerNorm 

should come at the 
beginning or the end

5. The dimension of the 
neural network layers

6. How many hidden layers 
they should have

7. How many Transformer 
layers

8. Which loss function to 
use

9. Which optimization 
algorithm



Transformer Layer
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Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

feed forward neural network

layer normalization

layer normalization

residual connection (addition)

residual connection (addition)

Transformer
Layer

Looking (way) ahead…
For Transformer LMs we’ll 
need to choose:
1. The dimension of the 

input embeddings
2. The dimension of the 

keys/queries/values
3. The number of heads
4. Whether LayerNorm 

should come at the 
beginning or the end

5. The dimension of the 
neural network layers

6. How many hidden layers 
they should have

7. How many Transformer 
layers

8. Which loss function to 
use

9. Which optimization 
algorithm



Transformer Layer
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Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

residual connections

layer normalization

feed forward neural network

residual connections

layer normalization

Transformer
Layer

Looking (way) ahead…
For Transformer LMs we’ll 
need to choose:
1. The dimension of the 

input embeddings
2. The dimension of the 

keys/queries/values
3. The number of heads
4. Whether LayerNorm 

should come at the 
beginning or the end

5. The dimension of the 
neural network layers

6. How many hidden layers 
they should have

7. How many Transformer 
layers

8. Which loss function to 
use

9. Which optimization 
algorithm



Transformer Layer
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Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

x1’ x2’ x3’ x4’

Transformer layer

Looking (way) ahead…
For Transformer LMs we’ll 
need to choose:
1. The dimension of the 

input embeddings
2. The dimension of the 

keys/queries/values
3. The number of heads
4. Whether LayerNorm 

should come at the 
beginning or the end

5. The dimension of the 
neural network layers

6. How many hidden layers 
they should have

7. How many Transformer 
layers

8. Which loss function to 
use

9. Which optimization 
algorithm



Transformer Language Model

122

x1 x2 x3 x4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…

Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at 
the hidden vectors of the current 
and previous timesteps in the 
previous layer.

The language model part is just like 
an RNN-LM.

Transformer layer

Transformer layer

Transformer layer

Looking (way) ahead…
For Transformer LMs we’ll 
need to choose:
1. The dimension of the 

input embeddings
2. The dimension of the 

keys/queries/values
3. The number of heads
4. Whether LayerNorm 

should come at the 
beginning or the end

5. The dimension of the 
neural network layers

6. How many hidden layers 
they should have

7. How many Transformer 
layers

8. Which loss function to 
use

9. Which optimization 
algorithm



Model Selection Learning Objectives
You should be able to…
• Plan an experiment that uses training, validation, and test 

datasets to predict the performance of a classifier on unseen 
data (without cheating)

• Explain the difference between (1) training error, (2) validation 
error, (3) cross-validation error, (4) test error, and (5) true error

• For a given learning technique, identify the model, learning 
algorithm, parameters, and hyperparamters

• Define "instance-based learning" or "nonparametric methods"
• Select an appropriate algorithm for optimizing (aka. learning) 

hyperparameters
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